输电线路山火监测预警系统的研究及应用
输电线路中山火预警技术的应用研究

输电线路中山火预警技术的应用研究摘要:山火对输电线路的安全运行有着非常大的影响,被针对山火预警技术在输电线路中的应用进行了分析,然后阐释了我国输电线路特点,如分布范围广泛、受外界自然灾害影响较大等,提出山火预警技术在输电线路应用要点,希望能够为相关学者提供良好借鉴与参考。
关键词:输电线路;山火;预警技术在输电线路工程之中,如果遇到自然灾害,会严重影响电力线路的可靠、安全运行,对居民的用电产生不利影响。
为了减少天灾对输电线路产生的威胁,应用先进的山火预警技术尤为重要。
基于此,本文深入研究山火预警技术在输电线路当中的具体运用。
1 我国输电线路的特点分析我国电力网络分布范围比较广,特别容易受外界自然灾害侵袭,山火是一种比较常见的自然灾害。
最近几年以来,由于我国电力资源需求量越来越大,使得输电线路工程建设规模逐渐扩大,在一些地形较为复杂、地域辽阔的区域,大部分输电线路需要穿越复杂地形,如果遇到山火,输电线路特别容易发生掉闸现象,严重的还会毁坏架线铁塔,引起大规模的电力安全事故。
对于跨区电网线路,如果出现跳闸危害,不仅会影响居民的日常用电,还会威胁周围居民的生命安全,对整个电网线路的安全运行产生负面影响。
此外,由于退耕还林政策的大力实施,山上居民大量搬迁,山上的植被越来越丰富,特别容易发生火灾,因此,运用先进的山火预警技术,能够减小山火等一系列自然灾害对线路正常运行产生的影响。
因为我国的输电线路分布范围比较广泛,在一定程度上增加了山火预警难度,为了保证山火预警技术在输电线路当中得到更好运用,相关技术人员要结合该地区的地形地貌特征,包括山火的发生规律,采用先进的预警技术,减小山火对输电线路稳定运行所产生的影响,保证输电线路能够可靠、安全的运行。
2 山火预警技术在输电线路应用要点研究山火发生时段与季节受外界气象因素的影响较大,例如,外界气温与降雨量等一系列因素,会影响山火发生时段,山林地被物含水量和森林火险等级存在较大关联,尤其是一些细小可燃物含水率,如果地被物含水量过高,则森林风险等级特别低。
输电线路走廊山火监测技术研究与应用

输电线路走廊山火监测技术研究与应用近年来,山火频发给人民的生命财产安全带来了巨大的威胁,特别是对于输电线路走廊山火监测技术的研究和应用显得更加迫切。
输电线路走廊山火监测技术的研究和应用对保障输电线路的安全运行,预防山火对输电线路造成的影响,提高山火监测的精准度和效率具有重要意义。
本文将对输电线路走廊山火监测技术的研究和应用进行探讨。
目前,对于输电线路走廊山火监测技术,主要集中在利用遥感技术和无人机技术进行监测。
遥感技术能够实现对山火的实时监测和识别,通过遥感卫星或者地面传感器获取山火数据,可以及时发现和报警山火的发生,为山火的应急处置提供数据支持。
无人机技术则可以在紧急情况下快速响应,实现对山火的目视监测,甚至可以进行空中灭火作业。
还有利用传感器、人工智能等先进技术进行山火监测的研究。
1. 多源遥感数据融合目前,遥感技术已经发展到了多源数据融合的阶段,在进行山火监测时,可以综合利用卫星、地面和无人机等多种遥感数据,通过数据融合技术提高山火监测的精度和准确性。
可以通过数据融合技术实现对输电线路周边环境的遥感监测,及时发现潜在的火灾隐患。
2. 智能预警系统传统的山火监测主要依靠人工巡查和报警来发现山火,存在着盲区和时效性差的问题。
而利用人工智能技术可以建立智能预警系统,通过对山火监测数据的分析和处理,实现对山火的自动识别和预警。
智能预警系统可以大大提高山火监测的及时性和精准度,降低山火对输电线路造成的损失。
3. 空中监测和灭火作业无人机技术在山火监测中的应用日益普及,可以在紧急情况下快速响应,实现对山火的目视监测和灭火作业。
无人机配备红外相机可以实现对山火热点的精准识别,配备灭火设备可以实现对山火的快速扑灭。
还可以通过无人机对输电线路进行巡检,发现潜在的隐患并及时修复,保障输电线路的安全运行。
