第二章-红外光谱和拉曼光谱技术

合集下载

红外光谱和拉曼光谱

红外光谱和拉曼光谱

j 环氧树脂
k 聚甲基硅氧烷
l 聚乙二醇和聚丙二醇
m 脲醛树脂
n 不饱和聚酯
3..1.5红外光谱的解析 (1)谱带的三个重要特征
位置、形状、相对强度
(2)谱图解析
特征区
a、化合物具有哪些官能团,第一强峰有可能估 计出化合物类别;
b、确定化合物是芳香族还是脂肪族,饱和烃还 是不饱和烃,主要由C-H伸缩振动类型来判断。C -H伸缩振动多发生在3 100~2 800cm-1之间,以3 000 cm-1为界,高于3 000 cm-1为不饱和烃,低于3 000 cm-1为饱和烃。芳香族化合物的苯环骨架振动 吸收在1 620 ~1 470cm-1之间,若在1600±20、 1500±25 cm-1有吸收,确定化合物是芳香族。
O C=O
C Cl
C-C
A 化合物A在1 773cm-1和1 736 cm-1出现两个 C=O吸收峰,由于C=O(1773-1776cm-1) 和C— C弯曲振动(880-860cm-1)倍频发生费米共振 所致。
空间位阻效应:
环张力: 环内影响:以环烯为例。
烯C原子为sp2杂化,
成键之间的夹角应为120 度。在环烯烃中,键角 小于120 度(环己烯除 外),因此C=C键中的σ 键是“弯键”,与两个 成键C核之间的连线并不 重合,键强度降低,而 且环越小,键弯曲越甚, 键强度越弱。
指纹区 A、作为化合物含有什么基团的旁证,指纹区许
多吸收峰都是特征区吸收峰的相关峰。 B、确定化合物的细微结构
总的图谱解析可归纳为:先特征,后指纹;先最强峰, 后次强峰;先粗查,后细找;先否定,后肯定。抓一组 相关峰。光谱解析先从特征区第一强峰入手,确认可能 的归属,然后找出与第一强峰相关的峰。第一强峰确认 后,再依次解析特征区第二强峰、第三强峰,方法同上。 对于简单的光谱,一般解析一、两组相关峰即可确定未 知物的分子结构。对于复杂化合物的光谱由于官能团的 相互影响,解析困难,可粗略解析后,查对标准光谱或 进行综合光谱解析。

红外光谱IR和拉曼光谱Raman课件

红外光谱IR和拉曼光谱Raman课件

优缺点分析
IR光谱
优点是检测的分子类型广泛,可用于多种类型的化学分析;缺点是需要样品是固态或液态,且某些基团可能无法 检测。
Raman光谱
优点是无需样品制备,对气态、液态和固态样品都适用;缺点是检测灵敏度相对较低,可能需要更长的采集时间 和更强的光源。
选择与应用指南
选择
根据样品的类型和所需的化学信息,选择合适的分析方法。对于需要检测分子振动信息 的样品,IR光谱更为合适;而对于需要快速、非破坏性检测的样品,Raman光谱更为
领域的研究和应用。
04
CATALOGUE
红外光谱(IR)与拉曼光谱( Raman)比较相似性与差异性Fra bibliotek相似性
两种光谱技术都利用光的散射效应来 检测物质分子结构和振动模式。
差异性
IR光谱主要检测分子中的伸缩振动, 而Raman光谱则主要检测分子的弯曲 振动。此外,IR光谱通常需要样品是 固态或液态,而Raman光谱对气态和 液态样品也适用。
拉曼散射是由于物质的分子振动或转动引起的,散射光的频率与入射光的频率不同 ,产生拉曼位移。
拉曼散射的强度与入射光的波长、物质的浓度和温度等因素有关。
拉曼活性与光谱强度
拉曼活性是指物质在拉曼散射中的表 现程度,与物质的分子结构和对称性 有关。
在拉曼光谱实验中,可以通过控制入 射光的波长和强度,以及选择适当的 实验条件来提高拉曼光谱的强度和分 辨率。
红外光谱解析
特征峰解析
根据红外光谱的特征峰位置和强 度,推断出分子中存在的特定振
动模式。
官能团鉴定
通过比较已知的红外光谱数据,可 以鉴定分子中的官能团或化学键。
结构推断
结合其他谱图数据(如核磁共振、 质谱等),可以推断分子的可能结 构。

