数学人教版九年级上册二次函数中的平行四边形存在性问题(两定两动型)
(最新整理)二次函数与平行四边形存在性问题

全部内容。
学科年级上课时间月日 _ _ :00-- __ :00名称课题二次函数与平行四边形的存在问题名称教学重点教学过程【知识梳理】1、平行四边形的性质是什么?2、在坐标系中,平行四边形又有哪些性质?3、解决问题的策略:①根据要求画出满足要求的图形,然后根据几何性质计算未知量②分类讨论,根据对角线“共中点”的性质直接计算。
1.(2011•盘锦)如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点.(1)求这个二次函数解析式;(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.2.(2010•陕西)在平面直角坐标系中,抛物线A(﹣1,0),B(3,0),C(0,﹣1)三点.(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标.3.(2011•阜新)如图,抛物线y=x2+x﹣与x轴相交于A、B两点,顶点为P.(1)求点A、B的坐标;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积,若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形,直接写出所有符合条件的点F的坐标.4.(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线交二次函数图象于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.5.(2011•淄博)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且MN=,若M点的横坐标为m,过点M作x轴的垂线与抛物线交于点P,过点N 作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由.6.(2011•内江)如图抛物线y=x2﹣mx+n与x轴交于A、B两点,与y轴交于点C(0.﹣1).且对称抽x=l.(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).7.(2011•凉山州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN 的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F的坐标,若不存在,请说明理由.8.(2011•衡阳)已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形.9.(2010•龙岩)如图,抛物线交x轴于点A(﹣2,0),点B(4,0),交y轴于点C(0,﹣4).(1)求抛物线的解析式,并写出顶点D的坐标;(2)若直线y=﹣x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;(3)设P为直线MN上的动点,过P作PF∥ED交直线MN下方的抛物线于点F.问:在直线MN上是否存在点P,使得以P、E、D、F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.10.(2010•河南)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.11.(2010•包头)已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,﹣2),直线x=m(m>2)与x轴交于点D.(1)求二次函数的解析式;(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.13.(2005•福州)已知:抛物线y=x2-2x-3与y轴交于C点,C点关于抛物线对称轴的对称点为C/点。
二次函数与平行四边形存在性问题专题讲义(对点法——一招制胜)

二次函数与平行四边形存在性问题专题讲义一、知识链接:1.坐标系中的点的平移点P(x,y)的平移方式平移后点的坐标规律沿x轴平移向右平移a个单位长度(x+a,y)左右平移,横坐标左减右加,纵坐标不变向左平移a个单位长度(x-a,y)沿y轴平移向上平移b个单位长度(x,y+b)上下平移,横坐标不变,纵坐标上加下减向下平移b个单位长度(x,y-b)2.图形的平移:从本质上讲就是图形上点的平移例1:如下图,线段AB平移得到线段AB',已知A(-2,2),B(-3,-1)B'(3,1)则:向右平移6个单位长度芳V1)向上平移2个单位长度例2•在平行四边形ABCD中,其中已知A(-1,0),B(1,-2),C(3,1),则D点坐标?向右2个单位长度(仁-2)C(31)向上3个单位长度向右2个单位长度(-1,0)D(?,?)向上3个单位长度二、知识迁移例3:如图,在平面直角坐标系中,口ABCD的顶点坐标分别为A(x,y)、B(x,y)、1122点A的坐标是三、对点法①若点A 与点B 相对,则点D 与点C 相对 ②若点A 与点D 相对,则点B 与点C 相对 ③若点A 与点C 相对,则点B 与点D 相对四、典型例题学习五、小试牛刀1. 抛物线中的平行四边形存在性问题(“三定一动”)•.•AB〃CD,AB=CD.•.边CD 可看成由边BA 向右、向上平移n 个单位长度得丿|什平移(爲"牛单位矗U I 兀4J 4RfV1,、|;RT 书乐-叩个单位中厂V”"\ £>1不2」2丿向计移(旳-忖个单位蟲/即:平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐⑶4,>+4)例4.如图,平面直角坐标系中,已知A(-l,0),B(l,-2),C(3,l)点D 是平面内一动点,若以点 A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 的坐标是思路点拨:先求出A(-1,0)B(2,0)C(0,2)设点M(x,y)①点A与点B相对②点A与点C相对③点A与点M相对—1+2二x二0+0二2+y=—1+0二x=30+2二0+、二—1+x二x二0+y二0+7二例5.已知,抛物线y二-X2+x+2与X轴的交点为A、B,与y轴的交点为C,点M是平面内一点,判断有几个位置能使以点M、A、B、C为顶点的四边形是平行四边形,请写出相应的坐•••M(1,-2)或(-3,2)或(3,2)2.抛物线中的平行四边形存在性问题(“两定两动”)1例6•如图,平面直角坐标系中,y=—-x2+x与x轴相交于点B(4,0),点Q在抛物线的对称4轴上,点P在抛物线上,且以点0、B、Q、P为顶点的四边形是平行四边形,写出相应的点P 的坐标.线上的动点,点Q是直线y二-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点变试题:2.如图,平面直角坐标中,y二X2-2x-3与X轴相交于点A(-1,O),点C的坐标是(2,-3),点P抛物线上的动点,点Q是x轴上的动点,判断有几个位置能使以点A、C、P、Q为顶点的四边形为平行四边形,写出相应的点Q的坐标.六、方法分享二次函数综合问题中,平行四边形的存在性问题,无论是“三定一动”,还是“两定两动”,甚至是“四动”问题,能够一招制胜的方法就是“对点法”,需要分三种情况,得出三个方程组求解。
