二次函数之面积最大值、平行四边形存在性(作业)
中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案

中考数学总复习《二次函数中的特殊四边形存在性问题 》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线223y x x =+-的图像与坐标轴分别交于、、A B C 三点,连接AC ,点M 是AC 的中点,抛物线的对称轴交x 轴于点F ,作直线FM .(1)直接写出下列各点的坐标:F ______,M ______;(2)若点P 为直线FM 下方抛物线上动点,过点P 作PQ y ∥轴,交直线FM 于点Q ,当PQM 为直角三角形时,求点P 的坐标;(3)若点N 是x 轴上一动点,则在坐标平面内是否存在点E ,使以点F M N E 、、、为顶点的四边形是正方形?若存在,请直接写出点E 的坐标:若不存在,请说明理由.2.如图所示,在平面直角坐标系中,直线3y x =-+交坐标轴于B 、C 两点,抛物线23y ax bx =++经过B 、C 两点,且交x 轴于另一点()1,0A -.点D 为抛物线在第一象限内的一点,过点D 作DQ CO ∥,DQ 交BC 于点P ,交x 轴于点Q .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在DCP DPC ∠=∠,求出m 值;(3)在抛物线上取点E ,在平面直角坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在,请求出点F 的坐标;如果不存在,请说明理由.3.如图,已知抛物线223y x x =--+的顶点为D 点,且与x 轴交于B ,A 两点(B 在A 的左侧),与y 轴交于点C .点E 为抛物线对称轴上的一个动点:(1)当点E 在x 轴上方且CE BD ∥时,求sin DEC ∠的值;(2)若点Р在抛物线上,是否存在以点B ,E ,C ,P 为顶点的四边形是平行四边形﹖请求出点Р的坐标;(3)若抛物线对称轴上有点E ,使得55AE DE +取得最小值,连接AE 并延长交第二象限抛物线为点M ,请直接写出AM 的长度.4.如图,抛物线22y ax bx =++与x 轴交于()1,0A -和()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)如图1,若点D 是第一象限内抛物线上的一个动点,连接AC ,CD ,DB ,试求四边形ABDC 面积的最大值;(3)如图2,点(),1D m m -是第一象限内抛物线上的一点,连接AD ,BD ,点E 是线段AB 上的任意一点(不与点A ,B 重合),过点E 分别作EM AD ∥交BD 于点M ,EN BD ∥交AD 于点N .①判断四边形EMDN 的形状,并证明你的结论;①四边形EMDN 是否能成为正方形?若能,请直接写出点E 的坐标;若不能,请说明理由.5.如图,在平面直角坐标系中,AOC 绕原点O 逆时针旋转90︒得到DOB ,其中1OA =,OC=3.(1)若二次函数经过A 、B 、C 三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l 上是否存在一点P ,使得PA PC +最小?若P 点存在,求出P 点坐标;若P 点不存在,请说明理由.(3)在(1)条件下,若E 为x 轴上一个动点,F 为抛物线上的一个动点,使得B 、C 、E 、F 构成平行四边形时,求E 点坐标.6.如图,在平面直角坐标系中,抛物线234y x bx c =++与直线AB 交于点()0,3A -和()4,0B .(1)求抛物线的函数解析式;(2)点P 是直线AB 下方抛物线上一点,过点P 作y 轴的平行线,交AB 于点E ,过点P 作AB 的垂线,垂足为点F ,求PEF 周长的最大值及此时点P 的坐标;(3)在(2)中PEF 取得最大值的条件下,将该抛物线沿水平方向向左平移3个单位,点Q 为点P 的对应点,点N 为原抛物线对称轴上一点.在平移后抛物线上确定一点M ,使得以点B ,Q ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点M 的坐标,并写出求解点M 的坐标的其中一种情况的过程.7.如图,在平面直角坐标系中,抛物线()230y ax bx a =+-≠与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于C 点.(1)求抛物线的函数表达式;(2)点P 是直线BC 下方抛物上一动点,连接PB ,PC ,求PBC 面积的最大值以及此时点P 的坐标;(3)在(2)中PBC 的面积取得最大值的条件下,将该抛物线沿水平方向向左移动2个单位,平移后的抛物线顶点坐标为Q ,M 为y 轴上一点,在平移后的抛物线上确定一点N ,使得以点P ,Q ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.8.如图,在平面直角坐标系中,抛物线()240y ax bx a =+-≠与x 轴交于()4,0A ,()2,0B -两点,与y 轴交于点C ,连接BC ,y 轴上有一点()0,3D -.(1)求抛物线的函数表达式;(2)点P 是直线AD 下方抛物线上的一个动点,过点P 作PH x ⊥轴于点H ,PH 交直线AD 于点E ,作PF BC 交直线AD 于点F ,求11510PF PH +的最大值,及此时点P 的坐标; (3)在(2)的条件下,将点P 向右平移152个单位长度,再向上平移398个单位长度得到点P ';将抛物线沿着射线BC 方向平移5个单位长度得到一条新抛物线,点M 为新抛物线与y 轴的交点,N 为新抛物线上一点,Q 为新抛物线对称轴上一点,请写出所有使得以点P ',M ,Q ,N 为顶点的四边形是平行四边形的点Q 的坐标,并写出求解点Q 的坐标的其中一种情况的过程.9.如图,抛物线212y x bx c =-++的图象经过点C ,交x 轴于点()1,0A -、()4,0B (A 点在B 点左侧),顶点为D .(1)求抛物线的解析式;(2)点P 在直线BC 上方的抛物线上,过点P 作y 轴的平行线交BC 于点Q ,过点P 作x 轴的平行线交y 轴于点F ,过点Q 作x 轴的平行线交y 轴于点E ,求矩形PQEF 的周长最大值;(3)抛物线的对称轴上是否存在点M ,使45BMC ∠=︒?若存在,请直接写出点M 的纵坐标;若不存在,请说明理由.10.