《平移》习题

合集下载

平移练习题

平移练习题

平移练习题(一)一、连一连。

升旗时国旗的运动钟摆的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动旋转把握汽车的方向盘二、操作。

1、向( )平移了( )格。

2、把上面的小船图向上平移5格3、画出的另一半,使它成为轴对称图形。

三、选择。

汽车在公路上运动时,轮子的运动是( )。

A、平移B、旋转C、既平移又旋转平移练习题(二)一、看图填一填。

1、长方形向()平移了()格。

2、六边形向()平移了()格。

3、五角星向()平移了()格。

二、从镜子中看到的左边图形的样子是什么?画“√”三、按要求操作。

1、把图中长方形向上平移2格;2、把图中三角形向右平移3格;3、把图中平行四边形向左平移5格。

四、按要求填图五、分别画出下面图形向下平移2格后再向右平移8格后得到的图形六、画出拖拉机先向左平移4格,再向下平移3格后的图形。

平移练习题(三)一、看图填一填。

1、长方形向()平移了()格。

2、六边形向()平移了()格。

3、五角星向()平移了()格。

二、按要求操作。

1、把图中下边的长方形向上平移2格;2、把图中左边的三角形向右平移3格;3、把图中上边的长方形向下平移4格;4、把图中右边的平行四边形向左平移5格。

5、平移后的图像什么?三、接着往下画。

四、在各图形中填上合适的数。

五、下图是按照一定规律排列起来的,请按这一规律在空格处画出适当的图形。

六、画一画。

七、在下图空格内画出合适的图形。

七年级数学下册《平移》练习题及答案

七年级数学下册《平移》练习题及答案

七年级数学下册《平移》练习题及答案一、单选题1.如图所示的图案,可以看作由“基本图案”经过平移得到的是()A.B. C.D.2.今年4月,被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是()A.对称B.旋转C.平移D.跳跃3.皮影戏是中国民间古老的传统艺术,2011年中国皮影戏入选人类非物质文化遗产代表作名录.平移如图所示的孙悟空皮影造型,能得到下列图中的()A.B.C.D.4.如图,△ABC沿BC方向平移后的得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1 B.2 C.3 D.45.如图,△ABC经过平移后得到△DEF,下列说法:①AB//DE②AD=BE③∠ACB=∠DFE④△ABC和△DEF的面积相等⑤四边形ACFD和四边形BCFE的面积相等,其中正确的有()A.4个B.3个C.2个D.1个6.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为( )A.16cm B.18cm C.20cm D.22cm7.小红同学在某数学兴趣小组活动期间,用铁丝设计并制作了如图所示的三种不同的图形,请您观察甲、乙、丙三个图形,判断制作它们所用铁丝的长度关系是()A.制作甲种图形所用铁丝最长B.制作乙种图形所用铁丝最长C.制作丙种图形所用铁丝最长D.三种图形的制作所用铁丝一样长8.如图,一块长为a m,宽为b m的长方形草地上,有一条弯曲的小路,小路左边线向右平移t m就是它的边线.若a:b=5:3,b:t=6:1,则小路面积与绿地面积的比为()A.19B.110C.211D.2139.如图,△ABC沿直线BC向右平移得到△DEF,已知EC=2,BF=8,则CF的长为()A.3 B.4 C.5 D.610.如图,两个全等的直角三角形重叠在一起,将Rt△ABC沿着BC的方向平移到Rt△DEF的位置,已知AB=5,DO=2,平移距离为3,则阴影部分的面积为()A.12 B.24 C.21 D.20.5二、填空题11.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为_______.12.如图所示,将三角形ABC平移到△A′B′C′.在这两个平移中:(1)三角形A′B′C′与三角形ABC的________和_______完全相同.即平移不改变_______.平移改变_______.(2)观察平移前后的对应线段AB、A′B′等,对应角∠ABC、∠A′B′C′等的关系,可以发现_____.(3)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是_______;位置关系是________.13.如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=___.14.如图,面积为4的正方形ABCD的边AB在数轴上,且点B表示的数为1.将正方形ABCD沿着数轴水平移动,移动后的正方形记为A′B′C′D′,点A,B,C,D的对应点分别为A′,B′,C′,D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=1时,数轴上点B′表示的数是__.15.将直角梯形ABCD平移得梯形EFGH,若HG=10,MC=2,MG=4,则图中阴影部分的面积为_________平方单位.三、解答题16.在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中,点B与点B'对应,请画出平移后的△ A′B′C′;(2)直接回答,图中AC与 A′C′的数量关系和位置关系是什么?(3)记网格的边长为1,则△ A′B′C′的面积为多少?17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,点A平移到点D的位置,B、C点平移后的对应点分别是E、F.(1)画出平移后的△DEF;(2)线段BE、CF之间关系是___________.(3)过点A作BC的平行线l1.(4)作出△ABC在BC边上的高.(5)△DEF的面积是___________.18.在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,内角均为直角,△ABC的三个顶点均在“格点”处.(1)将△ABC平移,使得点B移到点B′的位置,画出平移后的△A′B′C′;(2)利用正方形网格画出△ABC的高AD;(3)连接BB′、CB′,利用全等三角形的知识证明BB′⊥AC.19.