中考数学专题复习 二次函数背景下的平行四边形的存在性问题

专题二二次函数背景下的平行四边形的存在性问题知识梳理平行四边形的存在性问题是分类讨论中的一大难点。
此类题目多在直角坐标平面内,辅以二次函数为背景.一般会根据两个或者三个定点,在某个特定的位置上找另两个顶点或者第四个顶点,这样的顶点往往不止一个,需要仔细考虑解题策略,如:若已知两点构成的线段是平行四边形的一边或者对角线.如何利用平行四边形的性质确定出其他的顶点的位置,否则在分类时就容易漏解.【典型例题】【例1】如图.抛物线y= ax2 +bx+c与y轴正半轴交于点C,与x轴交于点A(1,0)、B (4,0),∠OCA=∠OBC.(1)求抛物线的解析式;(2)在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标.[思路分析]本题在平行四边形分类讨论中已经有三个点是定点,则第四个顶点可利用平行四边形两组对边分别平行的方法去找,AC,AB,BC中任意两边可作为平行四边形的邻边,分别作这两邻边的平行线,它们的交点就是所求的平行四边形的第四个顶点.解:当CA和CB为平行四边形的邻边时,M在第四象限,BH=AO=1,M,=−2所以M3(5, −2)综上所述:M点的坐标为M1(3,2)或M2(−3,2)或M3(5, −2).[点评]M1,M2的坐标相对易求得,而M3的坐标利用平行四边形的性质:对角顶点到对角线距离相等或者三角形全等求得M3的坐标.【例2】如图,抛物线y=ax2+ 2ax+3与y轴交于点C,与x轴交于A、B两点(点A和点B分别在x轴的正、负半轴上),cot∠OCA = 3.(1)求抛物线的解析式;(2)平行于x轴的直线l与抛物线交于点E, F(点F在点E的左边),如果四边形OBFE是平行四边形,求点E的坐标.[思路分析]由题意得BO不可能是平行四边形的对角线,所以只可能OB = EF =3,又因为EF被对称轴平分,根据对称轴的方程便能求得点E的坐标[点评]本题借助于抛物线的一条重要性质:抛物线关于对称轴对称.因为EF // AB,所以E,F关于对称轴对称,同时线段EF被对称轴垂直平分.【例3】如图,抛物线y= ax2+ bx +3与y轴交于点C,与x轴交于A, B两点,tan∠OCA =1 3S△ABC = 6.(1)求点B的坐标;解:(2)求抛物线的解析式及顶点坐标;(3)若E 点在x 轴上,F 点在抛物线上,如果A, C, E, F 构成平行四边形,写出点E 的坐标。
2024年九年级中考数学专题+课件-+:二次函数平行四边形存在性问题

五
三
一
学 四例 二平
目
以 致 用
方 法 归
题 解 析
纳
中 点 坐 标 公 式
行 四 边 形 性 质
录
+
判
定
一、平行四边形性质+判定
一、平行四边形性质
1、边:对边平行且相等 2、角:对角相等,邻角互补 3、对角线:对角线互相平分
二、平行四边形判定
1、两组对边分别平行的四边形是平行四边形 2、两组对边分别相等的四边形是平行四边形 3、一组对边平行且相等的四边形是平行四边形 4、对角线互相平分的四边形是平行四边形
边形是平行四边形?若存在,请求出所有
满足条件的点F的坐标;若不存在,请说明
理由.
谢
谢
与x轴相交于A、B两点,顶点为P.
(1)求点A、B的坐标;
(2)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边
形为平行四边形?直接写出所有符合条件的点F的坐标。
2.已知抛物线L:y=-x2+bx+c经过点O(0,0)、A(4,0),L关于 x轴对称的抛物线为L′,点B的坐标为(0,8). (1)求抛物线L和L′的函数表达式。 (2)点M在抛物线L的对称轴上,点P在抛物线L′上,是否 存在这样的点M与点P,使以A、B、M、P为顶点的四边形是平 行四边形?若存在,请求出点P的坐标;若不存在,请说明 理由。
3.如图,抛物线
与x轴交于点A、
B 两点,抛物线的对称轴为直线x=1,
(1)求m的值及抛物线的解析式;
(2)过A的直线与抛物线的另一交点C的横 坐标为2. 直线AC的解析式;
3.如图,抛物线
二次函数框架中平行四边形的存在性问题

中学数学教学参考(中旬>2021年第3期性观念研究数学问题,体会正多边形和圆的相关知识 与函数问题、动点问题和实际问题的紧密联系,提升 学生综合研究问题的能力,发展高阶思维。
3设计说明“圆与正多边形”模块主要以圆为载体,重点考查 正多边形的相关概念和运用有关性质进行计算和论证。
近年来的中考试题多以考查基础知识点为主,联 系生活实际,联系函数和动点问题、三角形和四边形等相关知识解题,注重能力立意,培育数学核心素养。
复习教学中,既要关注基础知识与技能,在应用概念、性质解题时,注重从复杂的图形中挖掘基本图形,让 学生学会通性通法,又要注重前后知识点的联系,举 一反三,在小组合作中对问题进行改编,努力达到“知 一题,会一类”的解题效果。
在教学中,要让学生学会 从简单问题切人,从几何直观入手,经历从特殊到一般、从猜想到验证的数学研究方法,注重数形结合、数 学抽象、数学建模、分类讨论、从特殊到一般等数学思 想方法的提炼与归纳。
同时引领学生根据所学的知识和认知体验进行思维导图的书写,展望未来的学习,形成继往开来的知识网络,提升综合运用知识分析和解决问题的能力,让幸福的数学学习之旅延续。
€次函数框架中平行四边形的 k存在性问题J蒲厚金(四川省成都市高新大源学校)文章编号:1002-2171 (2021)3-0047-051学情分析二次函数框架中平行四边形的存在性问题一直是中考的重点考查内容,也是大部分学生较难掌握的 内容。
即使一部分较优秀的学生对此类问题有所掌握,但在解题的完整性和思维的深刻性等方面仍然存在不足,特别是用几何法解题时存在作图准确性不够 的缺陷。