如图1,抛物线232y ax x c =++与x 轴交于点A 、(4,0)B (A 点在B 点左侧),与y 轴交于点(0,6)C ,点P 是抛物线上一个动点,连接,,PB PC BC(1)求抛物线的函数表达式;(2)如图2所示,当点P 在直线BC 上方运动时,连接AC ,求四边形ABPC 面积的最大值,并写出此时P 点坐标.(3)若点M 是x 轴上的一个动点,点N 是抛物线上一动点,P 的横坐标为3.试判断是否存在这样的点M ,使得以点,,,B M N P 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.11.如图,已知抛物线2y x bx c =-++与y 轴交于点C ,与x 轴交于(1,0)A -,(3,0)B 两点.(1)求抛物线的解析式. (2)连接AC ,在抛物线的对称轴上是否存在点P ,使得ACP △的周长最小?若存在,求出点P 的坐标和ACP △的周长的最小值,若不存在,请说明理由.(3)点M 为抛物线上一动点,点N 为x 轴上一动点,当以A ,C ,M ,N 为顶点的四边形为平行四边形时,直接写出点M 的横坐标.12.在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为()5,0-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求三角形ACP 面积的最大值;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线()10A -,,()30B ,和()01C -,三点.(1)求该抛物线的表达式与顶点坐标;(2)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.14.如图,抛物线2()y a x h k =-+的顶点坐标是19,24⎛⎫ ⎪⎝⎭,与x 轴交于点A 、点()2,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线的对称轴上,点Q 在抛物线上,是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.综合与探究如图,抛物线2142y x x =+-与x 轴交于点A 和B ,点A 在点B 的左侧,与y 轴交于点C ,点P 在直线AC 下方的抛物线上运动.(1)求点B 的坐标和直线AC 的解析式;(2)如图1,过点P 作PD y ∥轴交直线AC 于点D ,过点P 作PE AC ⊥,垂足为E ,当PDE △的面积最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在x 轴上运动,以点B ,C ,M 和N 为顶点的四边形是平行四边形,借助图2探究,请直接写出符合条件的点M 的坐标.参考答案: 1.(1)(1,0)F - 13(,)22M - (2)点P 的坐标为:1P (210322---,) 21555(,)22P ---- (3)存在,13(,)22E 或3(1,)2E --2.(1)223y x x =-++(2)2m =(3)存在,此时点F 的坐标为()4,1或()5,2--3.(1)55(2)存在 ()2,3P - ()4,5P -- ()2,5P -(3)754AM =4.(1)213222y x x =-++ (2)四边形ABDC 面积的最大值为9(3)①矩形①能,7,03E ⎛⎫ ⎪⎝⎭5.(1)2=23y x x --(2)存在(3)(72,0)-或(72,0)--或(1,0)6.(1)239344y x x =-- (2)365 92,2P ⎛⎫- ⎪⎝⎭ (3)13693,216M ⎛⎫ ⎪⎝⎭ 727,216M ⎛⎫-- ⎪⎝⎭ 333,216M ⎛⎫ ⎪⎝⎭7.(1)2=23y x x --(2)315(,)24P - (3)17(,)24N -或533(,)24N 或57(,)24N --8.(1)2142y x x =-- (2)11510PF PH +最大值为758,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭ (3)点Q 的坐标为()2,39或()2,29或()2,10-9.(1)213222y x x =-++ (2)9(3)3132+或3912--10.(1)233642y x x =-++ (2)2t =时,ABPC S 四边形有最大值,最大值为24,点P 的坐标为(2,6)(3)存在,点M 的坐标为(0,0)或()14,0-或(14,0)或(8,0)11.(1)223y x x =-++(2)(1,2)P 1032+(3)2或17+或17-12.(1)(0,5)(2)1258(3)存在,点M 的坐标为:()3,8-或()3,16-或(7,16)--13.(1)212133y x x =--,顶点坐标为413⎛⎫- ⎪⎝⎭, (2)()21-,或543⎛⎫ ⎪⎝⎭,或()47-,14.(1)22y x x =-++(2)存在,点Q 的坐标为:35,24Q ⎛⎫ ⎪⎝⎭或37,24⎛⎫-- ⎪⎝⎭或57,24⎛⎫- ⎪⎝⎭15.(1)点B 的坐标为()20,,直线AC 的解析式为4y x =-- (2)()24--,(3)()24--,或()1174--,或()1174-+,;。
2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)

一、知识梳理1.三角形面积公式:S 2024年中考数学二次函数中三角形面积最值及平行四边形存在性问题(必考知识点)=21×底×高2.平行四边形的性质:对边相等、对角相等、对角线互相平分3.判别式法求最值:通过判别式判断二次方程的根的情况,进而求出最值二、问题分析1.三角形面积最值存在性问题:∙利用二次函数的性质和对称性,找到合适的底和高,计算三角形的面积;∙设置关于底和高的二次方程,利用判别式判断方程的根的情况,进而求出面积的最值。
2.平行四边形存在性问题:∙利用二次函数的对称性和性质,找到满足平行四边形性质的点;∙利用平行四边形的性质证明这些点构成平行四边形。
三、例题解析【例1】已知抛物线y=x2−2x和直线y=2x+b相交于A、B两点,且∠AOB=90°,其中O为坐标原点。
求△AOB的面积。
【答案】联立方程组:y=x2−2x,y=2x+b.消去y得:x2−4x−b=0.由于直线与抛物线有两个交点,所以判别式Δ>0:Δ=16+4b>0⇒b>−4.设交点A、B坐标分别为(x1,y1)和(x2,y2),由韦达定理得:x1+x2=4,x1x2=−b.由于∠AOB=90,所以x1x2+y1y2=0。