【知识介绍】苏科版数学七年级下:平移的意义:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移,平移不改变图形的形状和大小.如图,直线l上有两条可以左右移动的线段AB和CD,线段AB在线段CD的左边,AB=8,CD=16,运动过程中,点M、N始终分别是线段AB、CD的中点.(1)线段AB与CD同时以每秒1个单位长度的速度也向右运动,MN的长度将______(变大、不变、变小).(2)若线段AB以每秒4个单位长度的速度向右运动,同时,线段CD以每秒1个单位长度的速度也向右运动,且线段AB运动6秒时,MN=4,求运动前点B、C之间的距离;(3)设BC=24,且线段CD不动,将线段AB以每秒4个单位长度的速度向右运动.在AB向右运动的某一个时间段内,是否存在MN+AD的值为定值?若存在,请直接写出这个定值,并直接写出这个时间段;若不存在,请说明理由.20.问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把n个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当n=1时,只需把金属片从1号针移到3号针,用符号(1,3)表示,共移动了1次.探究二:当n=2时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:(1,2),(1,3),(2,3).共移动了3次.探究三:当n=3时,把上面两个金属片作为一个整体,则归结为n=2的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:(1,3),(1,2),(3,2),(1,3),(2,1),(2,3),(1,3).共移动了7次.(1)探究四:请仿照前面步骤进行解答:当n=4时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当n=5时,需要移动________次.(3)探究六:把n个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把n个金属片从1号针移到3号针,最少移动的次数记为a n,当n≥2时如果我们把n−1个金属片从1号针移到3号针,最少移动的次数记为a n−1,那么a n与a n−1的关系是a n=__________.21.如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE∥AB,连接AE,∠B=∠E=75°.(1)请说明AE∥BC的理由.(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.①如图2,当DE⊥DQ时,求∠Q的度数;②在整个运动中,当∠Q=2∠EDQ时,求∠Q的度数.③在整个运动中,求∠E、∠Q、∠EDQ之间的的等量关系.参考答案:1.B2.C3.D4.C5.A6.C7.D8.A9.A10.A11.22cm12.大小形状图形的大小和形状图形的位置对应线段平行(共线)且相等,对应角相等相等平行(或共线)13.230°14.2.5或-0.515.3616.(1)解:△ A′B′C′如图所示:;(2)解:根据平移的性质得AC= A′C′,AC∥ A′C′;(3)解:△ A′B′C′的面积=4×4×12=8.17.(1)如图所示,△DEF即为所求;(2)由平移的性质知AD=CF、AD∥CF,故答案为:AD=CF、AD∥CF.(3)如图,直线l1即为所作;(4)如图,AG即为BC边上的高;(5)△DEF的面积为12×(2+4)×4−12×2×3−12×1×4=7,故答案为:7.18.(1)过点B′作B′C′∥BC,且B′C′=5,再沿着B′向右移动两个单位,再向上移动五个单位,就可得到点A′,连接A′B′,A′C′,即可得到△A′B′C′(2)设从点B的位置向右两个单位的点为D,连接AD,则AD就是所求的高(3)设AC交BB′于点J.在△ADC和△BCB′中,AD=BC,∠ADC=∠BCB′=90°,DC=CB′,∴△ADC≌△BCB′,∴∠DAC=∠CBB′,∵∠ACD+∠DAC=90°,∴∠CBB′+∠ACB=90°,∴∠BJC=90°,∴BB′⊥AC.19.(1)不变(2)运动前点B、C之间的距离为10或2;(3)当9≤t≤12时,MN+AD=12为定值.20.(1)当n=4时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)31,(3)2n−1,(4)2a n−1+1.21.(1)解:∵DE∥AB,∴∠BAE+∠E=180°,∵∠B=∠E,∴∠BAE+∠B=180°,∴AE∥BC;(2)①如图2,过D作DF∥AE交AB于F,∵线段AE沿着直线AC平移得到线段PQ,∴PQ∥AE,∴DF∥PQ,∴∠DPQ=∠FDP,∵∠E=75°,∴∠EDF=180°-∠E=105°,∵DE⊥DQ,∴∠EDQ=90°,∴∠FDQ=360°﹣105°﹣90°=165°,∴∠DPQ+∠QDP=∠FDP+∠QDP=∠FDQ=165°,∴∠Q=180°﹣165°=15°;②如图3,过D作DF∥AE交AB于F,∵PQ∥AE,∴DF∥PQ,∴∠QDF=180°﹣∠Q,∵∠Q=2∠EDQ,∠Q,∴∠EDQ=12∵∠E=75°,∴∠EDF=105°,∠Q=105°,∴180°﹣∠Q−12∴∠Q=50°;如图4,过D作DF∥AE交AB于F,∵PQ∥AE,∴DF∥PQ,∴∠QDF=180°﹣∠Q,∵∠Q=2∠EDQ,∴∠EDQ=1∠Q,2∵∠E=75°,∴∠EDF=105°,∠Q=105°,∴180°﹣∠Q+12∴∠Q=150°,综上所述,∠Q=50°或150°,③如图3,∵DF∥AE,DF∥PQ,∴∠EDG=∠E,∠GDQ=∠Q,∴∠EDQ=∠EDG-∠GDQ=∠E-∠Q,即∠EDQ=∠E-∠Q;如图4,∵DF∥AE,DF∥PQ,∴∠FDE=180°-∠E,∠FDQ=180°-∠Q,∴∠EDQ=∠FDE-∠FDQ=∠Q-∠E,即∠EDQ=∠Q-∠E;综上所述,∠EDQ=∠E﹣∠Q或∠EDQ=∠Q﹣∠E.。