输电线路走廊山火监测技术的应用前景广阔。
在实际应用中,可以将遥感技术、无人机技术和人工智能技术相结合,建立集成的山火监测系统。
输电线路走廊山火监测技术研究与应用

输电线路走廊山火监测技术研究与应用随着人们对电力需求的不断增长,输电线路作为电力的重要载体扮演着至关重要的角色。
输电线路走廊也面临着一些潜在的危险,特别是山火的威胁。
针对输电线路走廊山火的监测技术的研究和应用具有重要的现实意义。
输电线路走廊山火的威胁主要体现在以下几个方面:山火可能烧毁输电线路及其附属设施,导致电力中断和供电不稳定,给人们的生活和产业带来巨大损失;山火可能导致输电线路走廊周边植被大面积烧毁,破坏生态环境,加剧土地沙化和水土流失等问题;山火还可能产生大量的烟雾,对人们的身体健康造成危害,并对空气质量产生不良影响。
可以利用遥感技术对输电线路走廊进行监测。
遥感技术可以通过卫星、无人机等手段获取大范围、高分辨率的图像数据,可以快速准确地掌握输电线路走廊周边植被的状态和火灾风险等信息。
还可以利用遥感技术对输电线路走廊进行火灾烟雾的监测和评估,有效应对火灾的蔓延。
可以采用物联网技术对输电线路走廊进行实时监测。
通过在输电线路周边布设物联网传感器,可以实时监测气象因素、温度、湿度等环境参数,并将数据传输到监测中心进行分析和处理。
当监测数据发生异常时,可以及时发出预警,以防止火灾的发生和蔓延。
可以利用人工智能技术对输电线路走廊火灾的预测和预警进行研究。
通过收集历史火灾数据、气象数据等多种信息,构建火灾发生和蔓延的模型和算法,可以实现对火灾的准确预测和预警。
还可以利用人工智能技术对火灾的灭火和救援工作进行优化和指导。
还可以研究和应用无人机技术对输电线路走廊山火进行监测和救援。
无人机可以快速飞越山火现场,获取高空高清图像和视频数据,并将数据传输到监测中心进行处理和分析。
还可以利用无人机携带的喷雾系统进行灭火和救援工作,提高灭火工作的效率和可靠性。
输电线路走廊山火的监测技术的研究和应用具有重要的意义。
通过利用遥感技术、物联网技术、人工智能技术和无人机技术等手段,可以实现对输电线路走廊山火的快速准确监测和救援,保障电力供应和生态环境的安全。
浅谈山火预警技术在输电线路中的运用

1山火预警技术在输电线路的运用
1.1卫星遥感技术的运用
1.1.1NOAA/AVHRR监测林火
AVHRR高分辨率辐射仪共包括5各通道,每一个通道都有各自的特性。NOAA卫星经常用于草原、森林的火灾监测,不仅能准确确定火点、预测火灾严重程度,而且也可以对火灾面积进行估算。气象卫星对地面线性物体的分辨率只有1.1km,分辨率较低,但是它的温度分辨率却较高。NOAA卫星交错运行,监测频率为6小时/次,即同一地区每隔6小时便会接受其一次监测。
3火山预警技术的应用创新
3.1加大财力支持
输电线路是保证人们日常生活生产用电的直接因素,没有电力资源的支持,国民收入大大降低,人民生活水平大大减退。因此需要财政力量的投入支持,保证源源不断的电力资源。而火山预警技术作为一项重要的科学研究项目,需要高科技技术的投入研究,人才资源的建设也需要财政的支出。
1.2.4燃烧音火灾探测器
如果发生火灾,火源周围便会出现频率不同的声音,主要维低频域声音与超高频域声音,这两种声音均无法通过人耳捕捉。部分研究人员表示,当物体燃烧时,会产生空气膨胀与热气对流现象,这是低频域声音产生的主要原因。而随着燃烧程度的不断加深,低频域声音也会不断增大。对于燃烧音火灾探测器的工作原理,即为通过感知低频域声音来探测火灾,是目前较为常见的一种火灾检测方法。
浅谈山火预警技术在输电线路中的运用
摘要:我国的电网范围较大、分布较广泛,十分容易受到自然灾害的侵袭,山火是其中的一项因素。近年来,随着电力资源日益广泛的应用,再加上我国地形复杂、地域辽阔的特征,使得诸多输电线路必须穿越各类复杂的地形地貌。山火的出现,往往会导致输电线路掉闸问题,严重时还会损毁架线铁塔,进而引发重大的电力事故。本文分析了山火预警技术在输电线路中的运用,以供参考。
