复数的加减法运算.

合集下载

复数的代数形式的四则运算

复数的代数形式的四则运算

五、课堂小结: 1.复数加减法的运算法则: (1)运算法则:设复数z1=a+bi,z2=c+di, 那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i. (2)复数的加法满足交换律、结合律,即对 任何z1,z2,z3∈C,有:
z1+z2=z2+z1,
(z1+z2)+z3=z1+(z2+z3).
i
4n
4. i的指数变化规律:
1,
i
4 n 1
i ,
i
4n4n2Fra bibliotek1 ,
4n2
i
4 n 3
i
i i
4 n 1
i
i
4 n 3
0, (n N )
4.复数的除法法则
先把除式写成分式的形式,再把分子与分 母都乘以分母的共轭复数,化简后写成代数形 式(分母实数化).即
( 2 ) (2 i ) (2 3 i ) 4 i
(3 ) 5 (3 2 i )
(4) 4i (4i 4)
答案: (1) 2 + 2i
(2) 0
(3) 2 - 2i
(4) 4
练习: 1.计算 (2 3i )(2 3i )
13
2.已知 (3 i ) z 10 ,则 z _____. 3.已知 f ( x ) x 3 2 x 2 5 x 2 ,则 f (1 2i ) =_____.
z1(z2+z3)=z1z2+z1z3.
3. i的指数变化规律:
i i
4n
4 n 1

复数的四则运算公式

复数的四则运算公式

复数的四则运算公式复数是数学中的一个概念,它可以表示为实部与虚部的和。

在复数的四则运算中,包括加法、减法、乘法和除法。

下面将分别介绍这四种运算。

一、复数的加法复数的加法是指将两个复数相加的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的加法可以表示为:(a+bi) + (c+di) = (a+c) + (b+d)i即实部相加,虚部相加。

二、复数的减法复数的减法是指将两个复数相减的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的减法可以表示为:(a+bi) - (c+di) = (a-c) + (b-d)i即实部相减,虚部相减。

三、复数的乘法复数的乘法是指将两个复数相乘的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的乘法可以表示为:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i即实部相乘减虚部相乘,并将结果相加。

四、复数的除法复数的除法是指将两个复数相除的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的除法可以表示为:(a+bi) ÷ (c+di) = [(ac+bd)÷(c^2+d^2)] + [(bc-ad)÷(c^2+d^2)]i即将实部和虚部分别除以除数的实部和虚部的平方和。

通过以上介绍,我们了解了复数的四则运算公式。

在实际应用中,复数的四则运算常常用于电路分析、信号处理等领域。

对于复数的运算要求掌握加减法的运算规则,以及乘法和除法的计算方法。

复数的四则运算在解决实际问题中起到了重要的作用,对于深入理解复数的概念和应用具有重要意义。

因此,掌握复数的四则运算公式对于数学学习和实际应用都是非常重要的。

希望通过本文的介绍,读者能够对复数的四则运算有更深入的了解,并能够熟练运用于实际问题的解决中。

复数的运算

复数的运算
的虚部减虚部减去它的得的差是 3, 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。

复数的加减法运算

复数的加减法运算

例:已知复数 z = x + yi ( x , y ∈ R )满足 | z − ( −1 + 3 i ) |= 1, y (1)求 | z | 的范围 (2)求 的范围 x (1 ) z 对应的点表示以 ( − 1, 3 )为圆心, 为半径的圆 为圆心, 1
| z | 表示该圆上一点与原点 的距离
∴ 整理得:( x − 1 ) 2 + ( y + 1 ) 2 = 2 整理得:
∴ 轨迹是以 (1, − 1)为圆心, 2为半径的圆 为圆心,
复数的减法运算: 复数的减法运算:
如果两个复数 z1 = a + bi , z 2 = c + di (a , b, c , d ∈ R )
则定义: 则定义: z 1 − z 2 = ( a − c ) + ( b − d ) i
∴ Re( x ) = ± 1
且 xy = | x | ⇒ Im( x ) = ± | x | − (Re( x )) = ± 1
2 2 2
∴ x = 1 + i , y = 1 − i或 x = 1 − i , y = 1 + i 或 x = − 1 + i , y = − 1 − i或 x = − 1 − i , y = − 1 + i
5 − 4 a ∈ [1 , 3 ]
5 − 4a
∴| z − 2 |∈ [1, 3 ]
∵ a ∈ [ − 1,1] ⇒
法二: 法二:几何法
∴| z − 2 |∈ [1, 3 ]
( 2,0 )
法三: 法三:利用 | z 1 | − | z 2 |≤ | z 1 ± z 2 |≤ | z 1 | + | z 2 | ∴|| z | − 2 |≤ | z − 2 |≤ | z | + 2 ∴| z − 2 |∈ [1, 3 ]