本专题主要针对大部分学习水平中等的学生,以“一题多变”的问题串形式,由易到难地层层推进教学内容,不但有助于学生体会方法的一致性和思 维的连贯性,而且遵循“高立意、低起点、深研究”的设计原则,力求让不同学习水平的学生都能从中获得进步和发展。
2复习目标(1) 通过回顾平面直角坐标系中线段平移时坐标的变化规律,理解用“坐标平移法”求解的原理和本质;(2) 能有序分类画出示意图,并能用“坐标平移法”求出相关顶点的坐标;(3) 让学生在深度体验中领悟数形结合、模型思 想的重要性。
中考数学教学指导:二次函数中平行四边形存在性问题

二次函数中平行四边形存在性问题与二次函数有关的存在性问题是初中数学中的热点问题之一,笔者在此也谈谈这类题型的基本思路和解题技巧.在平行四边形有关存在性问题中,常会遇到这样两类探究性的问题:(l)已知三点的位置,在二次函数的图形上,或在坐标平面内找一动点,使这四点构成平行四边形(下文出现时简称“三定一动”).(2)已知两个点的位置,在二次函数的图形上,或在坐标平面内找两个动点,使这四点构成平行四边形(下文简称“两定两动”).平行四边形的这四个点有可能是定序的,也有可能没有定序.解决这类问题的关键是要掌握好基本思路和解题技巧.一、基本思路(1)分清题型(属于三定一动还是两定两动,因为这两种题型的分类标准有所不同);(2)分类讨论且作图(利用分类讨论不重不漏的寻找动点具体位置);(3)利用几何特征计算(不同的几何存在性要用不同的解题技巧),可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”.二、解题攻略(1)如果为“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点;这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点.(2)如果为“两定两动”,要找出平行四边形第三、四个顶点,可将两个定点连成定线段, 将此线段按照作为平行四边形的边或对角线两种情形分类讨论.三、解题技巧(1)若平行四边形的四个顶点都能用坐标来表示,则直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解;(2)若平行四边形的四个顶点中某些点不能用坐标表示,则利用列方程组解图形交点的方法解决;(3)灵活运用平行四边形的中心对称性,可使问题变得简单,四、应用举例例1 如图1,已知抛物线223y x x =--+与X 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为P .若以A 、C 、P 、M 为顶点的四边形是平行四边形,求点M 的坐标.思路 ①分清题型:根据题目要求,确定为平行四边形存在性问题中“三定一动”题型. ②分类讨论且作图:分析定点、动点,挖掘不变特征; A 、C 、P 为定点,M 为坐标平面内一动点;确定位置的方法是:将以三个定点为顶点画APC ∆;过每个顶点画对边的平行线,三条直线两两相交,产生的交点位置就是M 点.③利用几何特征计算:分析几何特征,建等式求解点M 坐标.图1 图2解 (1)确定位置:如图2.①以A 、C 、P 三个定点为顶点画APC ∆; ②过点A 作PC 的平行线,过点P 作AC 的平行线,过点C 作AP 的平行线;三条直线相交于1M ,2M ,3M .(2)代数法求解点M 的坐标;如图2,设点1(,)M m n ,利用平行四边形对边水平距离相等和竖直距离相等,可得043n -=-, 解得 1n =, 即1(4,1)M -.30(1)m --=--, 4m =-.同理,可得2(2,1)M --,3(2,7)M .综合知,点M 的坐标为: (4,1)-,(2,1)--,(2,7).例2 在平面直角坐标系中,已知抛物线经过(4,0)A -,(0,4)B -,(2,0)C 三点. P 为抛物线上一动点,Q 为直线y x =-上一动点,若以O ,B ,P ,Q 为顶点的四边形是平行四边形,求点Q 的横坐标.图3 图4思路 ①分清题型:根据题目要求,确定为平行四边形存在性问题中“两定两动”题型. ②分类讨论且作图:分析定点、动点,挖掘不变特征; O 、B 为定点. P 、Q 为坐标平面内两动点,确定位置的方法是:将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种情形分类讨论.③利用几何特征计算:分析几何特征,建等式求解点Q 坐标.解 (1)确定位置.①以线段OB 为平行四边形的边,将线段OB 沿任意方向平移使得线段两端点分落在抛物线和直线y x =-上,如图3; .②以线段OB 为平行四边形对角线,将直线PQ 绕线段OB 中点旋转360︒寻找满足题意的动点,如图4.(2)代数法求解点Q 的坐标.设抛物线的解析式为(4)(2)y a x x =+-.把点B 的坐标代入上式,得12a =, 211(4)(2)422y x x x x ∴=+-=+-. ①如图3,当OB 为边时,OB // PQ ,且4OB PQ ==.设点Q 的横坐标为m ,则(,)Q m m -,21(,4)2P m m m +-, 21242QP m m =+-或21242QP m m =--+. 由212442m m +-=,得225m =-±(均符合题意); 由212442m m --+=,得4m =-或0m =(舍去).②如图4,当OB 为对角线时,记OB 的中点为D ,则(0,2)D -,且点D 为44P Q 的中点. 设点400(,)P x y ,4(,)Q n n -,由中点坐标公式,得022y n -=-, ∴ 0x n =-, 002x n +=, 04y n =-, 即点4P 的坐标(,4)n n --. ∵点4P 在抛物线上,214()()42n n n ∴-=-+--, 4n ∴=或0n = (舍去).综上知,点Q 的横坐标为2-+,2--4-,或4.以上求解的基本思路,实际也适用于求解等腰三角形、直角三角形、梯形和圆的存在性问题,具有普遍的应用价值.。
专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)