物理学中的红外光谱和拉曼光谱

物理学中的红外光谱和拉曼光谱

物理学中的红外光谱和拉曼光谱红外光谱和拉曼光谱是物理学中常见的两种光谱分析技术。

红外光谱(Infrared Spectroscopy)是通过测量吸收红外光的能力来分析物质的分子结构和化学键的情况;而拉曼光谱(Raman Spectroscopy)则是通过测量分子和晶格结构对入射光的散射来分析物质的分子结构和化学键的状态。

这两种光谱分析技术已成为当今科学技术领域中不可或缺的重要工具。

红外光谱常用于分析物质的分子结构,还可分析分子中的化学键。

分子中的原子可通过它们的质量、电荷和其环境对红外光的散射和吸收,发生振动和旋转。

每个分子都有自己的特定振动模式,包括结构和运动序列。

当红外光照射样品时,这些振动模式会形成一个可识别和特异的吸收图谱。

吸收的图谱可分为不同的区域,每个区域可对应特定的化学键或分子结构。

通过识别样品中各区域的特征吸收带,研究人员可以分析样品中存在的分子结构和化学键种类,从而了解样品的组成和特性。

与红外光谱相比,拉曼光谱具有更高的分辨率和更广的适用范围。

拉曼光谱中的散射光谱是通过入射光与样品分子或物质中发生的振动和旋转的相互作用而产生的。

这种光谱分析方法具有非破坏性、快速和高灵敏度等优点。

由于在红外光谱中存在的低频振动模式在拉曼光谱中也很活跃,因此该技术与红外光谱相比较而言,可提供更准确和更灵敏地分析可得到更高的分辨率。

目前,世界上许多领先的科学研究机构和实验室都应用拉曼光谱技术来研究从天体物质到分子生物学等研究值得注意的范围,以展现其在此领域中不可或缺的作用。

虽然红外光谱和拉曼光谱技术在科学、医学和工程领域中都有着广泛的应用,但这些技术也存在一些仍需注意、继续深究的领域。

例如,在生物医学领域中,研究人员正在探索利用红外光谱和拉曼光谱技术来识别癌细胞、病毒和菌株。

这些应用还需要更多的研究、开发和改进,才能更好地用于检测、治疗和预防世界各地所面临的健康问题。

综而言之,红外光谱和拉曼光谱技术在物理学中的应用非常广泛,并成为现代科学研究中不可或缺的重要工具。

第二章-红外光谱和拉曼光谱技术

第二章-红外光谱和拉曼光谱技术

第二章红外光谱和拉曼光谱技术研究阴离子型层状及插层材料的结构红外光谱和拉曼光谱技术是相当成熟的分子结构研究手段,目前已经应用于多种阴离子型层状结构LDHs的层板阳离子、层间阴离子的研究[1-21]。

LDHs中的水是一个很强的红外吸收体,因此,红外光谱中很难观察到层板羟基的伸缩振动吸收峰。

但是,水又是一个很差的散射体,层板羟基的伸缩振动可以很容易在拉曼光谱中观察到,因此拉曼光谱法在LDHs研究中逐渐得到人们的重视[18]。

近年来,红外发射光谱技术、热分析/红外光谱联用技术、原位红外和拉曼光谱技术等已经被用来研究LDHs的热稳定性及有机阴离子插层LDHs的热分解过程[21-26]。

相关红外光谱和拉曼光谱技术在LDHs中的应用研究综述详见文献[27]。

2.1. LDHs层板的振动光谱2.1.1. MgAl-LDHs的振动光谱MgAl-LDHs在目前的文献中研究最多,下面以MgAl-LDHs为例说明LDHs层板的振动光谱峰位归属,并且对不同金属阳离子组成的LDHs层板的振动光谱进行比较分析。