五年级上册平移 练习题

五年级上册平移 练习题

五年级上册平移练习题题1:平移-正数1. 在坐标平面上,给定一个点A(2, 3),将点A向右平移4个单位,得到点B,求点B的坐标。

解:根据平移的性质,将点A向右平移4个单位,相当于将A的横坐标增加4个单位,纵坐标保持不变。

所以点B的横坐标为2 + 4 = 6,纵坐标为3。

因此,点B的坐标为(6, 3)。

2. 在平面直角坐标系上,给定点C(5, 7),将点C向上平移3个单位,得到点D,求点D的坐标。

解:根据平移的性质,将点C向上平移3个单位,相当于将C的纵坐标增加3个单位,横坐标保持不变。

所以点D的横坐标为5,纵坐标为7 + 3 = 10。

因此,点D的坐标为(5, 10)。

3. 在坐标平面上,给定点E(-2, -4),将点E向右平移7个单位,得到点F,求点F的坐标。

解:根据平移的性质,将点E向右平移7个单位,相当于将E的横坐标增加7个单位,纵坐标保持不变。

所以点F的横坐标为-2 + 7 = 5,纵坐标为-4。

因此,点F的坐标为(5, -4)。

题2:平移-负数1. 在平面直角坐标系上,给定点G(3, 5),将点G向左平移2个单位,得到点H,求点H的坐标。

解:根据平移的性质,将点G向左平移2个单位,相当于将G的横坐标减少2个单位,纵坐标保持不变。

所以点H的横坐标为3 - 2 = 1,纵坐标为5。

因此,点H的坐标为(1, 5)。

2. 在坐标平面上,给定点I(-4, -6),将点I向下平移5个单位,得到点J,求点J的坐标。

解:根据平移的性质,将点I向下平移5个单位,相当于将I的纵坐标减少5个单位,横坐标保持不变。

所以点J的横坐标为-4,纵坐标为-6 - 5 = -11。

因此,点J的坐标为(-4, -11)。

3. 在平面直角坐标系上,给定点K(0, 0),将点K向左平移3个单位,得到点L,求点L的坐标。

解:根据平移的性质,将点K向左平移3个单位,相当于将K的横坐标减少3个单位,纵坐标保持不变。

所以点L的横坐标为0 - 3 = -3,纵坐标为0。

平移练习题(含答案)

平移练习题(含答案)

第五章相交线与平行线5.4 平移1.下列现象中不属于平移的是A.滑雪运动员在平坦的雪地上滑雪B.彩票大转盘在旋转C.高楼的电梯在上上下下D.火车在一段笔直的铁轨上行驶2.如图,现将四边形ABCD沿AE进行平移,得到四边形EFGH,则图中与CG平行的线段有A.0条B.1条C.2条D.3条3.如图,△FDE经过怎样的平移可得到△ABCA.沿射线EC的方向移动DB长B.沿射线CE的方向移动DB长C.沿射线EC的方向移动CD长D.沿射线BD的方向移动BD长4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D .先向右平移5个单位,再向下平移2个单位5.如图,将△ABE 向右平移得到△DCF ,AE 与CD 交于点G ,其中45B ∠=︒,60F ∠=︒,则AGC ∠=A .75︒B .105︒C .125︒D .85︒6.如图,将△ABE 向右平移2 cm 得到△DCF ,如果△ABE 的周长是16 cm ,那么四边形ABFD 的周长是A .16 cmB .18 cmC .20 cmD .21 cm7.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=____.8.如图,三角形ADE 是由三角形DBF 沿BD 所在的直线平移得到的,AE ,BF 的延长线交于点C.若∠BFD =45°,则∠C 的度数是 ________9.如图,A B C '''△ 是△ABC 向右平移4 cm 得到的,已知∠ACB =30°,B ′C =3 cm ,则∠C ′=_________,B ′C ′=________cm.10.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要__________元.11.如图,△ABC沿直线BC向右移了3 cm,得△FDE,且BC=6 cm,∠B=40°.(1)求BE;(2)求∠FDB的度数;(3)找出图中相等的线段(不另添加线段);(4)找出图中互相平行的线段(不另添加线段).12.如图,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置,并作出△DEF.13.