专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为边形CDPM 是平行四边形?若存在,直接写出点【答案】(1)22y x=-(2)①23922S t t =-+;②点P 到直线BC 的距离的最大值为(3)存在,()1,6M 【分析】(1)待定系数法求解析式即可求解;(2)①在图1中,过点P 作PF y ∥轴,交BC 于点P 的坐标为()2,23t t t -++,则点F 的坐标为(t 2139222S PF OB t t =⋅=-+;②根据二次函数的性质得出当32t =时,S 取最大值,最大值为面积法求得点P 到直线BC 的距离,进而得出P (3)如图2,连接PC ,交抛物线对称轴l 于点设直线BC 的解析式为将()3,0B 、()0,3C 代入30,3m n n +=⎧⎨=⎩,解得:∴直线BC 的解析式为∵点P 的坐标为(,t t -∴点F 的坐标为(,t -∴(223PF t t =-++-∴1322S PF OB =⋅=-②12S PF OB =⋅=-∵302-<,∴当32t =时,S 取最大值,最大值为抛物线2y x bx =-++∴抛物线的对称轴为直线 1D C x x -=,∴1P M x x -=,∴2P x =,()2,3P ∴,在223y x x =-++中,当()0,3C ∴,∴3C D y y -=,∴3M P y y -=,∴6M y =,∴点M 的坐标为()1,6;当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则 点C 的横坐标为0,点∴点P 的横坐标12t =⨯又 2P x ¹,(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.【答案】(1)()4,5C (2)315,24P ⎛⎫- ⎪⎝⎭(3)存在,点N 的坐标为:()154N -,,【详解】(1)解:在2=23y x x --中,令解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点∴2212334()PE n n n n n =+---=-++ 10-<,∴当32n =时,PE 取得最大值254,此时,(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设①BM 为对角线时,AN 的中点与BM ∴(1)3122m +-+=,04022n +-+=,解得:∴()154N -,,②AM 为对角线时,BN 的中点与AM ∴31122m +-+=,04022n +-+=,解得:(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P ,使得PA PC +值最小,求最小值;(3)点M 为x 轴上一动点,在拋物线上是否存在一点N ,使以边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =--(2)552(3)54,2⎛⎫- ⎪⎝⎭,5214,2⎛⎫+ ⎪⎝⎭,5214,2⎛⎫- ⎪⎝⎭【分析】(1)把()1,0A -,()5,0B 两点代入求出a 、b 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为()5,0,连接BC 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.拋物线的解析式为212y x =-∴其对称轴为直线2b x a =-=-当0x =时,52y =-,50,2C ⎛⎫∴- ⎪⎝⎭,又()5,0B ,∴设BC 的解析式为(y kx b =+5052k b b +=⎧⎪∴⎨=-⎪⎩,解得:12k =,52b =-,∴BC 的解析式为1522y x =-,当2x =时,1532222y =⨯-=-,①当点N 在x 轴下方时,抛物线的对称轴为2x =,0,C ⎛- ⎝154,2N ⎛⎫∴- ⎪⎝⎭,②当点N 在x 轴上方时,如图,过点在2AN D △和2M CO △中,22N AD AN N DA ∠⎧⎪⎨⎪∠⎩252N D OC ∴==,即2N 点的纵坐标为21552222x x ∴--=,解得:2x =+25214,2N ⎛⎫∴+ ⎪⎝⎭,35214,2N ⎛⎫- ⎪⎝⎭综上所述符合条件的N 的坐标有⎛ ⎝【点睛】本题考查的是二次函数综合题,式、平行四边的判定与性质、全等三角形等知识,两点间距离的求解,在解答(意进行分类讨论.(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点E 在x 轴上运动,点F 在抛物线上运动,当以点B ,C ,E ,F 为顶点的四边形是平行四边形,直接写出点E 的坐标.【答案】(1)213222y x x =-++(2)存在,3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭(3)541,02⎛⎫-+ ⎪ ⎪⎝⎭或541,02⎛⎫-- ⎪ ⎪⎝⎭或(7,0)或(1,0)【分析】(1)用待定系数法即可求解;(2)分两种情况:以C 为顶点,即CP CD =;以D 为顶点,即CD =等腰三角形的定义建立方程即可完成;(3)分三种情况:当BC 是对角线时;当BE 是对角线时;当BF 是对角线时;分别设点与F 的坐标,利用中点坐标公式即可求解.【详解】(1)解:∵点B 的坐标是(40),,点C 的坐标是(02),,∴16602a c c ++=⎧⎨=⎩,解得:122a c ⎧=-⎪⎨⎪=⎩,∴所求抛物线解析式为213222y x x =-++;(2)解:存在(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)232333y x x =-++(2)()2,33E 2039⎫⎪⎭或532,339⎛⎫⎪⎝⎭)根据待定系数法求解即可;∵232333y x x =-++()23143x =--+,∴()1,43D .令232333y x x =-++中0y =,则解得=1x -或3x =,抛物线的对称轴与x轴交于点M,过点∵四边形EFGH 是菱形,EFG ∠∴EF FG GH EG ===,∵60EFG ∠=︒,∴EFG 是等边三角形.∴60FEG EF FG ∠=︒=,,∵()2,33E ,()0,33C ,(1,4D ∴2CE CD ==,()24333-+同理可证: EFG 是等边三角形,∵CF FE =,=GE FE ,∴DG ∴CDG CEG ∆∆≌.∴DCG ∠=∴直线CG 的表达式为:33y =与抛物线表达式联立得33y y ⎧=⎪⎨⎪=-(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由【答案】(1)223y x x =-++(2)271,22⎛⎫+ ⎪ ⎪⎝⎭或271,22⎛⎫- ⎪ ⎪⎝⎭.(3)符合条件的点E 有三个,坐标为:()0,1E ,(10,132E -【分析】(1)把点()30A ,和()10B -,代入解析式求解即可;(2)由121S S -=得121S S =+从而121ABM ABM S S S S +=++ 程求解即可;(3)分类当CQ 为对角线和菱形边时,利用直线AC 与x 轴成标的方程,进而求出点的坐标.