第15章-梁的弯曲问题

合集下载

材料力学——4梁的弯曲内力

材料力学——4梁的弯曲内力

21
例题1 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图 解: 1.列剪力方程和弯矩方程
FQ ( x) F
(0<x<l ) (0≤x<l)
M ( x) Fx
2.作剪力图和弯矩图 由剪力图和弯矩图可知:
FQ M
max max
F Fl
22
例题 2简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。 解:1.求约束反力 由对称关系,可得: 1 FAy FBy ql 2 2.列剪力方程和弯矩方程
Q2 Q1– Q2=P
x
x
梁的内力计算的两个规律:
(1)梁横截面上的剪力FQ,在数值上等于该截 面一侧(左侧或右侧)所有外力在与截面平行方 向投影的代数和。即:
FQ
F
yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
12
二、例题
[例1]:求图(a)所示梁1--1、2--2截面处的内力。 q 2 解:截面法求内力。 qL 1 1--1截面处截取的分离体 1 a y qL A M1 x1 Q1 图(b) 2 b 如图(b)示。
x
图(a)
Y qL Q1 0 Q1 qL
mA( Fi ) qLx1 M1 0 M1 qLx1
作梁的剪力图 FQB右=4kN/m×2m=8kN,FQD=0
34
35
27
3. 弯矩图与剪力图的关系
(1)任一截面处弯矩图切线的斜率等于该截面 上的剪力。 (2) 当FQ图为斜直线时,对应梁段的M图为二 次抛物线。当FQ图为平行于x轴的直线时,M图 为斜直线。

梁的变形计算

梁的变形计算
x=l/4, w1=w2 ; x=l/4,1=2
例题
解: 4. 利用约束条件和连续条件 确定积分常数
EI1


3 8
FP x 2

C1
EI
=-3
2
8
FP
x 2+1 2
FP

x- l 4
2


C2
EIw1


1 8
FP
x3

C1x

D1
EIw2=-81
FP
x 3+1 6
FP

dx 2
EI
弹性曲线的小挠度微分方程,式中的正负号与w坐标的取向有关。
小挠度微分方程
d2w 0,M 0 dx 2
d2w M dx 2 EI
本书采用向下的w坐标系,有
d2w 0,M 0
dx 2
d2w M dx2 EI
d2w M dx2 EI
小挠度微分方程
d2w M
叠加法应用于多个载荷作用的情形
当梁上受有几种不同的载荷作用时,都可以将其分解为各种载 荷单独作用的情形,由挠度表查得这些情形下的挠度和转角,再将 所得结果叠加后,便得到几种载荷同时作用的结果。
叠加法应用于多个载荷作用的情形 例题
已知:简支梁受力如图 示,q、l、EI均为已知。
求:C截面的挠度wC ; B截面的转角B
3


7
l 2 x
EI 8 6 4 128
据此,可以算得加力点B处的挠度和支承处A和C的转角分别为
wB

3 256
FPl 3 EI
A

7 128

工程力学第15章组合变形

工程力学第15章组合变形

32(1.0103)20.75(1.0103)2
M 20.010.21kNm 3 160106
max
2 2 r4M2W0.75T232M2d30.75T2
d3
32
M2 0.75T2
由内力图及强度公式可判断危险截面在E 处 ⑶ 确定AB 轴的直径 所以AB 轴的直径d = 44mm 。
例:图所示齿轮传动轴,用钢制成。在齿轮1 上作用有径
tmax
Mymax Wy
Mzmax Wz
F2l bh2 /
6
2F1l hb2 /6
90118605201109/618029082001019/6 cmax(MWymyaxMWzmzax)9.98MPa
例:图所示一矩形截面悬臂梁,截面宽度b = 90mm ,高度h = 180mm , 两在两个不同的截面处分别承受水平力F1和铅垂力F2。已知F1 = 800N , F2 = 1650N ,l = 1m ,求梁内的最大正应力并指出其作用位置。
FN
N
FN A
F S y F S z (对实心截面引起切应力很小,忽略)
M y Mz
M
My Iy
z
Mz Iz
y
T
T
IP
1
1(
2
242)
3
1(
2
242)
强度条件
弯扭组合受力的圆轴一般由塑性材料制成,采用第三或第四强度理论建立强 度条件。分析危险截面A A
3
T 410 A W
20MPa 20103 (10103)2(8103)2
6
W 20010 85104 100106
P
强度校核 由内力图及强度公式可判断危险截面距B 端2m 处, 计算危险点在横截面的应力值 所以AB 段强度满足要求。