如图,在三角形ABC中,已知AB=3cm,AC=4cm,BC=5cm.现将三角形ABC沿着垂直于BC的方向平移6cm,到三角形DEF的位置,求三角形ABC所扫过的面积.14.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中已有的线段走,那么从A点到B点的最短距离的走法共有A.1种B.2种C.3种D.4种15.多边形的相邻两边互相垂直,则这个多边形的周长为A.a+b B.2a+bC.2a+2b D.2b+a16.如图,平移△ABC可得到△DEF,如果∠C=60°,AE=7cm,AB=4cm,那么∠F= ______ 度,DB= ______ cm.17.如图,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼梯宽为2 m,其侧面与正面如图所示,则购买地毯至少需要多少元?18.如图,在四边形ABCD中,AD∥BC,且AD<BC,△ABC平移到△DEF的位置.(1)指出平移的方向和平移的距离;(2)试说明AD+BC=BF.19.(2017•铜仁)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是A.S1>S2B.S1<S2C.S1=S2D.S1=2S21.【答案】B【解析】A.滑雪运动员在平坦的雪地上滑雪,属于平移,故本选项错误;B.彩票大转盘在旋转,不属于平移,故本选项正确;C. 高楼的电梯在上上下下,属于平移,故本选项错误;D. 火车在一段笔直的铁轨上行驶,属于平移,故本选项错误.故选:B.4.【答案】A【解析】根据网格结构,观察对应点A,D,点A向左平移5个单位,再向下平移2个单位即可到达点D 的位置,所以平移步骤是:先把△ABC 向左平移5个单位,再向下平移2个单位,故选A . 5.【答案】B【解析】∵△ABE 向右平移得到△DCF ,∴AB ∥CD ,AE ∥DF ,∴∠DCF =∠B =45°,∴∠CDF =180°- 45°-60°=75°,∴∠AGC =∠DGE =180°-75°=105°,故选B . 6.【答案】C【解析】已知,△ABE 向右平移2 cm 得到△DCF ,根据平移的性质得到EF =AD =2 cm ,AE =DF ,又因△ABE 的周长为16 cm ,所以AB +BE +AE =16 cm ,则四边形ABFD 的周长=AB +BC +CF +DF +AD =16+2+ 2=20(cm ),故选C . 7.【答案】5【解析】∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了5个单位,∴顶点C 平移的距离CC ′=5.故答案为:5. 8.【答案】45°【解析】∵△ADE 是由△DBF 沿BD 所在的直线平移得到的, ∴DE ∥BC ,∠BFD =∠AED , ∴∠AED =∠C ∴∠C =∠BFD =45°. 故答案是:45°. 9.【答案】30°,7【解析】∵A B C '''△ 是△ABC 向右平移4 cm 得到的, ∴BB ′=CC ′=4 cm ,∠C ′=∠ACB =30°, ∵B ′C =3 cm , ∴B ′C ′=4+3=7 cm . 故答案为:30°,7.12.【解析】如图:13.【解析】由题意可知,长方形BEFC的面积为5×6=30cm2,直角三角形ABC的面积为3×4÷2=6cm2,30+6=36cm2.∴三角形ABC所扫过的面积为36cm2.14.【答案】C【解析】如图,由题意和“两点之间线段最短”及“平行四边形的对边相等”可知,由A到B的最短距离的走法有下面三种:(1)由A→C→D→B;(2)由A→F→E→B;(3)由A→F→D→B,故选C.17.【解析】利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长、宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元).18.【解析】(1)平移的方向是点A到点D的方向,平移的距离是线段AD的长度;(2)∵△ABC平移到△DEF的位置,∴CF=AD,∵CF+BC=BF,∴AD+BC=BF.19.【答案】C【解析】∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.。