森林火灾监测与预报技术研究与应用

森林火灾监测与预报技术研究与应用森林火灾是一种危害极大的自然灾害,由于其火势猛烈、扩大迅速,不仅会对野生动植物的生存和生态环境造成毁灭性的影响,还会给人类带来极大的经济损失和人员伤亡。
因此,研究和应用森林火灾监测与预报技术显得尤为重要,通过及时准确的火情监测和预报,能够有效地控制火势,减小火灾对生态环境和经济发展的影响。
一、森林火灾监测技术1.卫星监测卫星监测是目前较为广泛应用的监测技术,通过对森林火灾区域的卫星图像进行分析,可以有效地提高火情监测的准确性和时效性。
利用卫星遥感技术可以对火点进行实时监测,进而对火点进行定位,判断火源的类型和大小等情况,为灾害救援提供宝贵的信息支持。
2.气象监测气象监测是另一种常用的监测技术,通过监测和分析森林火灾周围的气象环境,如风速、温度、湿度等因素,判断火势的扩散情况和可能的方向,从而对火情实行预报和应急管理。
此外,还可以对森林干燥度和风力等进行实时监测,提前预警可能发生的火情。
3.传感器监测传感器监测通过安装在森林中的传感器,实时地记录温度、湿度、雨量等数据,对森林进行实时监测。
传感器网络可以实现数据的及时共享和信息的互通,对集群化数据的处理可以快速准确地判断出火情。
二、森林火灾预报技术1.数值模型预报数值模型预报利用计算机技术和数学模拟方法,通过对森林火灾相关因素的数值计算和预测,来进行火情预报。
数值模型预报技术精度较高,同时利用大量历史数据,对于短期和长期预测具有很高的准确性和可信度。
2.灰度预测灰度预测是一种利用灰色系统理论进行火情预测和分析的方法。
该方法不需要复杂的数值计算和繁琐的数据处理,只需要根据历史火情数据和当时的气象环境,综合分析得出预测结果。
该方法简单易行,而且具有很高的实用性和准确性。
3.人工预测人工预测是指通过人工观察和识别火情,结合周围气象环境和地理环境等因素,进行火情预测的方法。
这是一种常见的、直接的预测方法,通过人工判断火情的趋势、扩散速度和发展方向,对森林火灾进行及时预报和管理。
输电线路通道状态监测评估与山火隐患智能预测技术的管理应用

输电线路通道状态监测评估与山火隐患智能预测技术的管理应用一、序近几年,山火跳闸为输电安全运行维护带来了很大的障碍,大部分输电线路跳闸多是因为山火引起的,而且山火跳闸不易防控,高空架线不免要经过很多高山,气温的升高很容易引起火灾,跳闸不可避免。
电网的运行核心便是输电线路,但其火灾的抵抗能力不强,因此,找出山火导致输电线路跳闸的原因并及时解决,对于电网的正常运营非常重要。
二、山火跳闸的条件1、山火引起线路跳闸的原因当发生山火时,山火的燃烧温度可达1000—1177℃,而空气中的气体出现明显的热游离的温度为727℃,使导线与地面(或树木)之间不均匀电场的两极间电荷量大大增加,且火势越强,燃烧的时间越长,两极间增加的电荷量越大。
同时火对导线金属电极加热,可使电子从金属表面游离出来,当山火能使导线与地面的两极间电荷量增加到一定量时,电场发生强烈畸变,大量空间电荷的复活,产生光子,造成光游离,在局部强场中,发展成为衍生电子崩,衍生电子崩与主电子崩汇合发展成为流注,形成具有高电导和低场强的负先导通道,最后导致线路跳闸。
4、山火导致线路跳闸机理国外对输电线路因山火导致跳闸的特性进行了大量的试验研究,得出山火导致线路的绝缘水平下降的主要原因有:4.1、火焰高温使空气的密度下降,从而导致绝缘强度下降;4.2、火焰中电荷导致导线附近的电场发生畸变;4.3、颗粒触发放电。
并不是所有的输电线路下面的山火都可导致线路跳闸,主要由火焰温度、电导率、烟雾、灰烬等诸多因素综合作用导致线路的绝缘度急剧下降进而发生跳闸故障。
山火是一种高温、含有不同粒径固体和颗粒的多相弱等离子体,放电机理比其它放电复杂。
目前研究普遍认为:在山火条件下输电线路的击穿分为多个阶段:1)火焰抬升阶段:山火火焰在风力作用下,导致火焰燃烧强度增加,高度增大,烟雾灰烬被火焰对流漩涡卷入相地和相间间隙。