【详解】(1)把点()3,0A 和()1,0B -代入得:93330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)设(),D x y ,对于抛物线223y x x =-++,令0x =,则()0,3C ∴.121S S -= ,121S S ∴=+.∵()30A ,,()0,3C ,∴3OA OB ==,45OCA ∴∠=︒,此时四边形CEQP 是正方形.PQ EQ ∴=.设()2,23P m m m -++,则23PQ m m =-+,23m m m ∴-+=,解得m =此时32OE OC m =-=-=②当CQ 为菱形的边时,如图设()2,23P m m m -++,则∴HQ m =,2PQ m =-+作QH OC ⊥于点H ,45OCA ∠︒= ,∴22CQ HQ m ==.∴23CE PQ m m ==-+=解得:132m =-,23m =()323213OE =+-=+()10,132E ∴-,(20,1E +综上所述,符合条件的点【点睛】本题考查待定系数法求函数的解析式,二次函数的性质,二次函数与几何综合,数形结合是解题的关键.【变式训练2】如图1,在平面直角坐标系中,点(点A 在点B 左侧),与(1)求ABC 的面积;(3)解:∵抛物线212y x x =--∴()211942212y x x x =--+=-2++∵将抛物线2142y x x =--+沿着水平方向向右平移∴新抛物线为:()112y x =--2+∴原抛物线与新抛物线的交点,∴()()1111992222x x -=--22+++,∴解得:0x =,【点睛】本题考查了二次函数的图象及性质,二次函数与特殊图形,二次函数的平移规律,掌握二次函数与特殊图形的位置关系是解题的关键.类型三、矩形存在性问题(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线直线AC 于点D ,交x 轴于点E ,(3)在抛物线上是否存在点M ,对于平面内任意点一条边的四边形为矩形,若存在,请直接写出【答案】(1)2142y x x =--(2)335,28P ⎛⎫- ⎪⎝⎭;254(3)()4,8M -、()8,4N -【分析】(1)把点()4,0A 和点B a 、b 的值;(2)先用待定系数法求出直线2211,422D t t t t ⎛⎫--- ⎪⎝⎭,然后求出最大值时t 的值,即可求出点P (3)假设抛物线上是存在点M ,一条边的四边形为矩形,过点O 点A 且与OH 平行的直线解析式,经计算验证可得过点立方程可求得M 的坐标,通过平移即可求得点【详解】(1)解:把点()4,0A 和点∵()4,0A ,()0,4C -,∴OAC 为等腰直角三角形,∴点H 为AC 的中点,即(H 则OH 所在的直线方程为y =∵四边形AMNC 为矩形,∴过A 与直线AC 相垂直的直线函数解析式中的∴设AM 所在的直线解析式为∵点A 在直线AM 上,(1)求点A 、B 、C 的坐标;(2)将抛物线L 向右平移1个单位,得到新抛物线对称轴l 上是否存在点D ,使得以点D 的坐标;若不存在,请说明理由.【答案】(1)()1,0A -,()3,0B (2)存在,点D 的坐标为()2,1或【分析】(1)分别令0y =和x (2)先求得平移后的抛物线L 角线时,根据矩形的性质求解即可.【详解】(1)解:令0y =,则解得11x =-,23x =,当AD 为对角线时,连接AC ,过点 ()1,0A -,()0,1C -,∴1OA OC ==,∴45OCA ∠=︒∴45OCG ∠=︒∴1OG OC ==,∴()1,0G .设CG 所在直线解析式为y kx =+将()0,1C -,()1,0G 代入得,⎧⎨⎩解得11k b =⎧⎨=-⎩,∴CG 所在直线解析式为1y x =-当2x =时,1211y x =-=-=.∴()2,1D .当AD 为边时,同理过点A 作AC 易得AH 所在直线解析式为y =当AC 为对角线时,DE 也为对角线,∴此种情况不存在.(1)求抛物线的表达式;(2)若点P 为第一象限内抛物线上的一点,设PBC 的面积为S ,求S 坐标;(3)已知M 是抛物线对称轴上一点,在平面内是否存在点N ,使以B 的四边形是矩形?若存在,直接写出N 点坐标;若不存在,请说明理由.【答案】(1)22+3y x x =-+(2)S 最大值为278,315(,)24P (3)存在,点1(2,(317))2N +或1(2,(317))2-或(2,1)-或(4,1).【分析】(1)运用抛物线交点式解析式求解,设抛物线(1)(y a x x =+解;(2)如图,过点P 作PD AC ⊥,垂足为点D ,交BC 于点E ,设(,P m 的解析式3y x =-+,于是23PE m m =-+,从而13(22S PE OC m ==- 时,S 最大值为278,进而求得315(,)24P ;设2(,23)P m m m -++设直线BC 的解析式为y kx =033k hh =+⎧⎨=⎩,解得13k h =-⎧⎨=⎩∴3y x =-+则点(,3)E m m -+,2PE m =-∴2113(22S PE OC m ==´-+ ∴当32m =时,S 最大值为2782915233344m m -++=-++=∴315(,)24P ;(3)存在.设(1,)M p ,如图,223BC =222(13)(0)CM p p =-+-=如图,当BM 为对角线时,∠222BM CM BC =+,即26p p -+01330n p q +=+⎧⎨+=+⎩解得21n q =-⎧⎨=⎩∴点(2,1)N -如图,当CM 为对角线时,MBC ∠222BM BC CM +=,即26p p -+(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,正方形的面积.【答案】(1)32x =-(2)()51,51P --+(3)正方形AMPN 的面积为172或372【分析】(1)由4y x =+可知()4,0A -,()0,4B ,进而求得抛物线解析式为即可得抛物线的对称轴方程;(2)由题意可知PAB PBA ∠=∠,可知PA PB =,进而值OP 其与AB 交于点Q ,可得()2,2Q -,可求得OP 的解析式为则90PDM ACM ∠=∠=︒∴DPM PMD PMD ∠+∠=∠∴(AAS PDM MCA △≌△∴PD MC =,MD AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422MD AC ==-=,则90PEM ACM ∠=∠=︒∴EPM PME PME ∠+∠=∠∴(AAS PEM MCA △≌△∴PE MC =,ME AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422ME AC ==-=,则P y CE MC ME ==+=即:32P x m =-,P y m =-(1)求A ,B ,C 三点的坐标,并直接写出直线(2)在点P 的运动过程中,求使四边形(3)点N 为平面内任意一点,在(2N 为顶点的四边形是正方形?