(完整版)平移的经典习题

(完整版)平移的经典习题

平移练习题1.将如图所示的图案通过平移后可以得到的图案是( )2.下列图形中,是由(1)仅通过平移得到的是( )3.下列生活中的各个现象,属于平移变换现象的是( )A .拉开抽屉B .用放大镜看文字C .时钟上分针的运动D .你和平面镜中的像 4.下列说法中正确的是( )A .一个图形经过平移后,与原图形成轴对称B .如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得到C .一个图形经过平移后,它的性质都发生了变化D .图形的平移由平移的方向和距离决定5.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形,可以看作是原来位置的图形一次向 平移 个单位得到的6.如果三角形ABC 沿着北偏东300的方向移动了2cm ,那么三角形ABC 的一条边AB 边上的一点P向__________移动了______cm 。

7.在下列说法中:①△ABC 在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC 在平移过程中,周长不变;④△ABC 在平移过程中,面积不变。

其中正确的有____________________。

8.如图,△ABC 经过平移之后得△DEF ,请你在两三角形的内角中找出图中相等的线段写出图中互相平行的线段写出图中相等的角9.将长度为3cm 的线段向上平移20cm ,所得线段的长度是( )A .3cmB .23cmC .20cmD .17cm 10. 如图,△ABC 平移后得到了△DEF ,若∠A=400,∠E=600,那么,∠1=_________°, ∠2=________°,∠F=_______°,∠C=_________°。