代入y1=2x1+b和y2=2x2+b,解得:−b+(2x1+b)(2x2+b)=0.化简得:−b−4b+8b+b2=0⇒b2+3b=0.解得:b=−3或b=0。
当b=0时,A、B坐标分别为(0,0)和(4,8),点A和点O重合,不符合条件。
因此,b =−3,代入方程组得A (1,-1),B (3,3)。
所以,△AOB 的面积为:S =21×∣O A ∣×∣O B ∣=21×2211)()(-+×2233)()(+=21×2×18=3.【例2】抛物线6221y 2--=x x 与x 轴相交于点A 、点B ,与y 轴相交于点C 。
专题13 二次函数中角度、面积及平行四边形存在性问题(解析版)

专题13 二次函数中角度、面积及平行四边形存在性问题题型一、角度及平行四边形存在性问题1. (2019·湖北咸宁中考)如图,在平面直角坐标系中,直线221+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=221经过A ,B 两点且与x 轴的负半轴交于点C . (1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当∠ABD =2∠BAC 时,求点D 的坐标;(3)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【答案】见解析.【解析】解:(1)在122y x =-+中,y =0时,x =4;x =0时,y =2, 即A (4,0),B (0,2),将A 、B 两点坐标代入抛物线解析式,得:8402b c c -++=⎧⎨=⎩,解得:b =32,c =2, 即抛物线解析式为:213222y x x =-++. (2)如图,过点B 作BE ∥x 轴交抛物线于点E ,过D 作DF ⊥BE 于F ,∴∠BAC =∠ABE ,∵∠ABD =2∠BAC , ∴∠ABD =2∠ABE , 即∠DBE =∠BAC ,设点D 的坐标为(x ,213222x x -++),则BF =x ,DF =21322x x -+, ∵tan ∠DBE =DF BF , tan ∠BAC =OBOA,∴DF BF =OB OA,即2132224x x x -+=, 解得:x =0(舍)或x =2, 即点D 的坐标为:(2,3). (3)B (0,2),O (0,0)设E 点坐标为(m ,122m -+),F 点坐标为(n ,213222n n -++), ①若四边形BOEF 是平行四边形,则2113222222m n m n n =⎧⎪⎨-+=-++⎪⎩,解得:22m n =⎧⎨=⎩, 即E 点坐标为(2,1);②若四边形BOFE 是平行四边形时,则2131222222m n n n m =⎧⎪⎨-++=-+⎪⎩,解得:2222m m n n ⎧⎧=+=-⎪⎪⎨⎨=+=-⎪⎪⎩⎩ 即E点坐标为(2+12-1+; ③若四边形BEOF 是平行四边形时,则2=0131222222m n n n m +⎧⎪⎨-++-+=⎪⎩,解得:2222m m n n ⎧⎧=-+=--⎪⎪⎨⎨=-=+⎪⎪⎩⎩, 即E 点坐标为:(2--3)或(2-+3;综上所述,E 点坐标为:(2,1),(2+1,(2-,1,(2--3),(2-+3.题型二、面积、平行四边形存在性问题2. (2019·山西中考)抛物线y =ax 2+bx +6经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4). 连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)当△BCD 的面积是△AOC 面积的34时,求m 的值. (3)在(2)条件下,若M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形. 若存在,请直接写出M 点坐标,若不存在,请说明理由. 【答案】见解析.【解析】解:(1)将A 、B 两点坐标代入y =ax 2+bx +6得: 426016460a b a b -+=⎧⎨++=⎩,解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为:233642y x x =-++.(2)过D 作DE ⊥x 轴于E ,交直线BC 与G ,过C 作CF ⊥DE 交ED 的延长线于F , 如图所示,由题意知A (-2,0),即OA =2,C (0,6),即OC =6,∴△AOC 的面积为:1122OA OC ⋅=×2×6=6,∵△BCD 的面积是△AOC 面积的34, ∴△BCD 的面积为:92, 设直线BC 的解析式为:y =kx +n ,由题意知, 4k +n =0,n =6,解得:k =32-,n =6,即直线BC 的解析式为:y =32-x +6,∴点G 的坐标为(m ,32-m +6),∴DG =233366422m m m ⎛⎫-++--+ ⎪⎝⎭=2334m m -+, ∴S △BCD =12DG OB ⋅=2362m m -+, 即2362m m -+=92,解得:m =1(舍)或m =3,即m 的值为3. (3)存在.由(2)知,B (4,0),D (3,154), 设M (x ,0),N (n ,y ),其中y =233642n n -++①当四边形BDMN 是平行四边形时,有:43154x ny +=+⎧⎪⎨-=⎪⎩,即21533=6442n n --++,解得:n=1或n=1,x即M0),0); ②当四边形BDNM 是平行四边形时, 有:43154n xy +=+⎧⎪⎨=⎪⎩,即21533=6442n n -++,解得:n =-1或n =3,x =0或4(舍),即M 点坐标为(0,0);③当四边形BNDM 是平行四边形时, 有:43154n xy +=+⎧⎪⎨=⎪⎩,即21533=6442n n -++,解得:n =-1或n =3,x =8或4(舍),即M 点坐标为(8,0);综上所述,点M 的坐标为:0),0),(0,0),(8,0).3. (2019·黑龙江哈尔滨中考)如图,在平面直角坐标系中,点O 为坐标原点,直线y =34x +4与x 轴交于点A ,与y 轴交于点B ,直线BC 与x 轴交于点C ,且点C 与点A 关于y 轴对称;(1)求直线BC 的解析式;(2)点P 为线段AB 上一点,点Q 为线段BC 上一点,BQ =AP ,连接PQ ,设点P 的横坐标为t ,△PBQ 的面积为S (S ≠0),求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围).