MgAl-LDHs的红外光谱谱图在3450cm-1处可以观察到一个强而宽的吸收峰(图2-1),这是由两个或三个羟基伸缩振动和层间水分子伸缩振动重叠而成的;在3000~3300cm-1附近有时还出现一个肩峰,这是由羟基和层间碳酸根的相互作用而产生的;在650cm-1以下可观察到晶格的平移振动,而在700~1000cm-1范围内观察到归属于羟基和水的平移振动模式的宽而强的吸收峰,450cm-1处的吸收峰归属于[AlO6]3-基团或Al-O的单键振动。

在600~650cm-1之间,观察到由多组分峰相重叠而成的一个宽峰,在555cm-1附近有时有一个独立的峰。

680cm-1处峰形比较复杂,这是由于Al-O和Mg-O键的振动峰与碳酸根的ν4振动峰发生重叠的缘故。

对870cm-1附近的吸收峰的归属存在争议,一些研究者认为此峰是由层间CO32-的ν2振动产生的[28-30],而Kagunya等人[31]则认为856cm-1附近的峰归属于LDHs的层间阴离子CO32-、NO3-及OH-的转动振动模式E u(R)(OH)。

红外线与拉曼光谱

红外线与拉曼光谱
红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没 有偶极矩变化的振动在拉曼光谱中出现)
除单原子和同核分子如Ne、He、O2、H2等外,几乎所有的 有机化合物在红外光谱区均有吸收;
除光学异构体,某些高分子量的高聚物以及在分子量上只有 微小差异的化合物外,凡是具有结构不同的两个化合物,其红外 光谱一定不相同
小球,把连结它们的化学键看成质量可以忽略不计的弹簧,则两个原子间的 伸缩振动,可近似地看成沿键轴方向的间谐振动。
该分子的振动总能量(E n )为:
E n= (n +1/2)h ( n =0,1,2,)
n为振动量子数( n =0,1,2,……); 为分子振动的频率; E n是与振动量子数n相应的体系能量

4
2
0 0
100 200 300 400 500 600 700
Illumination time /min
(a)纯TiO2 (b) Fe(OH)3/TiO2 (c) Fe(OH)3/TiO2 250℃ 煅烧2h
催化剂的FTIR光谱
Transmittance
3
2
丰富的OH
官能团
1
4000 3500 3000 2500 2000 1500 1000
红外辐射无损性:样品可承受全部能量 有效消除样品的杂散光
样品池: 叠光充气池,长光程(有时可达80m) 应 用: 痕量有机气体分析。达10-9g
傅立叶变换光谱仪 20世纪70年代问世,第三代红外光谱仪
关键技术: 迈克尔逊干涉仪
优点: 速度快(105倍) 大光通量(信噪比提高100倍) 扩大了振动光谱的应用范围
按吸收的特征,可分为官能团区和指纹区
官能团区 4000~1300cm-1, 由官能团的伸缩振动产生,吸收峰比较稀疏,

拉曼光谱跟红外光谱的区别

拉曼光谱跟红外光谱的区别

拉曼光谱跟红外光谱的区别
拉曼光谱和红外光谱是两种不同的光谱技术,有以下几个主要区别:
1. 基本原理:红外光谱是通过测量分子吸收红外光的能量来分析样品的功能团信息,而拉曼光谱则是通过测量样品中分子振动引起的光散射来分析样品的化学结构。