利用复数的运算求解复数方程的解

利用复数的运算求解复数方程的解

利用复数的运算求解复数方程的解在数学中,复数是由实部和虚部组成的数,可以用a+bi的形式表示,其中a是实部,b是虚部,i是虚数单位。

复数方程是指含有复数的方程,其中未知数是复数。

在解复数方程时,运用复数的运算规则和性质是一种有效的方法。

一、复数的加法和减法复数的加法可以按照实部和虚部分别相加,例如:(a+bi) + (c+di) = (a+c) + (b+d)i同理,复数的减法也可以按照实部和虚部分别相减,例如:(a+bi) - (c+di) = (a-c) + (b-d)i二、复数的乘法复数的乘法可以通过分配律进行计算,例如:(a+bi)(c+di) = ac + adi + bci + bdi^2根据虚数单位的性质,i^2 = -1,因此可以化简为:(a+bi)(c+di) = (ac-bd) + (ad+bc)i三、复数的除法复数的除法可以通过乘以共轭复数的方式进行计算。

共轭复数是指保持实部相同而虚部的符号相反的复数,例如:(a+bi)的共轭复数是(a-bi)因此,对于复数的除法,可以使用以下公式:(a+bi) / (c+di) = (a+bi) * (c-di) / (c+di) * (c-di)根据乘法的规则,化简后可得:(a+bi) / (c+di) = [(a+bi)(c-di)] / (c^2 + d^2)四、利用复数的运算求解复数方程在解复数方程时,首先可以将方程进行整理和化简,将未知数的复数形式展开,然后按照加减法、乘法、除法的运算规则进行求解。

举例说明:解方程:(2+3i)x + (4-5i) = 0首先将方程整理为一元一次复数方程的形式:(2+3i)x = - (4-5i)然后移项得到:x = - (4-5i) / (2+3i)根据复数的除法规则,可以计算出:x = [(4-5i)(2-3i)] / (2^2 + 3^2)化简后得到:x = (-2-23i) / 13因此,该复数方程的解为x = (-2-23i) / 13。