【解析】解:(1)在y =34x +4中,x =0时,y =4;y =0时,x =-3, 即B (0,4),A (-3,0), ∵点A 与点C 关于y 轴对称, ∴点C 的坐标为(3,0), 设直线BC 解析式为:y =kx +b ,430b k b =⎧⎨+=⎩,解得:443b k =⎧⎪⎨=-⎪⎩,即直线BC 的解析式为:y =43-x +4.(2)如图,过点P 作PM ∥y 轴交x 轴于M ,过点Q 作QN ⊥AB 于N ,过C 作CH ⊥AB 于H ,由勾股定理得:AB=BC=5,CH=245,∵P点横坐标为t,∴点P的坐标为(t,43t+4),即AM=3+t,∵PM∥OB,∴AP AMAB AO=,即353AP t+=,∴AP=()533t+=553t+,∴PB=53t -,∵BQ=AP=553t +,∴BQ NQBC CH=,即5532455tNQ+=,∴NQ=24855t+,∴S=15248 2355t t ⎛⎫⎛⎫-+⎪⎪⎝⎭⎝⎭=2433 32t⎛⎫-++⎪⎝⎭;4. (2019·四川达州中考)如图1,已知抛物线y=-x2+bx+c过点A(1,0),B(-3,0). (1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2,抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m-n的最大值.【答案】见解析.【解析】解:(1)把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,01093b cb c=-++⎧⎨=--+⎩,解得b=﹣2,c=3,∴y=﹣x2﹣2x+3=-(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)由(1)知:抛物线对称轴为x=﹣1,设抛物线对称轴与x轴交于点H,H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH=CHOH=4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO时,tan(∠CAO+∠CDO)=tan∠COH=4,如下图所示,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴AC AOAD AC=,∵AC =AO =1, ∴AD =20,OD =19, ∴D (﹣19,0);当点D 在对称轴右侧时,点D 关于直线x =1的对称点D '的坐标为(17,0), ∴点D 的坐标为(﹣19,0)或(17,0);(3)设P (a ,﹣a 2﹣2a +3),设直线PA 的解析式为:y =kx +b , 将P (a ,﹣a 2﹣2a +3),A (1,0)代入y =kx +b ,2230ak b a a k b ⎧+=--+⎨+=⎩, 解得,k =﹣a ﹣3,b =a +3, ∴y =(﹣a ﹣3)x +a +3, 当x =0时,y =a +3, ∴N (0,a +3), 如下图所示,∵m =S △BPM =S △BPA ﹣S 四边形BMNO ﹣S △AON ,n =S △EMN =S △EBO ﹣S 四边形BMNO , ∴m -n =S △BPA ﹣S △EBO ﹣S △AON=12×4×(﹣a 2﹣2a +3)﹣12×3×3﹣12×1×(a +3) =﹣2(a +98)2+8132,∴当a =﹣98时,m -n 有最大值8132.题型三、二次函数有关对称性及自定义函数最值研究5.(2019·湖南长沙中考)已知抛物线22(2)(2020)y x b x c =-+-+-(b ,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围. 【答案】见解析.【解析】解:(1)由题意知,抛物线的解析式为:()2211y x =--+,=2241x x -+-,∴b -2=4,c -2020=-1, ∴b =6,c =2019.(2)设抛物线上关于原点对称不重合的两点坐标为:(x ,y )、(-x ,-y ), 代入解析式有:222(2)(2020)2(2)(2020)y x b x c y x b x c ⎧=-+-+-⎨-=---+-⎩, ∴()24220200x c -+-=, 即c =2x 2+2020, ∴c ≥2020.6. (2019·山东临沂中考)一次函数y =kx +4与二次函数y =ax 2+c 的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点 (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图像相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 【答案】见解析. 【解析】解:(1)由题意得,k +4=-2, 解得k =-2,二次函数顶点为(0,4), ∴c =4,把(1,2)代入二次函数表达式得:a +c =2, 解得a =-2(2)由(1)得二次函数解析式为y =-2x 2+4,令y =m ,得2x 2+m -4=0即x=±,设B ,C 两点的坐标分别为(x 1,m )(x 2,m ),则12x x + ∴W =OA 2+BC 2=2224-m m 4=m -2m+8=m-172+⨯+() ∴当m =1时,W 取得最小值7.。
2024年中考数学二次函数压轴题专题10平行四边形的存在性问题(学生版)

专题10平行四边形的存在性问题_、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1) 对应边平行且相等;(2) 对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:x A -x B =x D - x cy A -y B = yD-y c可以理解为点B 移动到点A,点。
移动到点O,移动路径完全相同.(2)对角线互相平分转化为:\ z 乙,、2 一 2可以理解为AC 的中点也是BQ 的中点.D【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:X A~X B =X D~ X C -y B = yD-y c + x c = + X by A + % = % + 为x A +x c ^x B +x D2 _ 2 \X A +X C=X B +X D总 + % 二 % + 北 U a + %=% + %、2 — 2当AC 和BQ 为对角线时,结果可简记为:A+C = B + D (各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系 中的4个点A 、B 、。