2. 分析范围:红外光谱通常适用于分析样品中的官能团、化学键类型和某些结构特征,而拉曼光谱则可以提供更详细和全面的关于样品分子振动模式和化学结构信息。

3. 样品要求:红外光谱需要样品具有一定的吸收能力,因此大多数有机化合物和无机物都可以进行红外光谱测试。

而拉曼光谱对样品的要求相对较低,可以测试几乎所有类型的样品,包括固体、液体和气体。

4. 干扰因素:红外光谱对水分和二氧化碳有较强的吸收能力,因此在测试液体或气体样品时需要特别注意这些干扰因素。

而拉曼光谱对水和二氧化碳的干扰较小。

5. 仪器配置:红外光谱需要使用红外光源和红外检测器,且样品通常需要准备成KBr片或涂布在红外透明基板上。

而拉曼光谱则需要使用激光光源和拉曼散射检测器。

总的来说,虽然红外光谱和拉曼光谱都可以用于化学分析,但它们的原理、应用范围和仪器配置等方面有着一定的区别。


实际应用中,选择使用哪种光谱技术取决于需要分析的样品类型和所关注的分析信息。

3.2-红外光谱与拉曼光谱

3.2-红外光谱与拉曼光谱
优点 1 应用范围广。红外光谱分析能测得所有有机化合物,而且 还可以用于研究某些无机物。因此在定性、定量及结构分 析方面都有广泛的应用。 2 特征性强。每个官能团都有几种振动形式,产生的红外光 谱比较复杂,特征性强。除了及个别情况外,有机化合物 都有其独特的红外光谱,因此红外光谱具有极好的鉴别意 义。 3 提供的信息多。红外光谱能提供较多的结构信息,如化合 物含有的官能团、化合物的类别、化合物的立体结构、取 代基的位置及数目等。 4 不受样品物态的限制。红外光谱分析可以测定气体、液体 及固体,不受样品物态的限制,扩大了分析范围。 5 不破坏样品。红外光谱分析时样品不被破坏。
拉曼光谱仪
激光拉曼光谱仪由以下部分组成:激光器(光 源)、样品光学系统、单色仪和接收器,电 子线路和记录器系统。 仪器原理:
图7.22 水杨酸的拉曼光谱图
红外与拉曼比较
• 1 都是研究分子结构(化学键)的分子振动 、 转动光谱。 • 2 红外光谱是吸收光谱,拉曼是发射光谱 • 3 拉曼的频谱范围宽 10-4500cm-1,红 外的窄 200-4000cm -1 。
红外光谱缺点
• 1 不适合分析含水样品,因为水中的羟基峰对测定有干扰 ; • 2 定量分析时误差大,灵敏度低,故很少用于定量分析; • 3 在图谱解析方面主要靠经验。
拉曼光谱
• 概述 1800年,英国科学家W. Herschel 在测色温时(即波长越 长,所具有的温度越高),发现了红外光,Infra-Red。 由于存在红外非活性的问题,因此人们又继续研究探索 ,在1928年的时候,由印度科学家V. C. Raman发现了拉 曼效应,并获得1930年度Nobel物理奖。
假设散射物分子原来处于电子基态,振动能级如上图所示。当受到入射光照射时, 激发光与此分子的作用引起极化可以看作虚的吸收,表述为电子跃迁到虚态 (Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。存在 如图所示的三种情况,散射光中既有与入射光频率相同的谱线,也有与入射光频率 不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射 光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。 拉曼位移定义:瑞利线(激发波数)与拉曼线的波数差。因此拉曼位移是分子振动能 级的直接量度。

(整理)第二章-红外光谱和拉曼光谱技术

(整理)第二章-红外光谱和拉曼光谱技术

第二章红外光谱和拉曼光谱技术研究阴离子型层状及插层材料的结构红外光谱和拉曼光谱技术是相当成熟的分子结构研究手段,目前已经应用于多种阴离子型层状结构LDHs的层板阳离子、层间阴离子的研究[1-21]。

LDHs中的水是一个很强的红外吸收体,因此,红外光谱中很难观察到层板羟基的伸缩振动吸收峰。

但是,水又是一个很差的散射体,层板羟基的伸缩振动可以很容易在拉曼光谱中观察到,因此拉曼光谱法在LDHs研究中逐渐得到人们的重视[18]。

近年来,红外发射光谱技术、热分析/红外光谱联用技术、原位红外和拉曼光谱技术等已经被用来研究LDHs的热稳定性及有机阴离子插层LDHs的热分解过程[21-26]。

相关红外光谱和拉曼光谱技术在LDHs中的应用研究综述详见文献[27]。

2.1. LDHs层板的振动光谱2.1.1. MgAl-LDHs的振动光谱MgAl-LDHs在目前的文献中研究最多,下面以MgAl-LDHs为例说明LDHs层板的振动光谱峰位归属,并且对不同金属阳离子组成的LDHs层板的振动光谱进行比较分析。