11.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .E D B CFA O12.如图,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE的度数为 .12题 13题13.如图ABE ∆沿BC 方向平移到FCD ∆的位置,若有AB=4,AE=3,BC=5,则CF= ,EF= .14.如图①,两个等边△ABD 、△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为________.15.如图,直角梯形ABCD 中,AD ∥BC ,AD ⊥AB ,BC=5,将直角梯形ABCD 沿AB 方向平移2个单位得到直角梯形EFGH ,HG 与BC 交于点M ,且CM=1,则图中阴影部分面积为 .15题 16题17题16.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.如果8cm AB =,4cm BE =,3cm DH =,则图中阴影部分面积为 2cm .17.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图①摆放时,阴影部分的面积为S 1;若按图②摆放时,阴影部分的面积为S 2,则S 1________S 2(填“>”“<”或“=”).A D A CB AE A C A B AF AD AC DB E A FC G B A AE AF CB A图a图b图cC B E F DAC G HMD H18.如图,△ABC 沿着射线BM 的方向平移,请你画出当B 平移到B ′位置时的△A ′B ′C ′19.经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形.20.小镇A 和B 在一条河的两岸,现要在河上造一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河两岸1l 、2l 平行,桥MN 与河岸垂直,A 到离它较近的河岸的距离大于河宽).B MB '.....ABCE F。

《平移》练习题(含答案)

《平移》练习题(含答案)

5.4 平移1.下列现象不属于平移的是( )A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度2.下列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )3.(2012·莆田)如图,△A′B′C′是由△ABC沿射线AC方向平移2 cm得到,若AC=3 cm,则A′C=__________.4.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为__________;(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).5.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是( )A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格6.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位7.(2014·邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长8.图中的4个小三角形都是等边三角形,边长为1.3 cm,你能通过平移三角形ABC得到其他三角形吗?若能,请说出平移的方向和距离.9.如图,凯瑞酒店准备进行装修,把楼梯铺上地毯,已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,已知这种地毯每平方米的售价是60元.请你帮助酒店老板算下,购买地毯至少需要多少元?10.(1)已知图1将线段AB向右平移1个单位长度,图2是将线段AB折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽度为1 m,求这块菜地的面积.参考答案1.C2.B3.1 cm4.(1)16(2)图略.5.D6.A7.D8.将△ABC沿着射线AF的方向平移1.3 cm得△FAE;将△ABC沿着射线BD的方向平移1.3 cm 得△ECD;将△ABC平移不能得到△AEC.9.图略,将竖直的线段都平移到BC上,将水平的线段都平移到AB上,由此可知折线AC的长等于AB与BC的和.故地毯的总长至少为8+6=14(米).所以购买地毯至少需要14×2×60=1 680(元).10.(1)图略.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3)10×40-10×1=390(m2).。

四年级数学下册《平移》练习题及答案解析

四年级数学下册《平移》练习题及答案解析

四年级数学下册《平移》练习题及答案解析学校:___________姓名:___________班级:______________一、选择题1.下列现象是平移的是()。

A.车轮转动B.推拉抽屉C.电扇转动2.比较图形A和图形B的周长,()。

A.A>B B.A=B C.A<B3.下面的说法中,错误的是()。

A.0不是正数,也不是负数B.12和18的最大公因数是6,最小公倍数是36C.一个数的倒数一定小于这个数D.圆是轴对称图形二、判断题4.一个图形平移后,形状和位置都不变。