、D 满足"A+O8+ZT,则四边形ABCQ 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCQ 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化, 故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1) 四边形A8CQ 是平行四边形:AC. BQ 一定是对角线.(2) 以A 、B 、。
、。
四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1, 2) B (5, 3) C (3, 5),在坐标系内确定点。
使得以A 、B 、。
、。
四个点为顶点的四边形是 平行四边形.思路1:利用对角线互相平分,分类讨论:设。
二次函数平行四边形存在性问题例题

二次函数平行四边形存在性问题例题例题:已知二次函数f(x) = ax² + bx + c,其中a ≠ 0,现给定两点A(x₁, y₁)和B(x₂, y₂),求是否存在一个平行四边形ABCD,使得AC和BD都平行于直线y = kx + m。
解题思路:首先,我们需要确定k和m的值,因为平行四边形ABCD中的AC和BD必须平行于直线y = kx + m。
根据平行的性质,我们可以得到AC和BD的斜率都为k。
所以,我们首先需要求得二次函数f(x)的斜率。
二次函数f(x) = ax² + bx + c的斜率可以通过求导得到。
将f(x)对x求导,得到f'(x) = 2ax + b。
所以,二次函数f(x)的斜率k =f'(x)处的斜率 = 2ax + b。
在已知的两点A(x₁, y₁)和B(x₂, y₂)处,可以得到f(x₁) = ax₁² +bx₁ + c = y₁和f(x₂) = ax₂² + bx₂ + c = y₂。
我们可以根据这两个条件,列出方程组,并通过求解方程组来求得平行四边形ABCD的存在性。
方程组如下所示:1. ax₁² + bx₁ + c = y₁2. ax₂² + bx₂ + c = y₂为了方便计算,可以移项,得到以下形式:1'. ax₁² + bx₁ + c - y₁ = 02'. ax₂² + bx₂ + c - y₂ = 0现在我们需要判断是否存在一个平行四边形ABCD,使得AC和BD都平行于直线y = kx + m。
根据平行四边形的性质,可以得知AC的斜率等于k,即AC的斜率为2ax + b,同样,BD的斜率也等于k。
所以我们需要判断是否存在一组x₁、y₁、x₂、y₂的值,使得如下两个方程成立:3. 2ax₁ + b = k4. 2ax₂ + b = k将方程3和方程4化简,得到如下形式:3'. 2ax₁ + b - k = 04'. 2ax₂ + b - k = 0现在我们有了方程2'和方程4',我们可以组成如下新的方程组:2'. ax₂² + bx₂ + c - y₂ = 04'. 2ax₂ + b - k = 0这是一个二次函数与一次函数的方程组,我们可以通过求解这个方程组来判断是否存在平行四边形ABCD。
2021年中考二轮复习 二次函数与特殊平行四边形存在性问题探讨(含答案)

二次函数与特殊平行四边形存在性问题探讨【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。
它们的判定方法如下:矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。
如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。
(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。
(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。
【类型1】二次函数与矩形存在型问题【例1】.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式训练】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求出点A的坐标和点D的横坐标;(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.【类型2】二次函数与矩形存在型问题【例2】如图,抛物线y=ax2+bx+52过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E 为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【变式训练】如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC 向右平移74个单位得到直线l ,直线l 交对称轴右侧的抛物线于点Q ,连接PQ ,点R 为直线BC 上的一动点,请问在在平面直角坐标系内是否存在一点T ,使得四边形PQTR 为菱形,若存在,请直接写出点T 的坐标;若不存在,请说明理由.【类型3】二次函数与正方形存在型问题【例3】在平面直角坐标系中,抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【变式训练】.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点(1,0)A -,与直线y x c =-+交于B 、C 两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标.【巩固练习】1.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.3.如图,抛物线y =x 2+2x 的顶点为A ,与x 轴交于B 、C 两点(点B 在点C 的左侧). (1)请求出A 、B 、C 三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D ,与y 轴交于点E ,F 为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.【答案与解析】【类型1】二次函数与矩形存在型问题【例1】.