若存在,请直接写出点【答案】(1)()1,0A -,()3,0B ,C (2)32m =-(3)()1221,2Q +,2252,2Q ⎛+ ⎝【分析】(1)分别令0y =,0x =,可求出点∵()3,0B ,()0,3C ,∴3OB OC ==,∴BOC 是等腰直角三角形,∴点()221,2Q +,∴()22132322EQ =+--=-∴PE EQ =,此时点()221,2Q +使得以P ,E 如图,过点E 作EQ PM ⊥于点Q ,过点由(2)得:45BED ∠=︒,∵PM BC ∥,∴45BED DPQ ∠=∠=︒,∴PEQ ,PSQ 是等腰直角三角形,∴此时点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形;∴132222PS SE PE -===,∴点5232,12S ⎛⎫-- ⎪ ⎪⎝⎭,对于321y x =-++,当5212y =-时,222x =+,(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.【答案】(1)抛物线的解析式为2142y x x =-++;(2)4EH =;(3)点N 的坐标为()44,或7322⎛⎫- ⎪⎝⎭,.【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的解析式为4y x =-+,设2142x E x x ⎛ ⎝-++,对称性质求得21422H x x x ⎛⎫- ⎪+⎝-+⎭,,推出2122GH EF x -=-+矩形周长公式列一元二次方程计算即可求解;(3)先求得直线AC 的解析式为24y x =+,分别过点M 、E 作90OPE MQO ∠=∠=︒,90OEP ∠=︒∴OEP MOQ ≌△△,∴PE OQ =,PO MQ =,设2142m E m m ⎛⎫ ⎪⎝-++⎭,,∴PE OQ m ==-,12P m O M Q ==-∵点M 在直线AC 上,∴244212m m m -⎛⎫=+ ⎪⎝⎭-,解得m =当4m =时,()04M ,,()40E ,,即点M 与点C 重合,点E 与点B 重合时,四边形当1m =-时,512M ⎛⎫-- ⎪⎝⎭,,512E ⎛- ⎝,点O 向左平移52个单位,再向下平移则点E 向左平移52个单位,再向下平移∴551122N ⎛⎫--- ⎪⎝⎭,,即7322N ⎛⎫- ⎪⎝⎭,.课后训练(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.【答案】(1)抛物线的解析式为2=23y x x --(2)当1a =时,max ()4PM QN +=,()2,3Q -(3)()1,2E --或()5,2-或3171,2⎛⎫-- ⎪ ⎪⎝⎭或3171,2⎛⎫-+ ⎪ ⎪⎝⎭【分析】(1)直接运用待定系数法即可解答;(2)设()2,23P a a a --,则()21,4Q a a +-,进而得到(),3M a a -,(N 出222422(1)4PM QN a a a +=-++=--+,最后根据二次函数的性质即可解答;(3)分以BC 为矩形一边和对角线两种情况,分别根据等腰直角三角形的性质、平移和矩形的判定定理解答即可.【详解】(1)解:把()1,0A -和()3,0B 代入()230y ax bx a =+-≠,得309330a b a b --=⎧⎨+-=⎩,解得1a =,2b =-∴222422(1)4PM QN a a a +=-++=--+∴当1a =时,max ()4PM QN +=∴()2,3Q -.(3)解:由题意可得:()()()222=1213152x y x x x x --'---=---=-,∴y '的对称轴为2x =∵抛物线()230y ax bx a =+-≠与y 轴交于点C .∴()0,3C -,∵()3,0B ,∴3OC OB ==,45BCO CBO ∠=∠=︒;如图:当BC 为矩形一边时,且点D 在x 轴的下方,过D 作DF y ⊥轴,∵D 在y '的对称轴为2x =,∴2FD =,∴2CF FD ==,325OF =+=,即点()2,5D -,∴点C 向右平移2个单位、向下平移3个单位可得到点D ,则点B 向右平移2个单位、向下平移3个单位可得到()5,3E -;如图:当BC 为矩形一边时,且点D 在x 轴的上方,y '的对称轴为2x =与x 轴交于F ,∵D 在y '的对称轴为2x =,∴2FO =,∴321BF =-=,∵45CBO ∠=︒,即45DBO ∠=︒,∴321BF FD ==-=,即点()2,1D ,∴点B 向左平移1个单位、向上平移1个单位可得到点D ,则点C 向左平移1个单位、向上平移1个单位可得到点()1,2E --;如图:当BC 为矩形对角线时,设∴BC 的中点F 的坐标为32⎛ ⎝∴2322322m d n +⎧=⎪⎪⎨+⎪=⎪⎩,解得:m d =⎧⎨+⎩又∵DE BC =,∴()()22222133d n -+-=+联立173d n d n ⎧-=±⎪⎨+=⎪⎩,解得:∴点E 的坐标为3171,2⎛-- ⎝综上,存在()1,2E --或(5,的四边形是矩形.【点睛】本题主要考查了运用待定系数法求解析式、与几何的综合等知识点,掌握二次函数的性质和矩形的判定定理是解答本题的关键.2.如图,在平面直角坐标系中,抛物线与y 轴交于点C ,点P 为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 面积的最大值及此时点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P ,C ,E ,Q 为顶点的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.【答案】(1)2=23y x x --(2)278,315,24P ⎛⎫- ⎪⎝⎭(3)3333,2⎛⎫+- ⎪ ⎪⎝⎭;3333,2⎛⎫-- ⎪ ⎪⎝⎭;(3,3)-;(3,2)【分析】(1)用待定系数法求函数的解析式即可;(2)作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设()2,23P m m m --,则(,3)H m m -,23PH m m =-+,则2139()228BPC S t ∆=--+,当32t =时,BPC △的面积最大值为从而求出此时四边形PBDC 面积的最大值,P 点坐标;(3)设()2,23P m m m --,(,0)E n ,分四种情况画出图形,利用正方形性质求解即可.