建筑力学第二版课后习题答案

建筑力学第二版课后习题答案

建筑力学第二版课后习题答案建筑力学是建筑工程领域中非常重要的一门学科,它研究的是建筑结构在受力作用下的力学性能和稳定性。

对于学习建筑力学的学生来说,课后习题是巩固知识和提高能力的重要途径。

本文将为大家提供《建筑力学第二版》课后习题的答案,希望能够帮助大家更好地理解和掌握建筑力学的知识。

第一章弹性力学基础1. 弹性力学是研究物体在外力作用下发生形变时产生的应力和应变关系的学科。

主要包括应力、应变、胡克定律、弹性模量等内容。

2. 线弹性材料是指在小应变范围内,应力和应变之间的关系是线性的材料。

常见的线弹性材料有钢材、混凝土等。

3. 弹性模量是描述材料抵抗形变能力的物理量,用E表示,单位为帕斯卡(Pa)。

4. 应力是单位面积上的力的作用,用σ表示,单位为帕斯卡(Pa)。

5. 应变是物体形变程度的度量,用ε表示,是无量纲的。

6. 一维拉伸问题是指材料在轴向受力下的变形和应力分布问题。

7. 胡克定律是描述线弹性材料应力和应变之间的关系,即应力与应变成正比。

数学表达式为σ = Eε,其中σ为应力,E为弹性模量,ε为应变。

第二章梁的基本性质1. 梁是一种常见的结构构件,在建筑工程中起到承载荷载的作用。

2. 梁的基本性质包括梁的截面形状、长度、材料和受力情况等。

3. 梁的受力分析可以通过应力分析和变形分析来进行,常用的方法有静力学方法和力学性能方法。

4. 静力学方法是通过平衡方程和几何关系来分析梁的受力情况,常用的方法有力平衡法、弯矩平衡法和剪力平衡法。

5. 力学性能方法是通过分析梁的强度和刚度来确定梁的受力情况,常用的方法有强度理论和刚度理论。

6. 梁的截面形状对其受力性能有很大影响,常见的梁截面形状有矩形截面、圆形截面和T形截面等。

7. 梁的变形是指梁在受力作用下发生的形变,常见的梁的变形有弯曲变形、剪切变形和挠曲变形等。

第三章梁的弯曲1. 梁的弯曲是指梁在受到弯矩作用下产生的变形和应力情况。

2. 弯矩是指作用在梁上的力对梁产生的弯曲效应。

《结构稳定理论》复习思考题——含答案-

《结构稳定理论》复习思考题——含答案-

《结构稳定理论》复习思考题第一章1、两种极限状态是指哪两种极限状态?承载力极限状态和正常使用极限状态2、承载力极限状态包括哪些内容?(1)结构构件或链接因材料强度被超过而破坏(2)结构转变为机动体系(3)整个结构或者其中一部分作为缸体失去平衡而倾覆(4)结构或者构件是趋稳定(5)结构出现过度塑性变形,不适于继续承载(6)在重复荷载作用下构件疲劳断裂3、什么是一阶分析?什么是二阶分析?一介分析:对绝大数结构,常以为变形的结构作为计算简图进行分析,所得的变形和作用的关系是线性的。