7.2复数的运算

7.2复数的运算

授课主题复数代数形式的加减、乘除运算教学目标1.掌握复数的代数形式的加法、减法运算法则,并熟练地进行化简、求值.2.了解复数的代数形式的加法、减法运算的几何意义.3.会进行复数代数形式的乘、除运算.教学内容1.复数的加法与减法.(1)复数的加、减法法则.(a+b i)+(c+d i)=(a+c)+(b+d)i;(a+b i)-(c+d i)=(a-c)+(b-d)i.即两个复数相加(减),就是实部与实部,虚部与虚部分别相加(减).(2)复数加法的运算律.复数的加法满足交换律、结合律,即对任意z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).2.复数加、减法的几何意义.复数z1,z2对应的向量OZ1→,OZ2→不共线.(1)复数加法的几何意义:复数z1+z2是以OZ1→,OZ2→为两邻边的平行四边形的对角线OZ→所对应的复数.因此,复数的加法可以按照向量的加法来进行.(2)复数减法的几何意义:复数z1-z2是连结向量OZ1→,OZ2→的终点,并指向被减向量所对应的复数.3.复数乘法运算法则.设z1=a+b i,z2=c+d i,那么(a+b i)(c+d i)=(ac-bd)+(bc+ad)i.4.复数乘法的运算律.对任意复数z1、z2、z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1(z2·z3)乘法对加法的分配律z1(z2+z3)=z1z2+z1z35.复数除法运算法则.a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=[ac+b i·(-d i)]+(bc-ad)ic2+d2=(ac+bd)+(bc-ad)ic2+d2=ac+bdc2+d2+bc-adc2+d2i.6.共轭复数.(1)设z1=a+b i,z2=a-b i.当两个复数的实部相等、虚部互为相反数时,这两个复数叫做互为共轭复数.虚部不等于0的两个共轭复数也叫做共轭虚数.通常记z的共轭复数为z.(2)z·z=(a+b i)(a-b i)=a2+b2=|z|2=|z|2.题型一复数的加减运算例1计算:(1)(1+2i)+(3-4i)-(5+6i);(2)5i-[(3+4i)-(-1+3i)];(3)(a+b i)-(2a-3b i)-3i(a,b∈R).解析:(1)(1+2i)+(3-4i)-(5+6i)=(4-2i)-(5+6i)=-1-8i.(2)5i-[(3+4i)-(-1+3i)]=5i-(4+i)=-4+4i.(3)(a+b i)-(2a-3b i)-3i=(a-2a)+[b-(-3b)-3]i=-a+(4b-3)i.点评:复数加减运算法则的记忆:①复数的实部与实部相加减,虚部与虚部相加减,加减运算的结果还是一个复数;②把i看作一个字母,类比多项式加减中的合并同类项.巩 固 计算:(1)(-1+3i)+(3-23i);(2)⎝⎛⎭⎫22+22i -⎝⎛⎭⎫-22+22i -⎝⎛⎭⎫-22-22i ; (3)[](2-3i )-(a -b )i +(a +b )i.解析:(1)(-1+3i)+(3-23i)=-1+3+(3-23)i =2-3i.(2)⎝⎛⎭⎫22+22i -⎝⎛⎭⎫-22+22i -⎝⎛⎭⎫-22-22i =⎝⎛⎭⎫22+22+22+⎝⎛⎭⎫22-22+22i =322+22i. (3)[](2-3i )-(a -b )i +(a +b )i =2-3i +[]-(a -b )+(a +b )i =2+(2b -3)i.题型二 复数加减运算的几何意义例2 已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i ,试求:(1)AO →表示的复数;(2)CA →表示的复数;(3)求点B 对应的复数.解析:(1)AO →=-OA →,所以AO →表示的复数为-(3+2i),即-3-2i.(2)CA →=OA →-OC →,所以CA →表示的复数为(3+2i)-(-2+4i)=5-2i.(3)OB →=OA →+AB →=OA →+OC →,所以OB →表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i. 点评:利用复数加减法的几何意义解题:①z 1+z 2的几何意义是以OZ 1→,OZ 2→为邻边的平行四边形OZ 1ZZ 2的对角线OZ →所在向量;②z 1-z 2的几何意义是连接向量OZ 1→,OZ 2→的终点,并指向被减数的向量Z 2Z 1→所对应的复数;③复平面内两点间距离公式:d =|z 1-z 2|(其中z 1,z 2是复平面内两点z 1和z 2所对应的复数,d 为z 1和z 2的距离).巩 固 在复平面内, 复数1+i 与-1+3i 分别对应向量OA →和OB →, 其中O 为坐标原点,则||AB →=______. 解析:AB →=OB →-OA →=-2+2i ,所以|AB →|=2 2.答案:22题型三 复数的模相关的运算例3 已知复数z 满足z +|z|=2+8i ,求复数z.