【详解】(1)解:将(1,0)A -,(3,0)B 代入23y ax bx =+-中,得309330a b a b --=⎧⎨+--⎩,解得12a b =⎧⎨=-⎩.∴该抛物线的函数表达式为2=23y x x --.(2)解:作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设直线BC 的表达式为:y kx =+得303k n n +=⎧⎨=-⎩,解得13k n =⎧⎨=-⎩,3y x ∴=-.设()2,23P m m m --,则(,H m m ∵BPC CPH BPHS S S =+△△△∴1122BPC S PH OG PH BG =⋅+⋅△∴(21322BPC S PH OB m =⨯=-+△∴28323272BPC S m ⎛⎫=-+ ⎪⎝-⎭△,∴当32m =时,BPC △面积的最大值为BC 与直线y x =平行,1122DBC OBC S S OB OC ∴==⋅=△△∴四边形PBDC 面积的最大值为当32m =时,2332322y ⎛⎫-⨯- ⎪⎝⎭=315,24P ⎛⎫∴- ⎪⎝⎭(3)解:设()2,23P m m m --,I.如图,当点E 在原点时,即点∵四边形PECQ 为正方形,∴点3(3,)Q -,II.如解图3-2,当四边形PECQ 作PI x ⊥轴,垂足为I ,作QH ⊥又∵90CEO OCE ∠+∠=︒,∴OCE PEO ∠=∠,∴(ASA)OCE PEI ≅ △∴3CO IE ==,22EO IP m ==-同理可得:3QH CO IE ===,∴3OE OI IE m =+=+,HO IO=∴2323m m m +=--,解得:m ∴3332HO IO +==,∴点)33(3,32Q +-,同理可得:PI OE CH ==,IE QH =∴3OE IE IO m =-=+,∴2233m m m =---,解得:m =∴3332HO IO -+==,∴点3,(Q -IV.如解图3-4,当四边形PECQ 为正方形时,同理可得:PI OE CH ==,EI HQ =∴2323m m m -=--,解得:m =∴2HO IO ==,∴点(3,2)Q ,综上所述:点Q 坐标为3333,2⎛+- ⎝【点睛】此题重点考查二次函数的图象与性质、数解析式、正方形性质、全等三角形的判定与性质、一元二次方程的解法、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.3.如图,抛物线212y x bx c =++与物线交于A 、D 两点,与y 轴交于点综上所述,341,22N ⎛⎫+ ⎪ ⎪⎝⎭或341,22N ⎛- ⎝【点睛】本题考查了待定系数法求解析式,面积问题,平行四边形的性质,熟练掌握是二次函数的性质解题的关键.4.在平面直角坐标系中,抛物线2y ax =(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点求出抛物线上点M 的坐标;(3)若点P 为抛物线y ax =位长度后,Q 为平移后抛物线上一动点,在(构成平行四边形?若能构成,求出【答案】(1)223y x x =-++(2)315,24⎛⎫ ⎪⎝⎭(3)1(2-,15)4或3(2-,7)4或【分析】(1)利用待定系数法,即可求出抛物线的表达式;(2)由“直线x m =与x 轴交于点的坐标,进而可得出AN 再利用二次函数的性质,即可求出(3)利用平移的性质,可得出平移后抛物线的表达式为点的坐标特征,可求出点点P 的坐标为(1,)m ,点Q 线三种情况考虑,由平行四边形的对角线互相平分,可得出关于得出n 值,再将其代入点【详解】(1)解:将(1,0)-09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:∴抛物线的表达式为y =-(2) 直线x m =与x 轴交于点∴点M 的坐标为2(,m m -。
二次函数中的平行四边形存在性问题

二次函数中的平行四边形存在性问题目标:1、通过本节课的学习,提高学生分析问题,解决问题的能力。
2、能总结出解决平行四边形存在性问题的一般方法和思路。
重点:解决平行四边形存在性问题的一般方法及思路。
难点:根据条件求平行四边形的顶点坐标。
过程:一、复习1、平行四边形的性质角:边;对角线:2、二次函数的相关知识点表达式、顶点坐标、对称轴、增减性二、探索新知1、単动点(知3点求1点)(1)已知平面上有不在同一条直线上的三点A、B、C,点D是平面上任一点,若此四点能构成平行四边形则符合条件的D点有几个?C()AB学生画图说明思考:如何找第四点?找第四点的方法?(2)类题(1)已知抛物线与坐标轴分别交于A (-1、0)、B (3、0)、C (0、3)三点,能否在平面内在找一点D 使得它们四点围成的四边形为平行四边形?学生分析总结规律、思路。
①、根据平行四边形的边、对角线的性质(对边平行且相等,对角线互相平分)我们可以选择一种情况作为画图的依据。
②、在求点的坐标时(以边为例)我们先满足对边平行再用对边相等求出要求的点的坐标。
A CB 要使是A,B,C,D 四点围成平行四边形?谁为边,谁为对角线?AB ,AC ,BC 轮流当边,或对角线或者选择一条既当边又当对角线。
£想一想问什么要这样做?2、双动点(知2点求2点)(1)学生再次画图说明(给出两点画出另外两点)(2)类题如图,抛物线y= 13x 2-mx+n 与x 轴交于A 、B 两点,与y 轴交于点C (0.-1).且对称轴x=l .①求出抛物线的解析式及A 、B 两点的坐标;②点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,请求出所有满足条件的点P 的坐标。
AB点A,点B是定点点P,点Q是动点分两种情况:AB为边,AB为对角线3、小结4、布置作业5、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中的平行四边形存在性问题(两定两动型)
教学设计
旬阳县城关一中黄涛
目标:1、通过典型例题及其变式训练,进一步巩固二次函数中的平行四边形及特殊平行四边形存在性问题的解题思路和方法,体会数形结合和分类讨论思想的应用过程。
2、通过本节课的学习,感受一题多解的过程及方法,提高学生分析问题和解决问题的能力。
重点:解决平行四边形存在性问题的一般方法及思路。
难点:根据条件求平行四边形的顶点中动点坐标的求解。
过程:
一、典型例题
如图,抛物线经过A(﹣1,0),B(5,0),C(0,
5
2
)三点.