二阶分析:而某些结构,入账啦结构,必须用变形后的结构作为计算依据,作用与变形成非线性关系。

4、强度和稳定问题有什么区别?强度和稳定问题问题虽然均属于承载力极限状态问题,但是两者之间的概念不同。

强度问题是盈利问题,而稳定问题要找出作用与结构内部抵抗力之间的不稳定平衡状态。

5、稳定问题有哪些特点?进行稳定分析时,需要区分静定和超静定结构吗?特点:1.稳定问题采用二阶分析,2.不能用叠加原理3.稳定问题不用区分静定和超净定6、结构稳定问题有哪三类?分支点失稳、极值点失稳、跃越失稳7、什么是分支点稳定?什么是极值点稳定?什么是跃越稳定?理想轴心压杆和理想的中缅内受压的平板失稳均属于分支点失稳当没有出现有直线平衡状态向玩去平衡状态过渡的分支点,构件弯曲变形的性质始终不变,成为极值点失稳这种结构有一个平衡位行突然跳到另一个非临近的平衡位行的失稳现象。

8、什么是临界状态?结构有稳定平衡到不稳定平衡的界限状态成为临界状态。

9、通过一个简单的例题归纳总结静力法的基本原理和基本方法?P8-P1010、什么能量守恒原理?什么是势能驻值原理?基于势能驻值原理的方法有哪些?保守体系处在平衡状态时,储存于结构体系中的应变能等于外力所做的功——能量守恒原理受外力作用的结构,当位移有微小变化而总势能不变,即总势能有驻值时,结构处于平衡状态——势能驻值原理。

梁弯曲变形的计算

梁弯曲变形的计算

第7章 梁弯曲变形的计算§7-1 挠度与转角及梁的刚度条件梁变形前后形状的变化称为变形,一般用各段梁曲率的变化表示。

梁变形前后位置的变化称为位移,位移包括线位移和角位移,如图7-1所示。

在小变形和忽略剪力影响的条件下,线位移是截面形心沿垂直于梁轴线方向的位移,称为挠度,用v 表示;角位移是横截面变形前后的夹角,称为转角,用θ表示。

而dxx dv x )()(=θ,可见确定梁的位移,关键是确定挠曲线方程Y=f(x)。

梁的设计中,除了需要满足强度条件外,在很多情况下,还要将其弹性变形限制在一定范围内,即满足刚度条件][][max max θθ≤≤v v式中的和][v ][θ分别为梁的许用挠度和许用转角,可从有关设计手册中查得。

§7-2 挠度曲线的近似微分方程忽略剪力对变形的影响,梁平面弯曲的曲率公式为: 式(a)表明梁轴线上任一点的曲率)(1x ρ与该点处横截面上的弯矩成正比,而与该截面的抗弯刚度)(x M EI 成反比。

如图7-2所示。

而梁轴线上任一点的曲率与挠曲线方程v 之间存在下列关系:)(xEIx M x )()(1=ρ (a) 232221)(1⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+±dx dv dx vd x ρ (b)将上式代入式(a),得到EIx M dx dv dx v d )(12322=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+±(c) 小挠度条件下,1<<=θdxdv,式(c)可简化为: EI x M dxv d )(22=±(d)在图7-3所示的坐标系中,正弯矩对应着22dx vd 的正值(图7-3a),负弯矩对应着22dxvd 的负值(图7-3b),故式(d)左边的符号取正值EI x M dx v d )(22= (8-1)式(7-1)称为小挠度曲线微分方程,简称小挠度微分方程。