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)直线y=x﹣3与坐标轴交于A、B两点,则A(3,0)B(0,﹣3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y=x2﹣x﹣3…①,则:C(6,0);(2)符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为﹣,所在的直线方程为:y=﹣x﹣3…②,联立方程①、②可求得:x=4﹣4,即:点M的横坐标4﹣4;当∠M′BE=75°时,∠OBM′=120°,直线M′B的k值为﹣,其方程为y=﹣x﹣3,将M′B所在的方程与抛物线表达式联立,解得:x=,故:即:点M的横坐标4﹣4或.(3)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=m2﹣m﹣3…③,P′C所在直线的k1=,P′B所在的直线k2=,则:k1•k2=﹣1…④,③、④联立得:=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q的坐标为:(2,8)或(﹣16,29).【变式训练】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求出点A的坐标和点D的横坐标;(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4;(2)由(1)知,点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(3)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=﹣1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).【类型2】二次函数与矩形存在型问题【例2】如图,抛物线y=ax2+bx+52过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E 为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解析】(1)∵抛物线y=ax2+bx+52过点A(1,0),B(5,0),∴0=a+b+5 20=25a+5b+5 2∴a=12,b=﹣3∴解析式y=12x2﹣3x+52(2)当y=0,则0=12x2﹣3x+52∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x =3,顶点坐标(3,﹣2),AB =4∵抛物线与y 轴相交于点C .∴C (0,52) 如图1①如AB 为菱形的边,则EF ∥AB ,EF =AB =4,且E 的横坐标为3∴F 的横坐标为7或﹣1∵AE =AB =4,AM =2,EM ⊥AB∴EM =2√3∴F (7,2√3),或(﹣1,2√3)∴当x =7,y =12×49﹣7×3+52=6∴点F 到二次函数图象的垂直距离6﹣2√3②如AB 为对角线,如图2∵AEBF 是菱形,AF =BF =4∴AB ⊥EF ,EM =MF =2√3∴F (3,﹣2√3)∴点F到二次函数图象的垂直距离﹣2+2√3(3)当F(3,﹣2√3)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2√3∴AP=6在Rt△ANP中,AN=√36+12=4√3∴AQ+BQ+FQ的和最短值为4√3.【变式训练】如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC 向右平移74个单位得到直线l ,直线l 交对称轴右侧的抛物线于点Q ,连接PQ ,点R 为直线BC 上的一动点,请问在在平面直角坐标系内是否存在一点T ,使得四边形PQTR 为菱形,若存在,请直接写出点T 的坐标;若不存在,请说明理由.【分析】(1)将A (﹣1,0)、B (4,0)代入抛物线公式即可求得a ,b .(2)过P 点做平行于直线BC 的直线K ,当K 与抛物线恰有一个交点时,△PBC 面积最大,求得此时的P 点坐标.再过P 做垂直于直线BC 的直线k ,求得k 与直线BC 的交点,求得交点后发现,此时恰巧交点时C ,|BC |即为△PBC 的高,再利用三角形面积公式即可求解.(3)考查菱形的性质.菱形是一个极具对称性的图形,在进行求解时,对角线互相垂直平分.因此,两个相对点的坐标中点也是另外两个相对点的坐标中点.同时,利用菱形的四条边长相等进行求解.【解析】(1)将A (﹣1,0)、B (4,0)代入抛物线公式,如下:{0=a −b +40=16a +4b +4, 求得{a =−1b =3. 抛物线解析式为:y =﹣x 2+3x +4.(2)设P 到直线BC 的距离为d ,P 点坐标为(x ,﹣x 2+3x +4)(0<x <4),∵y =﹣x 2+3x +4交y 轴于点C ,令x =0,∴y =4,∴C (0,4),由B (4,0),C (0,4)两点求得直线BC 的解析式为:y +x ﹣4=0.做直线BC 的平行线K :y =﹣x +m ,因为K 与BC 平行,我们将K 平移,根据题意,点P 是直线BC 上方抛物线上的一点,∴随着K 平行移动,以BC 为底的△PBC 的高d 在逐渐增大,当K 与抛物线y =﹣x 2+3x +4恰有一个交点时,此时以BC 为底的△PBC 的高d 最大,即此时△PBC 面积最大. ∵此时K :y =﹣x +m 与抛物线y =﹣x 2+3x +4相交,且仅有一个交点,∴﹣x +m =﹣x 2+3x +4,m =8.∴直线K :y =﹣x +8.此时求K 和抛物线的交点为:﹣x +8=﹣x 2+3x +4,解得x =2,将x =2代入直线K :y =﹣x +8,解得y =6.因此P (2,6).现在我们来求P 到直线BC 的距离,即△PBC 的高d :过P 作垂直于BC 的直线k :y =x +m .∵P 在直线k 上,∴6=2+m ,∴m =4,直线k =x +4.直线K 与直线k 的交点为:{y =−x +4y =x +4, 解得交点坐标(0,4),即交点为C 点.因此的△PBC 的高d 即为B 点和C 点两点之间的距离,∴d =|BC |=√(2−0)2+(6−4)2=2√2.在△PBC 中,∵|BC |=4√2,△PBC 的面积的最大值S △PBC =12|BC |•d =12×4√2×2√2=8.(3)存在.直线BC 向右平移74个单位得到直线l , ∴l :y =﹣(x −74)+4=﹣x +234.{y =−x +234y =−x 2+3x +4,解得{x 1=72x 2=12. 