(1)求抛物线的解析式;
(2)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
问题1:如何用待定系数法确定适当的解析式形式?
①抛物线上已知三点,可用一般式y=ax2+bx+c;
②因为在已知的三点中,A、B两点为抛物线与x轴交点,则可用交点式y=a(x-x
1)(x-x
2
)。
问题2:如何借助一定的方法通过画图的方式找到M、N点?
先确认已知点A、C,连接AC,根据四边形顶点的无序性利用分类讨论思想分别以AC为边和以AC为对角线两种情况进行作图讨论,作图依据平行四边形对边平行且相等的性质进
行。
问题3:通过怎样的方法和手段获取点N的坐标?
可利用以下四种方法或依据得出符合条件点N的坐标。
①依据对称性求点N坐标②利用三角形全等及数形结合思想求点N坐标③依据平行四边形对边平行且相等利用平移求点N坐
标④依据抛物线解析式设点N 坐标为(m N 点与C 点纵坐标相等的原则列得绝对值方程,将所有符合条件的点N 及其坐标完全覆盖得解,注意取舍(这是本题最简方法)。
解:(1)解法1:设抛物线的解析式为y=a(x+1)(x-5) (a ≠0),将C (0,52
-)代入得: a(0+1)(0-5)=52-
解得:a=21
∴二次函数的解析式为:y=21 (x+1)(x-5)即解法2:设抛物线的解析式为y=ax2+bx+c (a ≠0),
∴ ,
解得 .
∴抛物线的解析式为: y=
(2)解法1:存在,理由如下:
①以AC 为边时,当N 点位于x 轴下方时,若四边形ACNM 为平行四边形,则CN ∥AM ∴N 与C 纵坐标相等
∴点N 与点C 关于抛物线对称轴直线x=2对称
∴N (4,52-)
当点N 在x 轴上方时, 如图,过点N2作N2D ⊥x 轴于点D , 在△AN2D 与△M2CO 中,
∴△AN2D≌△M2CO(ASA),
N2D=OC =
解得x=2+或x=2﹣,
2+﹣
②当AC为对角线时,根据CN∥AM,过C点作x轴平行线与抛物线交点和N
重合。
1
2+2
解法2:若四边形ACNM为平行四边形,则CN∥AM,AC∥MN,N位于x轴下方时
二、变式训练
变式1:在(1)的条件下,点M为
x轴上一动点,在坐标平面中是否
存在点N,使以A,C,M,N四点构
成的四边形是以AC为边的菱形?
若存在,求点N的坐标。
方法指导:1、注意条件:①M 在x 轴上②M 在坐标平面内③AC 为边的菱形
2、依据菱形的性质根据AM=AC=2
29,分别以AM 为边或对角线进行分类讨论,画出草图。
3、依据菱形性质对边平行及四条边相等直接求得N 点坐标。
4、小结符合条件的点N 坐标。
解题过程略
变式2:将(1)中抛物线绕原点旋转180°,设旋转后的抛物线为L ,抛物线L 与x 轴正半轴交于点P ,与y 轴交于点Q ,写出抛物线L 的解析式,判断四边形ACPQ 的形状并说明理
由。
方法指导:1、注意条件:①抛物线绕原点旋转180°(即为关于原点对称)②抛物线L 与x 轴正半轴交于点P ③与y 轴交于点Q 。
2、在a 值互为相反数的基础下,根据关于原点对称点坐标规律利用点A 、C 坐标求出点P 、Q 的坐标,或先求得原抛物线顶点坐标后依据对称求得抛物线L 的顶点坐标,画出草图。
3、利用A 、C 、P 、Q 坐标求得OA 、OP 、OC 、OQ 长度。
证明对角线互相平分。
4、根据对角线互相平分得出所得四边形为平行四边形,再依据对角线互相垂直得出该四边形为菱形。
解题过程略
三、小结:
1、已知两个点的位置,在二次函数的图象上或在平面坐标平面内找两个动点。
使这四点构成平行四边形,简称:两定两动。
如果为“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。
2、二次函数为载体的平行四边形存在性问题的基本思路适用于等腰三角形的存在性、直角三角形的存在性、等腰直角三角形的存在性、菱形的存在性、矩形的存在性、梯形和圆等的存在性存在性问题,具有普遍应用价值。