显然,小挠度微分方程仅适用于线弹性范围内的平面弯曲问题。

梁的弯曲应力和变形

梁的弯曲应力和变形
2. 距中性轴最远的上下边缘伸长或缩短最大,其余各点 的在伸弹长性或受缩力短范与围该内点,到正中应性力轴与的纵距向离应成变正成比正。比。
正应力分布规律:
1. 中性轴上的点应力为零;
M
2. 上下边缘的点应力最大,其余各 点的应力大小与到中性轴的距离成
正比。
M
中性轴
F
二、计算公式 F
mn
1. 变形几何关系
解:( 1 )求支座反力
12.75
kN m
( 2 )作弯矩图
max
M
max
Iz
y1
M max W1
max
M
max
Iz
y2
M max W2
(8 - 8) (8 校核哪个截面?
例 2 铸铁梁受荷载情况如图示。已知截面对形心轴的惯性矩 Iz=40 3×10 - 7m4 ,铸铁抗拉强度[ σ +] =5m0MPa ,抗压强度
的情况,公式仍然适用。
( 2 )公式是从矩形截面梁导出的,但对截面为其它对称形状(如工
字形、 T 字形、圆形等)的梁,也都适用。
M max WZ
梁弯曲时,其横截面上既有拉应力也有压应力。对于中性轴为对称 轴的横截面,例如矩形、圆形和工字形等截面,其上、下边缘点到 中性轴的距离相等,故最大拉应力和最大压应力在数值上相等,可 按左式求得。
一般情况下,梁的强度计算由正应力强度条件控制。
在选择梁的截面时,一般按正应力强度条件选择,选好 截面后,再按剪应力强度条件进行校核。
对于细长梁,按正应力强度条件选择截面或确定许用荷载 后,一般不再需要进行剪应力强度校核。
在下列几种特殊情况下,需要校核梁的剪应力:
( 1 )梁的跨度较短,或在支座附近有较大的荷载作用。 在此情况下,梁的弯矩较小,而剪力却很大。 ( 2 )在组合工字形截面的钢梁中,当腹板的厚度较小 而工字形截面的高度较大时,腹板上的剪应力值将很大 ,而正应力值相对较小。 ( 3 )木材在顺纹方向抗剪强度较差,木梁可能因剪应 力过大而使梁沿中性层发生剪切破坏。