MgAl-LDHs的红外光谱谱图在3450cm-1处可以观察到一个强而宽的吸收峰(图2-1),这是由两个或三个羟基伸缩振动和层间水分子伸缩振动重叠而成的;在3000~3300cm-1附近有时还出现一个肩峰,这是由羟基和层间碳酸根的相互作用而产生的;在650cm-1以下可观察到晶格的平移振动,而在700~1000cm-1范围内观察到归属于羟基和水的平移振动模式的宽而强的吸收峰,450cm-1处的吸收峰归属于[AlO6]3-基团或Al-O的单键振动。

在600~650cm-1之间,观察到由多组分峰相重叠而成的一个宽峰,在555cm-1附近有时有一个独立的峰。

680cm-1处峰形比较复杂,这是由于Al-O和Mg-O键的振动峰与碳酸根的ν4振动峰发生重叠的缘故。

对870cm-1附近的吸收峰的归属存在争议,一些研究者认为此峰是由层间CO32-的ν2振动产生的[28-30],而Kagunya等人[31]则认为856cm-1附近的峰归属于LDHs的层间阴离子CO32-、NO3-及OH-的转动振动模式E u(R)(OH)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章红外光谱和拉曼光谱技术研究阴离子型层状及插层材料的结构红外光谱和拉曼光谱技术是相当成熟的分子结构研究手段,目前已经应用于多种阴离子型层状结构LDHs的层板阳离子、层间阴离子的研究[1-21]。

LDHs中的水是一个很强的红外吸收体,因此,红外光谱中很难观察到层板羟基的伸缩振动吸收峰。

但是,水又是一个很差的散射体,层板羟基的伸缩振动可以很容易在拉曼光谱中观察到,因此拉曼光谱法在LDHs研究中逐渐得到人们的重视[18]。

近年来,红外发射光谱技术、热分析/红外光谱联用技术、原位红外和拉曼光谱技术等已经被用来研究LDHs的热稳定性及有机阴离子插层LDHs的热分解过程[21-26]。

相关红外光谱和拉曼光谱技术在LDHs中的应用研究综述详见文献[27]。

2.1. LDHs层板的振动光谱2.1.1. MgAl-LDHs的振动光谱MgAl-LDHs在目前的文献中研究最多,下面以MgAl-LDHs为例说明LDHs层板的振动光谱峰位归属,并且对不同金属阳离子组成的LDHs层板的振动光谱进行比较分析。

MgAl-LDHs的红外光谱谱图在3450cm-1处可以观察到一个强而宽的吸收峰(图2-1),这是由两个或三个羟基伸缩振动和层间水分子伸缩振动重叠而成的;在3000~3300cm-1附近有时还出现一个肩峰,这是由羟基和层间碳酸根的相互作用而产生的;在650cm-1以下可观察到晶格的平移振动,而在700~1000cm-1范围内观察到归属于羟基和水的平移振动模式的宽而强的吸收峰,450cm-1处的吸收峰归属于[AlO6]3-基团或Al-O的单键振动。

在600~650cm-1之间,观察到由多组分峰相重叠而成的一个宽峰,在555cm-1附近有时有一个独立的峰。

680cm-1处峰形比较复杂,这是由于Al-O和Mg-O键的振动峰与碳酸根的ν4振动峰发生重叠的缘故。

对870cm-1附近的吸收峰的归属存在争议,一些研究者认为此峰是由层间CO32-的ν2振动产生的[28-30],而Kagunya等人[31]则认为856cm-1附近的峰归属于LDHs的层间阴离子CO32-、NO3-及OH-的转动振动模式E u(R)(OH)。

而拉曼光谱中羟基伸缩振动很弱,但要比红外光谱中相应振动模式的峰更尖锐。

Kagunya等[31]将695cm-1和1061cm-1处的两个峰归属于平移振动模式E g(T)和转动振动模式E g(R),这两个峰与相应层间CO32-产生的ν4(约680cm-1)和ν1(约1063cm-1)振动峰位置接近,可能会发生重叠。

Kloprogge等[29]在1061cm-1和1053cm-1处分别观察到一个尖峰和一个宽而弱的重叠峰。

在476cm-1和552cm-1处的两个峰是由与主体Al相连的羟基振动产生的,但也可能受到配体中Mg的影响。

476cm-1峰具有拉曼活性,而552cm-1峰与红外光谱中553cm-1峰具有相同的振动模式。

与水镁石相比(3570~3555cm-1),MgAl-LDHs中羟基的伸缩振动峰发生了位移,出现在3450cm-1附近[31],表明LDHs层板中部分Mg2+被具有较高电荷和较小离子半径的Al3+取代,使其层板与层间阴离子之间存在较强的氢键作用。