解析:解法一 设z =a +b i (a ,b ∈R),则|z |=a 2+b 2,代入方程得a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧ a +a 2+b 2=2,b =8.解得⎩⎪⎨⎪⎧a =-15,b =8.∴z =-15+8i. 解法二 将原式化为z =2-|z |+8i ,∵ |z |∈R ,∴2-|z |是z 的实部,∴|z |=(2-|z |)2+82,即|z |2=68-4|z |+|z |2.∴|z |=17.代入z =2-|z |+8i ,得z =-15+8i.点评:复数模的相关运算,主要是根据求模公式或复数相等的充要条件将复数问题化为实数问题来解决.巩 固 已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=______.解析:z 1-z 2=[](3x -4y )+(y -2x )i -[](-2x +y )+(x -3y )i=[](3x -4y )-(-2x +y )+[](y -2x )-(x -3y )i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0. 所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|=|1-i|= 2.答案:2题型四 复数的乘法与除法运算例4 计算:(1)(1+i)(1-i)+(-1+i);(2)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i); (3)(-2+3i)÷(1+2i);(4)(5-295i)÷(7-35i).解析:(1)原式=1-i 2+(-1+i)=2-1+i =1+i.(2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-34-34+⎝⎛⎭⎫34-14i (1+i)=⎝⎛⎭⎫-32+12i (1+i)=⎝⎛⎭⎫-32-12+⎝⎛⎭⎫12-32i =-1+32+1-32i. (3)原式=-2+3i 1+2i =(-2+3i )(1-2i )(1+2i )(1-2i )=(-2+6)+(3+4)i 12+22=45+75i. (4)原式=5-29 5 i 7-3 5 i =(5-29 5 i )(7+3 5 i )(7-3 5 i )(7+3 5 i )=(35+29×15)+(155-29×75)i 72+(35)2=470-188 5 i 94=5-2 5 i. 点评:两个复数代数形式的除法运算步骤:①把除式写为分式;②分子、分母同时乘以分母的共轭复数;③对分子、分母分别进行乘法运算;④把运算结果化为复数的代数形式.巩 固 (1)(1+i)(-1-i)(3+i)(1+3i)=________.(2)已知i 为虚数单位,则复数1-3i 3+i的共轭复数是________. 解析:(1)(1+i)(-1-i)(3+i)(1+3i)=-(1+i)2(3×1+(3)2i +i +3i 2)=-2i ×4i =-8i 2=8.(2)1-3i 3+i =(1-3i )(3-i )(3+i )(3-i )=3-i -3×3i +3i 29-i 2=-10i 10=-i ,所以1-3i 3+i的共轭复数为i. 答案:(1)8 (2)i题型五 共轭复数的应用例5 已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z .解析:设z =a +b i(a ,b ∈R),则z =a -b i(a ,b ∈R),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧ a 2+b 2-3b =1,-3a =3.解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3. 所以z =-1或z =-1+3i.点评:(1)要熟悉复数的一些常用性质如z z =|z |2=|z |2,z ∈R ⇔z =z 等.(2)当已知条件出现复数等式时,常设出复数的代数形式,利用相等复数的充要条件转化为实数问题求解.巩 固 已知z -1z +1为纯虚数,且(z +1)(z -+1)=|z |2,求复数z . 解析:由(z +1)(z +1)=|z |2得z +z =-1,①由z -1z +1为纯虚数,得z -1z +1+z -1z +1=0,所以z ·z -1=0.② 设z =a +b i ,代入①②,得a =-12,a 2+b 2=1. 所以a =-12,b =±32.所以z =-12±32i. 答案:z =-12±32i 题型六 复数范围内解方程问题例6 已知1+i 是方程x 2+bx +c =0的一个根(b ,c 为实数).(1)求b ,c 的值;(2)试判断1-i 是否是方程的根.解析:(1)∵1+i 是方程x 2+bx +c =0的一个根,∴(1+i)2+b (1+i)+c =0,即(b +c )+(2+b )i =0.