2)导线对火焰发生预放电阶段:火焰接近导线,电晕流注放电产生大量活性基,加速燃料燃烧,同时可燃物在活性基作用下形成爆炸性火球,促进放电进一步发展。
输电线路山火雷达实时监测技术及应用研究

输电线路山火雷达实时监测技术及应用研究摘要:输电线路山火灾害监测是线路运行维护中的一个重点和难点问题,及时有效的输电线路山火监测技术有助于提高运行维护效率。
雷达遥测技术具有监测范围广、精度高、维护方便等优点。
为了挖掘雷达在重要传输通道遥测领域的巨大潜力,研制了基于Ka波段雷达的输电线路山火实时监测装置,并进行了测量和工程应用。
实测结果表明,输电线路山火雷达实时监测装置能够快速、准确地监测到火灾目标,满足工程精度要求,具有工程应用可行性。
关键词:雷达;山火;监测;工程应用引言输电线路长期运行,跨越面积大,容易受到外力破坏,山火是重要因素之一[1-3]。
输电线路山火灾害的特点主要包括随机性和突发性,并能迅速造成巨大损失。
及时监测山火并给出实时预警是输电线路预防山火的迫切需要。
针对输电线路的山地火灾监测,近年来出现了无人机巡航、卫星遥感、火灾探测器探测、图像在线监测等山地火灾监测新技术的研究和应用[4-6]。
然而,由于技术形式和沿线环境的影响,传统的监测方法在预测山体火灾趋势、火灾判断的准确性以及小规模和初期火灾的预警方面仍存在一些问题。
相比之下,基于热能多光谱监测雷达的输电线路山火监测技术不需要人工实时监测,降低了人工成本[7-10];与红外技术相比,检测范围更广,虚警率降低,检测精度和实时检测能力更强,更有利于发现初期火灾,预测火灾发展趋势。
为此,根据山火的特点,结合国家电网地理信息系统信息平台,查询获取输电走廊周围的地形地貌数据,设计开发了基于Ka波段小型雷达的输电线路山火监测系统,探索了其工程应用技术,并在实际工程中进行了试点安装和实测。
1山火雷达回波识别雷达对目标的探测主要依靠目标反射的雷达回波的变化。
火焰的成分中含有许多电子、离子和中性粒子,与周围常规物体的雷达回波有显著区别。
而且火灾烟雾的物理特性也与周围物质不同,会对雷达回波产生一定的影响。
因此,基于雷达探测可以实现山火的探测。
根据山火回波和输电线路周围目标的特点,选择毫米波雷达进行山火探测系统的研究和开发。
山火预警技术在输电线路的应用现状

山火预警技术在输电线路的应用现状摘要:受到电力资源分布的影响,电力企业应借助输电线路满足不同区域用电需求。
但因国内地形地貌十分复杂,电力运输期间经常受到气候与自然环境等方面因素影响。
电力运输若发生中断势必会对用户正常供电产生影响,所以,有必要对山火预警技术应用展开详细分析。
关键词:山火预警输电线路应用前言:人们日常生活和电力能源密切相关,因此有必要确保电力供应稳定与安全。
但是当前国内电力输电线路难免会设在山林区域,若这一区域发生火灾,势必会对输电设备产生影响,进而导致线路瘫痪,影响用户用电。
基于此,有必要加强输电线路中山火预警技术应用研究。
1山火引起输电线路跳闸机理1.1.空气热游离山火发生期间,山火燃烧产生的火焰对输电线路产生的损伤相对较小,但因火灾引发的空气温度上升,进而使得输电线路四周空气温度不断上升,最终使得空气热游离带电粒子逐渐向上运动。
再者,在微粒受热与浓烟的作用下,分子间运动速度不断加快,空气绝缘性不断下降,因而使得空气间隙逐渐被击穿,输电线路借助空气和地面连接,最终导致放电情况产生。
1.1.局部空气密度下降山火发生期间,输电线路四周温度逐渐升高,分子间运动逐渐加快。
相邻分子间距不断增加,空气密度逐渐下降,因而使得输电线路四周有低压区出现。
地面同输电线路击穿电压构成导电进行连接,此时即可使输电线路跳闸对地放电几率不断增加。
1.1.导电率增加火灾发生期间,林木的燃烧将导致很多水分子受热蒸发。
水分子当中含有的导电离子埋藏在空气当中,因此会对空气绝缘性产生影响,最终使得输电线路与地面连通出现短路。
1.1.电场畸变植物燃烧期间经常会产生很多碳化颗粒与带电粒子,这些物质会漂浮在线路四周,遇到高温和空气电荷等方面影响,则会有流注放电等情况出现。