同时由于LDHs层间静电吸引力增强,使LDHs中的O-H键增强,键长变得更短,伸缩振动能量增高。

另外,MgAl-LDHs的低频区晶格平移振动峰也发生了位移,水镁石出现在365cm-1处,而MgAl-LDHs却位移到了448~440cm-1处[31]。

对含有不同层间阴离子CO32-、NO3-和OH-的MgAl-LDHs进行振动光谱的比较研究表明,平移振动和晶格平移振动频率不会因为层间阴离子不同而有明显区别,由此说明LDHs层板羟基的偶极子不会因为与层间阴离子相互作用而受影响[31]。

然而,一些研究者的研究表明,对于不同层间阴离子的MgAl-LDHs,其层板上羟基振动频率存在较大的差异[29,32,33]。

2.1.2. 层板金属阳离子对LDHs振动光谱的影响当层板中Mg2+和Al3+被其它半径相近的金属离子取代后,相应LDHs振动光谱中通常能观察到羟基伸缩振动峰的微小位移,并且位移程度受层板金属离子摩尔比值大小的影响。

当LDHs层板中引入Zn2+后,其羟基伸缩振动峰向高频方向发生微小位移,同时观察到层间CO32-的ν3振动峰。

ZnAl-LDHs层板中引入少量Cu2+后,其羟基伸缩振动仍在3450cm-1附近。

但是,当Cu/Zn摩尔比大于6时可以看到ZnCuAl-LDHs羟基伸缩振动峰位移到3400cm-1处,并且其振动吸收峰都变宽。

增加CoAl-LDHs中的Co/Al摩尔比(从2增加到2.6和3.1),3414cm-1处的伸缩振动峰分别位移到3436cm-1和3453cm-1,峰宽从280cm-1增到380cm-1处。

当Ni/Al摩尔比由2增大到3时,NiAl-LDHs 羟基的伸缩振动峰从3420/3450cm-1位移到3500cm-1处,这是由LDHs层板与层间阴离子的静电作用对氢键产生影响引起的。

有时还能够在红外谱图中能观察到低频峰的微小位移。

例如,在ZnAl-LDHs的红外光谱中能观察到低于1000cm-1的峰向低频方向发生15cm-1的微小位移。

对于LiAlCl-LDHs,其拉曼光谱中在362、402、532和555cm-1,380和460cm-1处观察到归属于νOAlO晶格振动峰,在602和752cm-1处观察到归属于νOAl晶格振动峰;在880和1030cm-1处观察到两个弱峰归属于羟基的弯曲振动;3245和3484cm-1处的宽峰是由层间水产生的;3590cm-1处的尖锐峰归属于LDHs层板羟基与层间氯离子的键合作用。

MgGa-LDHs红外光谱中,羟基伸缩振动峰出现在3700cm-1处并变宽;在3800~2700cm-1之间有一归属于层间碳酸根阴离子的宽振动峰;在450~650cm-1之间的峰应归属于氧化物MgO、Al2O3和Ga2O3的晶格振动。

MgFeAl-LDHs的红外光谱中,在3500cm-1左右出现一个归属于层板羟基和层间分子的伸缩振动的宽峰;低于1000cm-1区域,从[Mg0.74Fe0.11Al0.15(OH)2](CO3)0.70H20到[Mg0.75Fe0.25(OH)2](CO3)0.130.61H2O增加Fe3+离子含量使440cm-1处的峰裂分为380cm-1处的一个宽峰和450cm-1处的一个肩峰,625cm-1处的宽峰在625和720cm-1处裂分成两个峰;另外,LDHs层板中Al3+和Fe3+的数量不同,峰相对强度也不同。