∴⎩⎪⎨⎪⎧b +c =0,2+b =0.得b =-2,c =2. ∴b ,c 的值为b =-2,c =2.(2)∵方程为x 2-2x +2=0,把1-i 代入方程左边,得(1-i)2-2(1-i)+2=0,显然方程成立.∴1-i 是方程的根.点评:在复数范围内解一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c ∈R),将根设为m +n i ,再利用复数相等的充要条件解决问题.巩 固 若复数z 满足方程z 2+2=0,则z 3为( )A .±22B .-2 2C .-22iD .±22i解析:由z 2+2=0⇒z =±2i ⇒z 3=±22i ,故选D.答案:D题型七 利用i n 的周期性求解例7 i 是虚数单位,i +2i 2+3i 3+…+8i 8=________(用a +b i 的形式表示,a ,b ∈R).分析:利用i 的周期性化简求和.解析:i +2i 2+3i 3+…+8i 8=i -2-3i +4+5i -6-7i +8=4-4i.答案:4-4i点评:熟记i 的周期性,即i n +i n +1+i n +2+i n +3=0(n ∈N *).记住以下结果,可提高运算速度:①(1+i)2=2i ,(1-i)2=-2i ;②1-i 1+i =-i ,1+i 1-i=i ;③1i =-i. 巩 固 化简:2+2i (1-i )2+⎝ ⎛⎭⎪⎫21+i 2 014=____________. 解析:2+2i (1-i )2+⎝ ⎛⎭⎪⎫21+i 2 014=2(1+i )-2i +⎝⎛⎭⎫22i 1 007=i(1+i)+(-i)1 007=i +i 2+(-1)1 007×i 1 007 =i -1-i 4×251+3=i -1-i 3=-1+2i.答案:-1+2i(加减)A 组1.a ,b 为实数,设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( )A .1+iB .2+iC .3D .-2-i答案:D2.|(3+2i)-(4-i)|等于( )A.58B.10 C .2 D .-1+3i解析:|(3+2i)-(4-i)|=|-1+3i|=(-1)2+32.故选B.答案:B3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i答案:CB 组一、选择题1.已知复数z 1=2+i, z 2=1+2i, 则复数z =z 2-z 1在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:B2.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量Z 1Z 2→对应的复数为( )A .3+4iB .5-2iC .-2+6iD .2-6i答案:D3.若x 是纯虚数,y 是实数,且2x -1+i =y -(3-y )i ,则x +y 等于( )A .1+52iB .-1+52i C .1-52i D .-1-52i 解析:设x =a i(a ∈R),原方程化为2a i -1+i =y -(3-y )i ,即-1+(2a +1)i = y -(3-y )i ,得 -1=y, 2a +1=-(3-y ).解得 a =-52,y =-1,选D. 4.满足条件|z -i |=|3+4i|的复数z 在复平面上对应点的轨迹是( )A .一条直线B .两条直线C .圆D .椭圆解析:因为|3+4i|=32+42=5,所以|z -i|=5,设z =x +y i(x ,y ∈R),则有x 2+(y -1)2=5,即x 2+(y -1)2=25.故选C.答案:C5.复数z 1=1+icos θ,z 2=sin θ-i ,则|z 1-z 2|的最大值为( )A .3-2 2 B.2-1 C .3+2 2 D.2+1解析:|z 1-z 2|=|(1+icos θ)-(sin θ-i)|=(1-sin θ)2+(1+cos θ)2=3-2(sin θ-cos θ)=3+22sin (θ-π4)≤3+22=2+1.故选D. 答案:D二、填空题6.若复数z 1+z 2=3+4i ,z 1-z 2=5-2i ,则z 1=__________.答案:4+i7.已知|z |=5,且z -2+4i 为纯虚数,则复数z =________.解析:设z =x +y i(x ,y ∈R),则z -2+4i =(x -2)+(y +4)i.由题意知⎩⎪⎨⎪⎧ x -2=0,y +4≠0,x 2+y 2=5,得⎩⎪⎨⎪⎧ x =2,y =1或⎩⎪⎨⎪⎧x =2,y =-1.所以z =2±i. 答案:2±i 8.如图,平行四边形顶点A ,B ,C 所对应的复数分别为i,1,4+2i(A ,B ,C ,D 按逆时针方向排列).(1)向量BA →对应的复数为____________;答案:-1+i(2)向量BC →对应的复数为____________;答案:3+2i(3)向量BD →对应的复数为____________;答案:2+3i(4)点D 坐标是____________.