梁的变形教程

梁的变形教程
第八章 梁的变形
第一节 工程中的弯曲变形问题
梁在外载荷作用下将产生变形, 梁在外载荷作用下将产生变形,梁不但要满足强 刚度条件, 度条件,还要满足刚度条件 即要求梁在工作时的变 度条件,还要满足刚度条件,即要求梁在工作时的变 不能超过一定范围 否则就会影响梁的正常工作。 一定范围, 形不能超过一定范围,否则就会影响梁的正常工作。 一、挠曲轴线 挠曲轴线:图所示悬臂梁在纵向对称面内的外力F 挠曲轴线:图所示悬臂梁在纵向对称面内的外力 的作用下, 的作用下,将产生平面弯 曲,变形后梁的轴线将变 为一条光滑的平面曲线, 为一条光滑的平面曲线, 称梁的挠曲轴线 挠曲轴线。 称梁的挠曲轴线。 挠曲轴线方程
M ( x) y = ∫∫ dx ⋅ dx + Cx + D EI
第八章 梁的变形 转角方程 转角方程
挠度方程 挠度方程
M ( x) θ = y′ = ∫ dx + C EI M ( x) y = ∫∫ dx ⋅ dx + Cx + D EI
式中积分常数 、 由边界条件 由边界条件( 式中积分常数C、D由边界条件(梁中已知的截面 积分常数 位移)确定: 位移)确定: 简支梁: 简支梁: y A 悬臂梁: 悬臂梁: θ A
ql C= 24 EI 4 ql D=− 30 EI
3
4
5
梁的挠度方程
qx ql x ql + − y=− 120 EIl 24 EI 30 EI
5
3
4
令 x = 0,得B截面的挠度为 截面的挠度为
ql yB = − (↓ ) 30 EI
第八章 梁的变形
第三节 叠加法求梁的弯曲变形
挠曲轴线 近似微分方程
θ A = M (l 2 − 3b 2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
花落,“惆
火车轴
厂房吊车梁
●对称(平面)弯曲 (Planar bending)
对称平面 F2
F1
(b)
F2
F1
(a)
A
B
(c)
平面弯曲:梁的轴线在变形后仍保持在同一平面( 荷载作用面)内,即梁的轴线成为一条平面曲线。
梁的荷载和支座反力
一、梁的荷载 1 集中力:作用在微小局部上的横向力; 2 集中力偶:作用在通过梁轴线的平面(或与该面 平行的平面)内的力偶。
F Me
3 分布荷载:沿梁长连续分布的横向力。
q(x) q(x)=C
荷载集度: 分布荷载的大小 均布荷载 非均布荷载
用q(x)表示
二、梁的支座及支座反力 ●支座形式 1 固定铰约束
2 可动铰约束
3 固定支座
FRx F Ry
FR
MR
FRx
F Ry
●计算简图 确定梁的“计算简图” 包含:
⑴ 以梁的轴线经代替实际的梁; ⑵ 以简化后的支座代替实际的支座;
2 梁的任一横截面上的弯矩在数值上等于该截面左 侧(或右侧)所有竖向力对该截面形心力矩的代数和 (包括外力偶、约束反力偶);且截面左边顺时针( 右边逆时针)的力矩使截面产生正号的弯矩。
例2 试利用上述结论写出图示梁1-1截面上的剪力和 弯矩的表达式。
e
c
l
q
1 F1 FQ
d b
M1
Me
f
α
FRB
F2
F
F
●按梁的横截面 ⑴等截面梁:横截面沿梁的长度没有变化; ⑵变截面梁:横截面沿梁的长度有变化。
汽车钢板弹簧
鱼腹梁
15.2 梁的内力及其求法
一、求梁的内力的方法——截面法 ●内力的形式及名称
1 F1
F2
A
1
FRA a
l
FRB
A
FRA
a
M
FQ
Fy 0 MO 0
FQ M
剪力 弯矩
N或kN N·m或kN·m
●内力的求法
A
FRA
a
M
FQ
Fy 0
F RA F Q0 F QF RA
MO 0
M F R A a 0 M F R A a
F1 FQ M
F2
B?
FRA
●内力的正负号
⑴剪力
FQ
FQ
左上右下为正
M
⑵弯矩
M
向上凹变形为正
FQ
FQ
左下右上为负
M
M
向上凸变形为负
例1 图示简支梁受两个集中力作用,已知F1=12kN,
Mmax =121/72qa2
例8 作梁的内力图
P=3kN
M1=2kNm
M2=6kNm
q=1kN/m
A
FRA=5kN
B
FRB=4kN
2m
2m
2m
2m
FQ (kN)
3
2+
2+
2 8
6
6
6
4
M(kNm)
q qa
q
qa a
qa F Q
aa 2qa
qa
qa M qa 2 / 2
qa 2 / 2
2qa 2
分段是以集中力、集中力偶的作用位置及分布荷 载的起点和终点为界 ( ? )
解:(1)求支座反力
FRA 5ql
A(O)
F CD
Me
B
FRA
FRB 4ql
l/3 l
l/3 FRB
(2)分三段AC、CD、DB列出剪力方程和弯矩方程 AC段
FQxFRA5ql
M xF R Ax5qlx
CD段 DB段
FQ x FRAF4ql