含有Cr3+、Y3+、Al3+和V3+的LDHs红外光谱,与含Al3+的LDHs相比,其羟基伸缩振动峰从3410cm-1分别位移到3448cm-1,3472cm-1和3480cm-1处[34-37];低频区出现一些晶格振动峰,例如层板含Y3+的MgAl-LDHs在605cm-1和412cm-1处出现两个宽峰,这可能归属于Mg-O、Al-O、Y-O、Mg-O-Al的晶格振动。

层板含V3+的LDHs在395、510、709和960cm-1附近出现晶格振动峰,这与MgAl-LDHs 的448cm-1处平移振动峰A2u(T)和686cm-1处的平移振动峰E u(OH)非常一致[31]。

Ni/Mn(III)-LDHs 的红外光谱中在3420cm-1处观察到羟基伸缩振动峰,在384、563、731cm-1处观察到晶格振动峰[38]。

而用V(III)替代Mn(III)后,羟基伸缩振动的宽峰位移到3435cm-1处;另外,增加Ni/V摩尔比导致红外谱图低频区发生较大变化:当钒含量增加时,520和525cm-1处的两个峰在522cm-1处合并成一个宽峰,而677和776cm-1处的两个峰也向低波数方向位移,在732cm-1处形成了一个单峰。

另外843cm-1处的肩峰也随钒含量的增加而变得明显[39]。

图2-1 MAl-LDHs(M=Cu、Ni、Mg和Co)的红外光谱多种层板金属阳离子构成的三元以及多元LDHs的振动光谱较为复杂,下面分析几例三元LDHs 的红外光谱和拉曼光谱峰位的归属。

MgZnAl-LDHs的红外光谱在419、427、559、616和771cm-1处观察到Al-OH平移振动峰;在412、559、616cm-1处观察到Mg-OH平移振动峰;在445cm-1处观察到Zn-OH平移振动峰;在412、559、616cm-1处观察到Mg-OH平移振动峰;在1112、874、1359和1381cm-1,670和695~715cm-1处分别观察到层间CO32-的ν1、ν2、ν3和ν4振动峰;在955和1033cm-1处观察到Al-OH羟基变形振动峰;在1462cm-1处观察到Zn-OH羟基变形振动的单峰;在3471cm-1处观察到一个羟基伸缩振动峰(图2-2)[40]。

而MgZnAl-LDHs的拉曼光谱中在465~447和547~553cm-1处只观察到Al-OH平移振动峰;在464~477cm-1和547~553cm-1处观察到Mg-OH平移振动双峰;在450和495cm-1附近观察到Zn-OH平移振动峰;在1045~1055cm-1和1060cm-1处观察到CO32-的ν1振动双峰,在670cm-1和695~715cm-1附近观察到ν4振动峰;在3355~3360cm-1、3440~3455cm-1和3535~3580cm-1附近分别观察到三个羟基伸缩振动峰(图2-3)。

在NiZnAl-LDHs中引入Cr3+或Fe3+后,导致在低频区发生一些微小变化[41]:含Cr3+样品在475cm-1处有一个宽峰,含Fe3+的样品则在475和440cm-1处分裂成两个峰;而对于这两种样品,都可在3400cm-1处观察到一个宽的羟基伸缩振动峰。

当ZnCuAl-LDHs层板中引入少量Co2+时,其近红外光谱中的12500cm-1处观察到一个归属于Cu2+的畸变八面体内部振动的宽峰,在20000cm-1附近观察到一个归属于Co2+的八面体内部振动的弱峰[42]。

图2-2 Mg4Zn2Al2(OH)16CO3·nH2O的FT-IR曲线的拟合谱图2-3 Mg4Zn2Al2(OH)16CO3·nH2O的FT-Raman曲线拟合谱2.2. 无机阴离子插层LDHs的振动光谱2.2.1. 简单无机阴离子插层LDHs1.碳酸根游离态CO32-阴离子为D3h点群对称,在其红外光谱中可分别观察到880、1415和680cm-1处的面外弯曲振动ν2、反对称伸缩振动ν3和剪式弯曲振动ν4三种振动峰;而在其拉曼光谱中可分别观察到1063、1415和680cm-1处的对称伸缩振动ν1(强)、反对称伸缩振动ν3(弱)和剪式弯曲振动ν4(弱)三种振动峰[44]。

相关文档
最新文档