答案:(3,3)三、解答题9.设f (z )=z -3i +|z |,若z 1=-2+4i ,z 2=5-i ,求f (z 1+z 2)的值.解析:因为z 1=-2+4i ,z 2=5-i ,所以z 1+z 2=(-2+4i)+(5-i)=3+3i.于是f (z 1+z 2)=f (3+3i)=(3+3i)-3i +|3+3i|=3+3 2.10.在复平面内,复数-3-i 与5+i 对应的向量分别是OA →与OB →,其中O 是原点,求向量OA →+OB →,BA →对应的复数及A ,B 两点间的距离.解析:向量OA →+OB →对应的复数为(-3-i)+(5+i)=2.∵BA →=OA →-OB →,∴向量BA →对应的复数为(-3-i)-(5+i)=-8-2i.∴A ,B 两点间的距离为|-8-2i|=(-8)2+(-2)2=217.(乘除)A 组1.设复数满足(1-i)z =2i ,则z =( )A .-1+iB .-1-iC .1+iD .1-i解析:z =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i.故选A.答案:A2.已知z 1+i=2+i ,则复数z =( ) A .-1-3i B .1-3iC .3+iD .3-i解析:由题意知z =(2+i)(1+i)=1+3i ,∴z =1-3i.答案:B3.复数2i 1+i(i 是虚数单位)的虚部是( ) A .1 B .-1 C .i D .-i答案:AB 组一、选择题1.(2013·广东卷)若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,-4) C. (4,-2) D .(4,2)解析:z =2+4i i=4-2i 对应的点的坐标是(4,-2),故选C. 答案:C2.(2013·山东卷)若复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z -为( )A .2+iB .2-iC .5+iD .5-i解析:由(z -3)(2-i)=5得,z -3=52-i=2+i ,所以 z =5+i ,所以z =5-i.故选D. 答案:D3.设a ,b ,c ,d ∈R ,则复数(a +b i)(c +d i)为实数的充要条件是( )A .ad -bc =0B .ac -bd =0C .ac +bd =0D .ad +bc =0解析:a ,b ,c ,d ∈R ,复数(a +b i)(c +d i)=(ac -bd )+(ad +bc )i 为实数,∴ad +bc =0,选D.答案:D4.已知复数z =1+i ,则z +1z2=( ) A.12-i B.12+i C .-12-i D .-12+i 答案:A二、填空题5.设复数z 满足z (2-3i)=6+4i(其中i 为虚数单位),则z 的模为________.解析:z (2-3i)=2(3+2i),2-3i 与3+2i 的模相等,z 的模为2.答案:26.(2013·重庆卷)已知复数z =5i 1+2i(是虚数单位),则|z |=________________. 解析:|z |=⎪⎪⎪⎪5i 1+2i =55= 5. 答案: 57. 设i 是虚数单位,复数1+a i 2-i为纯虚数,则实数a =_________________. 解析:1+a i 2-i =1+a i 2-i ·2+i 2+i =2-a +(2a +1)i 5,因为1+a i 2-i 为纯虚数,所以⎩⎪⎨⎪⎧2-a =0,2a +1≠0,所以a =2. 答案:28.若复数z 满足|z |-z -=101-2i,则z =________. 解析:设z =a +b i(a ,b ∈R),则有a 2+b 2-a +b i =2+4i.所以⎩⎨⎧a 2+b 2-a =2,b =4,得a =3,b =4. 所以z =3+4i.答案:3+4i三、解答题9.已知复数3z -z -对应的点落在射线y =-x (x ≤0)上,|z +1|=2,求复数z .解析:设z =a +b i(a ,b ∈R),则3z -z =3a +3b i -a +b i =2a +4b i ,由题意得⎩⎪⎨⎪⎧4b =-2a ,b >0.① 又由|z +1|=2,得(a +1)2+b 2=2,②由①,②解得⎩⎪⎨⎪⎧a =-2,b =1,所以z =-2+i. 10. 复数z =(1+i )3(a +b i )1-i且|z |=4,z 对应的点在第一象限内,若复数0,z ,z -对应的点是正三角形的三个顶点,求实数a ,b 的值.解析:z =(1+i )2(1+i )(a +b i )1-i=2i·i(a +b i)=-2a -2b i. 由|z |=4,得a 2+b 2=4.①因为复数0,z ,z 对应的点是正三角形的三个顶点,所以|z |=|z -z |,把z =-2a -2b i 代入化简,得|b |=1.② 又因为z 点在第一象限内,所以a <0,b <0.由①②,得⎩⎨⎧a =-3,b =-1.故所求a =-3,b =-1.。