二次函数y =﹣x 2+3x +4对称轴为x =32,∵直线l 交对称轴右侧的抛物线于点Q ,∴x =72,代入y =﹣x +234=94.∴Q (72,94). 设T (a ,b ).∵R 为直线BC 上的一动点,∴设R (x ,﹣x +4).在菱形中PQTR 中,|PR |=|QP |,(2﹣x )2+([6﹣(﹣x +4)]2=(2−72)2+(6−94)2解得x =±√2668, 当x =√2668时,点R 的坐标(√2668,4−√2668),此时T 点坐标为:T (√2668+32,14−√2668). 当x =−√2668时,R (−√2668,4+√2668),此时T (−√2668+32,14+√2668) 综上所述:T 存在两点,分别为:(√2668+32,14−√2668)或(−√2668+32,14+√2668). 【类型3】二次函数与正方形存在型问题【例3】在平面直角坐标系中,抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)根据抛物线解析式中a =−13和交x 轴于A (﹣3,0),B (4,0)两点,利用交点式可得抛物线的解析式;(2)①如图1,先利用待定系数法求直线BC 的解析式,联立方程可得交点E 的坐标,根据M (m ,0),且MH ⊥x 轴,表示点G (m ,34m +94),F (m ,−13m 2+13m +4),由S △EFG =59S △OEG ,列方程可得结论;②存在,根据正方形的性质得:FH =EF ,∠EFH =∠FHP =∠HPE =90°,同理根据M (m ,0),得H (m ,﹣m +4),F (m ,−13m 2+13m +4),分两种情况:F 在EP 的左侧,在EP 的右侧,根据EF =FH ,列方程可得结论.【解析】(1)∵抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点, ∴y =−13(x +3)(x ﹣4)=−13x 2+13x +4;(2)①如图1,∵B (4,0),C (0,4),∴设BC 的解析式为:y =kx +n ,则{4k +n =0n =4,解得{k =−1n =4, ∴BC 的解析式为:y =﹣x +4,∴﹣x +4=34x +94,解得:x =1,∴E (1,3),∵M (m ,0),且MH ⊥x 轴,∴G (m ,34m +94),F (m ,−13m 2+13m +4), ∵S △EFG =59S △OEG ,∴12FG ×(x E −x F )=59×12ON (x E ﹣x G ), [(−13m 2+13m +4)﹣(34m +94)](1﹣m )=59×94(1−m),解得:m 1=34,m 2=﹣2;②存在,由①知:E (1,3),∵四边形EFHP 是正方形,∴FH =EF ,∠EFH =∠FHP =∠HPE =90°, ∵M (m ,0),且MH ⊥x 轴,∴H (m ,﹣m +4),F (m ,−13m 2+13m +4), 分两种情况:i )当﹣3≤m <1时,如图2,点F 在EP 的左侧,∴FH =(﹣m +4)﹣(−13m 2+13m +4)=13m 2−43m , ∵EF =FH ,∴13m 2−43m =1−m ,解得:m 1=1+√132(舍),m 2=1−√132,∴H (1−√132,7+√132),∴P (1,7+√132),ii )当1<m <4时,点F 在PE 的右边,如图3,同理得−13m 2+43m =m ﹣1,解得:m 1=1+√132,m 2=1−√132(舍), 同理得P (1,7−√132);综上,点P 的坐标为:(1,7+√132)或(1,7−√132). 【变式训练】.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点(1,0)A -,与直线y x c =-+交于B 、C 两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标.【解析】(1)抛物线23y ax bx =++经过点C ,则点C 坐标为(0,3),代入y x c =-+可得3c =,则直线BC 的解析式为3y x =-+.直线BC 经过点B ,则点B 坐标为(3,0)将点(1,0)A -、(3,0)B 代入抛物线23y ax bx =++解得1a =-,2b =∴抛物线的解析式为2y x 2x 3=-++.(2)抛物线的对称轴为12b x a=-=. ∴四边形DEPQ 为正方形,∴PQ PE =,//PQ x 轴.∴点Q 与点P 关于直线1x =对称.设点2(,23)P t t t -++,则2(1)PQ t =-,223PE t t =-++.∴22(1)23t t t -=-++,解得:t =t =t 2=2t =去)当t =)12P ,当t 2=()2P 22-,∴四边形DEPQ 为正方形时点P 的坐标为)2和()22-(3)点P 的横坐标为2或-1 ∴PQF △是以点P 为顶角顶点的等腰直角三角形∴∴QPF=∴PEB=90°∴//PQ x 轴∴点Q 与点P 关于直线1x =对称.设点()2,23P t t t -++,则2(1)PQ t =-,3(),F t t -+∴()2223(3)3PF t t t t t =-++--+=-+. ∴PQ PF =,∴22(1)||3t t t -=-+∣,解得:2t =或t 1=-或t =t =综上所述,点P 的横坐标为2或-1 【巩固练习】 1.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.【答案】(1)y =﹣x 2﹣2x +3;(2)存在.P ,32);(3)P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【方法引导】(1)利用待定系数法直接将B 、C 两点直接代入y =x 2+bx+c 求解b ,c 的值即可得抛物线解析式;(2)利用菱形对角线的性质及折叠的性质可以判断P 点的纵坐标为﹣32,令y =﹣32即可得x 2﹣2x ﹣3=﹣32,解该方程即可确定P 点坐标;(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P 作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ABCP 的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.【解析】(1)∵C点坐标为(0,3),∴y=﹣x2+bx+3,把A(﹣3,0)代入上式得,0=9﹣3b+3,解得,b=﹣2,∴该二次函数解析式为:y=﹣x2﹣2x+3;(2)存在.