( )5.汽车在笔直的公路上行驶是平移。

( )6.旋转和平移都是只改变图形的位置,不改变图形的大小。

( )三、填空题7.(1)图中长方形向( )平移了( )格。

(2)图中六边形向( )平移了( )格。

(3)图中五角星向( )平移了( )格。

8.根据图形的变化填空。

图形A 向( )平移( )格得到图形B ,以( )为对称轴作图形B 的( )图形C 。

9.如图中,图形A 先绕O 点________时针旋转________度,再向________平移________格得到图形B 。

10.一张长方形纸对折三次,2份是这张纸的()()。

11.把自行车倒置,转动车轮,自行车车轮的运动属于_______现象;汽车在平直的公路上前进,汽车车厢的运动属于_______现象。

四、作图题12.涂一涂,给平移后的图形图上颜色。

13.画出平移后图形的位置。

(1)把○先向南平移4格,再向东平移3格。

(2)把□先向西平移2格,再向北平移5格。

14.画一画。

(1)画出图(1)的对称图形。

(2)将图(2)向右平移4格。

五、解答题15.(1)A帆船图向()平移了()格得到B帆船。

(2)在方格纸上画出三角形向右平移7格的图形。

(3)以虚线为对称轴,画出轴对称图形③的另一半。

参考答案与解析:1.B【分析】由平移的定义,需判断物体在移动时是否在同一方向上;分析三个选项中的现象,判断移动的方向是否发生改变,即可解答本题。

小学四年级平移练习题

小学四年级平移练习题

小学四年级平移练习题平移是几何学中的一个重要概念,它指的是在平面上沿着某个方向移动图形,而且所有点的距离都是相等的。

下面是一些小学四年级的平移练习题,帮助孩子们加深对平移的理解,提高几何图形的空间感知能力。

练习题一:小明是一个非常聪明的学生,他能够准确地进行平移。

请根据以下指令进行绘图。

1. 在纸上画一个正方形,并用字母A、B、C、D标记四个顶点。

2. 将正方形向右平移4个单位。

3. 将平移后的图形上方留出一定空间,再画一个正方形。

练习题二:谢谢是一个喜欢研究几何题的小朋友。

请根据以下指令进行绘图。

1. 画一个三角形,并标记三个顶点为A、B、C。

2. 将三角形向左平移3个单位。

3. 将平移后的图形下方留出一定空间,再画一个正方形。

练习题三:小红是班级的数学小玩家,她特别喜欢解几何题。

请根据以下指令进行绘图。

1. 在纸上画一个长方形,并标记四个顶点为A、B、C、D。

2. 将长方形向上平移2个单位。

3. 将平移后的图形左侧留出一定空间,再画一个正方形。

练习题四:小华是个喜欢动手实践的孩子,他总是能够准确地进行平移。

请根据以下指令进行绘图。

1. 画一个任意形状的图形,并标记所有顶点。

2. 将图形向右平移5个单位。

3. 将平移后的图形上方留出一定空间,再画一个正方形。

通过这些平移练习题,孩子们可以提高几何图形的空间感知能力和操作技能。

平移是几何学中的基础,对进一步理解和应用其他几何变换非常重要。

希望以上练习题能够帮助到你,祝你取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平移》习题
(一)选择题
1、下列哪个图形是由左图平移得到的
( )
D
2、如图所示,△FDE 经过怎样的平移可得到△ABC .( ) A .沿射线EC 的方向移动DB 长 B .沿射线EC 的方向移动CD 长 C .沿射线BD 的方向移动BD 长 D .沿射线BD 的方向移动DC 长
3、下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )
4、如图所示,△DEF 经过平移可以得到△ABC ,那么∠C 的对应角和ED 的对应边分-别是( )
A .∠F ,AC
B .∠BOD ,BA
C .∠F ,BA
D .∠BOD ,AC 5、在平移过程中,对应线段( )
A .互相平行且相等
B .互相垂直且相等
C .互相平行(或在同一条直线上)且相等 (二)填空题
1、在平移过程中,平移后的图形与原来的图形________和_________都相同,因此对应线段和对应角都________.
2、如图所示,平移△ABC 可得到△DEF ,如果∠A =50°, ∠C =60°,那么∠E =____度,∠EDF =_______度, ∠F =______度,∠DOB =_______度.
3、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_________.
4、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB
所经过的平面面积为_________cm 2.
(三)解答题
F
B
A O
F E
C
B A
D
A
B
C
D
O
F
E
C
B A
D
1、如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格
.
2、如图所示,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置.
3、如图所示,画出平行四边形ABCD向上平移1厘米后的图形.
4、如图,将△ABC沿东北方向平移3cm.
C
A
D
C
B
A
北A
C
B。

相关文档
最新文档