再者,植物燃烧还会导致输电线路周遭温度逐渐上升,空气当中电荷粒子快速游动,然后集聚成电弧,最终导致闪络跳闸情况出现。
2山火预警技术问题2.1山火预警数据限制当前,国内火山喷发数据测算仍然不具体,林火监测数据积累较少,很难找到火山喷发起点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输电线路山火监测预警系统的研究及应用
发表时间:2018-07-03T10:36:08.843Z 来源:《电力设备》2018年第9期作者:周文龙
[导读] 摘要:随着我国电力事业的发展,输电线路的运用安全性、可靠性已经大大提高,但仍然存在一些不可抗力因素,会给输电线路的运用稳定性带来危害。
(国网攀枝花供电公司四川攀枝花 617000)
摘要:随着我国电力事业的发展,输电线路的运用安全性、可靠性已经大大提高,但仍然存在一些不可抗力因素,会给输电线路的运用稳定性带来危害。
目前,大部分的输电线路监测系统只能对输电线路中设备故障、覆冰、污秽等问题进行监测,而对于线路附近的山火却无法监测。
根据相关资料来看,输电线路出现山火的情况比较少见,但其带来的危害是巨大的。
因此,在敷设输电线路时,需要建立输电线路山火监测预警系统,随时掌握输电线路的山火动态,从而采取措施对山火进行控制,以免其扩大带来更严重的经济损失。
关键词:输电线路;山火监测预警系统;应用
一、输电线路山火监测系统
1、系统硬件结构原理
输电线路山火监测系统原理结构如图1所示。
输电线路山火监测系统硬件由卫星接收装置、前端接收服务器、后端应用服务器和山火预警服务器组成。
卫星通过红外遥感传感器获取地面温度数据,然后发送给地面卫星接收装置。
卫星接收装置将数据传输给数据处理服务器,进行图片预处理,再将图片传输给后端火点判识与预警服务器,进行火点的判识与线路告警计算。
最后将监测与预警信息发布给输电线路运行维护单位,进行山火应急处置。
前端接收服务器主要进行快视、投影和传输。
快视即将获取的卫星数据显示为包含经纬度信息的原始卫星云图。
投影是将获得的卫星图片投影到监测目标地理范围。
后端应用服务器是山火监测的核心,主要进行图像处理、与其他资料融合叠加和山火判识等,可同时处理多颗卫星数据。
图像处理环节将图片进行过滤(去除斑点、滤波、锐化等)、几何变换(快速傅立叶变换、离散余弦变换、沃尔什变换等)、点运算(线性变换、阈值变换、灰度均衡等)、颜色处理(颜色调整、灰度化、反色)等一系列处理,消除各种干扰因素,以便于火点判识。
经处理后的图片可以叠加地理信息,经火点判识处理后,得到火点的经纬度坐标及其地理信息。
山火预警服务器将接收的火点信息导入包含地理和线路杆塔信息的预警系统,计算火点与线路距离,给出告警结果,并将告警进行发布。
山火预警信息具有信息存储、历史查询、统计分析等功能。
图1山火监测预警系统原理结构图
2、系统软件流程
系统软件处理流程如图2所示。
首先根据卫星运行轨道预测卫星过境的时间,然后进行卫星资料的实时接收和显示,并将卫星图片进行投影到目标监视区域,接着进行消噪、图像增强等预处理,提高图片的质量,使之满足山火识别系统的要求。
然后进行火点判识。
经过火点识别之后,可获得实时的山火火点信息,包括火点的经纬度、实时火点图等,其中火点的经、纬度信息存储到数据库中。
再将火点信息与输电线路结合,计算火点与线路杆塔距离,最后通过短信信息平台将山火监测信息实时群发给现场线路运维人员。
图2系统软件整体流程图
3、系统结构
输电线路山火预警系统的结构模式有两种,一种是C/S网络模式,一种是B/S网络模式,两种模式各有优点。
C/S结构主要应用于局域网中,其用户群相对比较固定,能够确保信息的安全性。
B/S结构中设计有数据层,其数据服务器的主要功能是存放数据。
而应用服务器的主要功能则是提供不同的服务部件,用于对数据服务器进行访问,并对客户端发出的各种请求作出响应,访问和响应结果会通过浏览器端显示出来,浏览器端同时还能发出请求。