B
l/3
l/3
l
dMx
dx
FQ
x
dFQ x qx
dx
5ql x
M x 3ql2 4qlx
4ql2 4qlx
5ql
FQ
x
4ql
4 q l
qx0
二、剪力图、弯矩图的规律
q
=0
>0
FQ
M
直线段
FQ > 0
=0
M
<0
>0
<0
<0 >0 <0
★结论(规律):
(1)当梁的支承情况对称,荷载也对称时,则弯矩 图永为对称图形,剪力图永为反对称图形;
(2)求1-1截面的剪力FQ1、弯矩M1 根据1-1截面左侧的外力计算可得:
FQ1 F R AF1587kN
M1 F R A 2 F 2 1 .5 2 6 k N m
根据1-1截面右侧的外力计算可得
FQ1 q3FRB7kN
M1 q 3 2 .5 F R B 4 2 6 k N m
●剪力图和弯矩图一般是连续的 。在集中力作 用处剪力图发生突变,突变的数值等于集中力的大 小,方向与集中力的方向相同;在有集中力偶作用 的地方弯矩图发生突变,突变的数值等于集中力偶 的大小,方向为“顺下逆上”。
15.4 弯矩、剪力、荷载集度之间的关系
一、弯矩、剪力、荷载集度之间的关系
F
Me
A(O) C D
A FRA 1
2
B FRB
1m
1.5m
3m
F1
A
FRA
F2 M2
FQ2
Fy 0 F Q 2 F R A F 1 F 2 0 F Q 2 7 k N
FQ2FRAF1F2
FQ2 FRB
M O
0
M 2 F R A 2 F 1 1 . 5 F 2 0 . 5 0 M 2 7 k N m
M 2 F R A 2 F 1 1 .5 F 2 0 .5
FQ2FRAF1F2
FQ
F1
M 2 F R A 2 F 1 1 .5 F 2 0 .5
结论:
M FRA
F2 M2 FQ2
1 梁的任一横截面上的剪力在数值上等于该截面左 侧(或右侧)所有竖向力(包括斜向外力的竖向分力 、约束反力)的代数和;且截面左边向上(右边向下 )的外力使截面产生正号的剪力。
实际支承→理想支承 ⑶ 以简化后的荷载代替实际的荷载。
三、梁的分类 ●按支座情况 ⑴简支梁:一端固定铰,一端可动铰
⑵外伸梁:一端或两端向外伸出的简支梁
⑶悬臂梁:一端固定支座,另一端自由
●按支座反力的求解方法
⑴静定梁:用平衡方程可求出未知反力的梁;
FAy
FAx A
B
FB
MA
A
FAx
FAz
⑵超静定梁:仅用平衡方程不能求出全部未知反 力的梁。
MxF R A x F x l3 3 q l2 4 q lx
FQ x FRAF4ql
Mx F R A x F x l3 M e 4 q l2 4 q l x
A(O)
F CD
Me
B
FRA
l/3 l
l/3 FRB
(3)画剪力图、弯矩图,标出特征值
FRA 5ql FRB 4ql
5ql
FQ
x
4
q
l
4 q l
5ql x
M x 3ql2 4qlx
4ql2 4qlx
F
Me
A(O)
C 12 D
B
12
FRA l/3 l
l/3 FRB
5 ql
FQ图
4ql
M图
5ql2 3
ql2 3
4 ql2 3
结论:
●当梁上荷载有变化时,剪力方程和弯矩方程 不可能用一个统一的函数式来表达,必须分段列出 其表达式。分段是以集中力、集中力偶的作用位置 及分布荷载的起点和终点为界。
Me
q
A
C
B
a FRA 3a
FRB
解:(1)求支座反力
11
MA 0 FRB 6 qa
Fy 0
FRA
7 6
qa
(2)作剪力图
FRA
7 6
qa
FRB
11 6
qa
(3)作弯矩图
x
7 6
qa
q
7
6
a
Me
q
A C
a FRA 3a
7/6qa
FQ图
x
M图
B FRB
11/6qa
M max
Me
1q 1 a 1a 1 q1a 1 1a 1 12 q21 a 6 6 6 1272
F =8kN 1
q=12kN/m 2
A
1
2 1.5m B
FRA 2m
1.5m
FRB
3m
15.3 内力图──剪力图和弯矩图
为了形象地看到内力的变化规律,通常将剪力、弯 矩沿梁长的变化情况用图形表示出来,这种表示剪力 和弯矩变化规律的图形分别称为剪力图和弯矩图。
具体作法是:
剪力方程: FQFQx 函数图形 弯矩方程: MMx
0.5m F1 1
F2 2
1m
A
FRA 1
2
B FRB
1m
1.5m
3m
0.5m F1 M1 A
FQ1 FRA 1m
Fy 0 F R AF 1F Q 10 F Q 13 kN
MO 0 M 1 F R A 1 F 1 0 .5 0 M 1 9 k N m
(3)求2-2截面上的内力
0.5m F1 1 F2 2 1m
F2=10kN,试计算指定截面1-1、2-2的内力。
0.5m F1 1
F2 2
1m
A
FRA 1
2
B FRB
1m
相关文档
最新文档