如图1,设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E,∴OE=CE=32,令﹣x2﹣2x+3=32,解得,x1,x2=22-+(不合题意,舍去).∴P,32).(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,设P (x ,﹣x 2﹣2x+3),设直线AC 的解析式为:y =kx+t ,则303k t t -+=⎧⎨=⎩,解得:13k t =⎧⎨=⎩, ∴直线AC 的解析式为y =x+3,则Q 点的坐标为(x ,x+3),当0=﹣x 2﹣2x+3,解得:x 1=1,x 2=﹣3,∴AO =3,OB =1,则AB =4,S 四边形ABCP =S △ABC +S △APQ +S △CPQ =12AB•OC+12QP•OF+12QP•AF =12×4×3+12[(﹣x 2﹣2x+3)﹣(x+3)]×3 =﹣32(x+32)2+758. 当x =﹣32时,四边形ABCP 的面积最大, 此时P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【思路引导】此题考查了二次函数综合题,需要掌握二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】(1)当y=0时,13x −43=0,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得{16a −12+c =0−−32a =32, 解得{a =1c =−4,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PF =PB PE .∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴Q x+P x2=F x+E x2,Q y+P y2=F y+E y2,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴Q x+P x2=F x+E x2,Q y+P y2=F y+E y2,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).3.如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.解:(1)∵抛物线y=x2+2x与x轴交于B、C两点,∴0=x2+2x,∴x1=0,x2=﹣2,∴点B(﹣2,0),点C(0,0),∵y=x2+2x=(x+1)2﹣1,∴点A(﹣1,﹣1);(2)设平移后抛物线的表达式为:y=(x+1﹣m)2﹣1+n(m>1),∴点D(m﹣1,﹣1+n),∵y=(x+1﹣m)2﹣1+n=x2+2×(1﹣m)x+m2﹣2m+n,∴点E(0,m2﹣2m+n),Ⅰ、如图1,当点D在点A的下方时,过点A作AM⊥y轴于N,过点D作DM⊥AM于M,∴∠ANE=∠AMD=90°,∵以A、D、E、F为顶点的四边形是正方形,∴AE=AD,∠EAD=90°,∴∠EAN+∠DAM=90°,∵∠AEN+∠EAN=90°,∴∠AEN=∠DAM,∴△AEN≌△DAM(AAS),∴AN=DM,EN=AM,∴1=﹣1﹣(﹣1+n),m﹣1﹣(﹣1)=m2﹣2m+n﹣(﹣1),∴n=﹣1,m=3,∴平移后抛物线的表达式为:y=(x﹣2)2﹣2;Ⅱ、如图2,点D在点A上方时,过点D作DM⊥y轴于N,过点A作AM⊥DM于M,同理可证△EDN≌△DAM,∴DN=AM,EN=DM,∴m﹣1=﹣1+n+1,m2﹣2m+n﹣(﹣1+n)=m﹣1+1,∴m=,n=,∴平移后抛物线的表达式为:y=(x﹣)2﹣,Ⅲ、当∠AED=90°时,同理可求:y=(x﹣1)2﹣1;综上所述:平移后抛物线的表达式为:y=(x﹣2)2﹣2或y=(x﹣)2﹣或y=(x﹣1)2﹣1.。
二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。
巧解二次函数中平行四边形存在性问题

巧解二次函数中平行四边形存在性问题近年来,二次函数中平行四边形存在性问题一直是中考的热点问题。
这类题目需要学生综合运用多种知识和技能,因此对于学生的分析和解决问题的能力要求很高。
常规的解题方法是先画出平行四边形,然后利用“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决问题。
但是,如果考虑不周,很容易漏解。
为了解决这一问题,可以借助探究平行四边形顶点坐标公式来解决这类题。
在数学课标和现行初中数学教材中,没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式。
因此,我们可以帮助学生探究这些公式,将其作为解题的切入点。
线段的中点坐标公式可以通过平面直角坐标系中的点A和点B的坐标来计算。
具体来说,如果点A的坐标是(x1,y1),点B的坐标是(x2,y2),那么线段AB的中点坐标为((x1+x2)/2,(y1+y2)/2)。
这个公式可以通过图示来证明。
平行四边形顶点坐标公式可以通过平行四边形的对角线两端点的横坐标、纵坐标之和分别相等来计算。
具体来说,如果平行四边形ABCD的顶点坐标分别为A(xA,yA)、B(xB,yB)、C(xC,yC)、D(xD,yD),那么xA+xC=xB+xD,yA+yC=yB+yD。
这个公式可以通过图示来证明。
在解决平行四边形存在性问题时,可以先确定三个定点A、B、C,然后再找一个动点D,使得以A、B、C、D为顶点的四边形是平行四边形。
根据不同的情况,可以得到不同的答案。
这个方法可以帮助学生更好地理解平行四边形的存在性问题,提高他们的解题能力。
例1已知抛物线$y=x^2-2x+a(a<0)$与$y$轴相交于点A,顶点为M。
直线$y=\frac{1}{x-a}$分别与$x$轴、$y$轴相交于$B$、$C$两点,并且与直线$AM$相交于点N。
1) 填空:试用含$a$的代数式分别表示点$M$与$N$的坐标,则$M(1,a-1)$,$N(a,-a)$;2) 如图4,将△$NAC$沿$y$轴翻折,若点$N$的对应点$N′$恰好落在抛物线上,$AN′$与$x$轴交于点$D$,连接$CD$,求$a$的值和四边形$ADCN$的面积;3) 在抛物线$y=x^2-2x+a(a<0)$上是否存在一点$P$,使得以$P$、$A$、$C$、$N$为顶点的四边形是平行四边形?若存在,求出点$P$的坐标;若不存在,试说明理由。