复数的有关运算

复数的有关运算
z1 z1 ③. = z z 2 2
⑤. z = z
⑥. z = z ⇔ z ∈ R
数或0 数或
( z 2 ≠ 0) ⑦. z + z = 0 ⇔ Z为纯虚 为纯虚
④ . z = ( z)
n
n
四.共轭复数与模的性质及其运算 共轭复数与模的性质及其运算
① . | z1 ⋅ z2 |=| z1 | ⋅ | z2 |
| z−z1 | +| z −z2 | =2a (|z1 -z2 |=2a) (5).双曲线: z − z1 | −| z − z2 | = ±2a 双曲线: 双曲线 | (|z1 - z2 |> 2a)
(6).射线:z−z1 | −| z −z2 | =±2a 射线: 射线 |
(7).圆环 圆环: r <| z − z0 |< R 圆环 复数方程与直角坐标方程的转化
1 3 1 3 二. ω = - + i(或ω=- - i) 的性质 2 2 2 2 2 ①. 1+ ω + ω = 0
② . ω = 1 (周 T = 3) 期
3
③. ω =
1
ω

2
④ . ω n + ω n +1 + ω n + 2 = 0
一、复数的四则运算问题
1、已知复数z = 1 + i (1)设ω = z 2 + 3 z − 4,求ω; z 2 + az + b = 1 − i,求实数a,b的值 (2)如果 2 z − z +1
a + b = 1 a = −1 ⇒ ∴ a + 2 = 1 b = 2
4 2、设z + ∈ R,z − 2 |= 2,求z | z 解:设z = x + yi( x、y ∈ R,且z ≠ 0)

复数加减混合运算的五种运算技巧

复数加减混合运算的五种运算技巧

复数加减混合运算的五种运算技巧
1. 分解法
使用分解法可以将复数加减混合运算简化为两个简单的复数加减法运算。

首先,用分解法将混合运算式分解成两个部分,分别针对实部和虚部进行计算。

然后,将两个部分的计算结果合并得到最终的答案。

2. 共轭复数法
共轭复数法是一种常用的复数加减混合运算技巧。

对于复数a+bi,它的共轭复数为a-bi。

在进行复数加减混合运算时,可以利用共轭复数的性质简化计算。

首先,将复数中的虚部乘以-1,然后进行实部和虚部的加减运算。

3. 代数法
代数法是一种基于代数运算规律的复数加减混合运算技巧。

通过将复数用代数式表示,然后应用代数运算规律进行计算。

这种方法能够简化复杂的复数加减混合运算,提高计算效率。

4. 利用模长和辐角
复数可以用模长和辐角表示,利用这些参数可以简化复数的加减运算。

首先,将复数表示为极坐标形式,然后进行模长和辐角的加减运算。

最后,将得到的结果转换回复数形式。

5. 利用数轴
利用数轴可以直观地展示复数加减运算的过程,帮助理解和计算。

将复数在数轴上表示出来,根据加减法规则进行计算。

这种方法适用于简单的复数加减运算,能够提升计算的准确性和效率。

以上是复数加减混合运算的五种运算技巧,通过灵活运用这些方法,可以简化复杂的运算过程,提高计算的准确性和效率。

希望对您有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的加减法运算
一、导学激情,新课启航
学习目标:1.掌握复数的加减法运算及意义;
2.能灵活运用加减法运算解决相关问题。

二、导学自探,双基必备
知识储备:预习课本,完成下列内容
1、复数的加减法运算:(a+bi)+(c+di)=。

(a+bi)-(c+di)=。

2、复数的加法运算满足交换律和结合律,即。

3、共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。

a+bi的共轭复数是,通常用符号表示。

自主检测:
1、(1-3i)-(2+5i)+(-4+9i)=。

2、-5+i的共轭复数是。

三、导学克难,探究展示
1、计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i)
2、复数()
1
231
z m m i
=+++,()
2
2
2125
2
m
z m m i
m
+
=+-+
+
,其中,m R
∈,若
12
z z-是纯虚数,求m的取值范围。

3、已知,x y R
∈,()()
1
34
z x y y x i
=++-,()()
2
2453
z x y x y i
=-++,12
z z z
=+,并且z132i
=+,求
12
,z z
四、师导点金,总结升华
五、导练检测,清理过关
理:课本103页练习(文:课本78页)
六、作业布置:。

相关文档
最新文档