而在输电线路的山火预警监测系统中,应将两种模式进行结合使用。
在数据管理子模块中,应设置为C/S模块,其服务对象是数据库管理用户,主要功能是数据的入库和维护,所以此模块的管理者要同时具备数据库管理技能和地理基础知识。
山火监测预警子模块则应设置为B/S模式,主要功能是对地图进行浏览和发布,并为用户提供查询和分析功能,其使用者相对更多。
二、输电线路山火预警监测系统关键技术的应用
1、空间数据库技术
在对空间数据进行管理时,主要采用的是关系数据库,也可采用对象关系数据库。
在对空间与非空间中的数据进行操作时,需要将
RDBMS数据管理功能与SQL语言结合起来使用。
由于关系数据库中的数据信息量非常庞大,能够对这些数据信息进行管理、处理,还能记录锁定和并发控制,建立起数据仓库,所以可将关系数据库的这些功能充分的利用起来,实现空间数据与非空间数据的集成。
在GIS未来的发展中,也会利用关系数据库对空间数据库进行管理,从而提高空间数据的互操作性。
输电线路山火预警监测系统中会涉及到地理空间数据库,其管理模式是ArcSDE与SQLServer的结合,利用空间数据引擎、应用服务器,可提高空间数据管理的效率。
而专用开发包的利用,则能使数据库的功能更加完善,从而可对数据库系统进行集成化管理。
2、组件式GIS开发技术
新一代的GIS是以组件式软件为基础的,ComGIS能够弥补传统GIS的不足,主要是将GIS每个功能模块进行划分,使其成为多个控件,每个空间都有其独特的功能。
利用可视化的软件开发工具,能够实现各个控件之间以及控件与非控件之间集成,最后就可形成GIS的应用。
在传统的GIS中,会自带二次开发语言,而组件式GIS则能够有效的克服这一缺陷。
通过对计算机语言的利用,能够实现山火预警监测系统与其他系统的集成,从而开发出功能更加齐全的新系统,扩大其应用范围。
3、山火识别与图像增强技术
由于红外图像的背景比较高,反差比较低,所以与背景辐射相比,目标占用的动态范围就比较小。
而输电线路的山火监测距离一般都比较远,地形又比较复杂,火点的覆盖面积也比较小,所以采集到的图像会清晰度会比较差。
因此,需要采用图像增强技术对图像进行处理,以提高图像信号的温度对比度,从而使山火预警监测系统能够在红外环境中,感应到比较细微的温差变化。
4、系统应用效果
将山火预警监测系统应用于各省市的输电线路中,取得的效果比较明显,在很大程度上降低了山火引起的线路故障频率。
比如,系统在我国的11个省市应用以后,在清明节期间所监测到的火点个数就有接近900个,在这些线路中,跨区的电网输电线路就发出34多个山火一级告警,经过验证,在这34个一级告警中有32个有山火。
其中,系统监测到湖北电力公司运营的一条输电线路发出一级告警山火,火点的亮温值为330,已经超出火点的判断阀值321。
在电力公司的检修人员核实后,该线路确实发生山火。
并且,檢修人员到达现场后,发现火场的面积比较大。
由此可见,输电线路山火监测预警系统能够监测到较大范围内的山火,并发出山火预警,以便相关人员及时采取措施对其进行控制。
结束语
综上所述,为了避免输电线路出现严重的山火险情,需要采取合适的措施进行动态监控,才能保证其运行安全性。
而输电线路山火监测预警系统的合理运用,能够对线路中的山火进行准确监测,并根据山火的实际情况发出山火告警,从而及时对其进行扑灭行动。
所以,山火监测预警系统在输电线路中的应用,可对现场的山火情况作出判断,并形成相应的图像,将相关信息传输到对应的软件中,从而方便检修人员随时掌握现场的情况,最终提高山火处理效率。
参考文献:
[1]林铭瀚,胡永洪,薛毓强,等.基于mesh网络的输电线路山火预警监视系统研制[J].电力系统保护与控制,2016,44(1):134-138.
[2]张臻,张琛.基于红外探测器的输电线路山火监测方案[J].江苏电机工程,2016,35(3):57-59,63.
[3]全浩,黄学能,罗朝宇,等.输电线路山火光谱雷达监测系统的实现与应用[J].广西电力,2015,38(4):67-71.。