立体几何与解析几何综合题训练
高考理科数学第一轮立体几何专题测试题参考答案

高考理科数学第一轮《立体几何》专题测试题&参考答案测试时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.[2021·浙江高考]已知彼此垂直的平面α,β交于直线l,若直线m,n 知足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥n答案C解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.故选C.2.[2021·济南调研]已知某几何体的三视图如图所示,则该几何体的体积是( )A.28+6 5 B.40C.403D.30+65答案C解析由三视图知,直观图如图所示:底面是直角三角形,直角边长为4,5,三棱锥的一个后侧面垂直底面,而且高为4,所以棱锥的体积为:13×12×5×4×4=403.3.[2021·云师大附中月考]某几何体的三视图如图所示,则该几何体的表面积为( )A.12 B.13 C .22D.23答案 D解析 由题意知该几何体为如图放置的正四面体,其棱长为2,故其表面积为12×2×2×sin π3×4=23,故选D.4.[2021·山东实验中学一诊]已知一个四棱锥的三视图及有关数据如图所示,则该几何体的体积为( )A .2 3 B.3 C.433D.233答案 C解析由三视图知该几何体是四棱锥,其直观图如图所示,四棱锥的一个侧面SAB与底面ABCD垂直,过S作SO⊥AB,垂足为O,所以SO⊥底面ABCD,SO=3,所以四棱锥的体积为13×2×2×3=433,故选C.5.[2021·广西梧州模拟]若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图所示,则此几何体的表面积是()A.(4+2)π B.6π+22πC.6π+2π D.(8+2)π答案C解析圆柱的侧面积为S1=2π×1×2=4π,半球的表面积为S2=2π×12=2π,圆锥的侧面积为S3=π×1×2=2π,所以几何体的表面积为S=S1+S2+S3=6π+2π,故选C.6.[2021·安徽师大期末]某个长方体被一个平面所截,取得的几何体的三视图如图所示,则这个几何体的体积为()A.4 B.2 2C.4 2 D.8答案D解析按照三视图还原可知该几何体为长、宽、高别离为3,2,2的长方体,被一个平面截去一部份剩余23,如图所示,所以该几何体的体积为(3×2×2)×23=8,故选D.7.[2021·吉林长春质检]某几何体的三视图如图,其正视图中的曲线部份为半圆,则该几何体的体积是()A .4+32πB.6+3π C .6+32πD.12+32π答案 C解析 由题意,此模型为柱体,底面大小等于主视图面积大小,即几何体体积为V =⎝ ⎛⎭⎪⎫12π·12+12×2×2×3=6+3π2,故选C.8.[2021·河南百校联盟质监]如图,网格纸上小正方形的边长为1,粗线画出的是由正方形切割而成的几何体的三视图,则该几何体的体积为( )A.112B.132C .6D.7答案 C解析 几何体如图,为每一个正方体中去掉两个全等的三棱柱,体积为23-12×1×1×1×4=6,选C.9.[2021·河北唐山模拟]在四棱锥P -ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA =AB =4,E ,F ,H别离是棱PB ,BC ,PD 的中点,则过E ,F ,H 的平面截四棱锥P -ABCD 所得截面面积为( )A .2 6 B.4 6 C .5 6 D.23+46 答案 C解析 由过E ,F ,H 的平面交直线CD 于N 点,可得N 点为CD 的中点,即CN =2;由过E ,F ,H 的平面交直线PA 于M 点,可得M 为PA 的四等分点,所以PM =1,所以过E ,F ,H 的平面截四棱锥P -ABCD 所得截面为五边形MEFNH ,所以其面积等于三角形MEH 与矩形EFNH 的面积之和,而S △MEH =12×22×3=6,S △EFNH =22×23=46,所以所求的面积为56,故应选C.10.[2021·全国卷Ⅲ]在封锁的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6π D.32π3答案 B解析 由题意可得若V 最大,则球与直三棱柱的部份面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.11.[2021·云师大附中月考]棱长为2的正方体ABCD -A 1B 1C 1D 1的所有极点均在球O 的球面上,E ,F ,G 别离为AB ,AD ,AA 1的中点,则平面EFG 截球O 所得圆的半径为( )A. 2B.153 C.263D.3答案 B解析 如图,正方体ABCD -A 1B 1C 1D 1的外接球球心O 为对角线AC 1的中点,球半径R =3,球心O 到平面EFG 的距离为233,所以小圆半径r =R 2-⎝ ⎛⎭⎪⎫2332=153,故选B.12.[2021·河北武邑期末]已知边长为23的菱形ABCD 中,∠A =60°,现沿对角线BD 折起,使得二面角A -BD -C 为120°,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( )A .20π B.24π C .28π D.32π答案 C解析 如图别离取BD ,AC 的中点M ,N ,连MN ,则容易算得AM =CM =3,MN =32,MD =3,CN =332,由图形的对称性可知球心必在MN 的延长线上,设球心为O ,半径为R ,HN =x ,则由题设可得⎩⎪⎨⎪⎧R 2=x 2+274,R 2=⎝ ⎛⎭⎪⎫32+x 2+3,解之得x =12,则R 2=14+274=7,所以球的表面积S =4πR 2=28π,故应选C.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.[2021·江苏联考]将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是________.答案33π 解析 圆锥的侧面展开恰为一个半径为2的半圆,所以圆锥的底面周长为2π,底面半径为1,圆锥的高为3,圆锥的体积为13π×12×3=33π.14.[2021·河南郑州一中期末]我国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为________.答案 1.6解析 由图可得π×⎝ ⎛⎭⎪⎫122×x +3×1×(5.4-x )=12.6⇒x =1.6.15.[2021·江苏联考]在下列四个图所表示的正方体中,能够取得AB ⊥CD 的是________.答案 ①②解析 对于①,通过平移AB 到右边的平面,可知AB ⊥CD ,所以①中AB ⊥CD ;对于②,通过作右边平面的另一条对角线,可得CD 垂直AB 所在的平面,由线面垂直定理取得②中AB ⊥CD ;对于③,可知AB 与CD 所成的角为60°;对于④,通过平移CD 到下底面,可知AB 与CD 不垂直.故答案为①②.16.[2021·长春质检]若是一个棱锥底面为正多边形,且极点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P -ABCD 内接于半径为1的球,则当此正四棱锥的体积最大时,其高为________.答案 43 解析 由球的几何性质可设四棱锥高为h ,从而V P -ABCD =23h [1-(h -1)2]=23(-h 3+2h 2),有V ′P -ABCD =23(-3h 2+4h )=23h (-3h +4),可知当h =43时,体积V P -ABCD 最大.三、解答题(共6小题,共70分,解承诺写出文字说明、证明进程或演算步骤)17.[2021·西安八校联考](本小题满分10分)在长方体ABCD -A 1B 1C 1D 1中,AD =DC =12DD 1,过A 1、B 、C 1三点的平面截去长方体的一个角后,得如图所示的几何体ABCD -A 1C 1D 1,E 、F 别离为A 1B 、BC 1的中点.(1)求证:EF ∥平面ABCD ;(2)求平面A 1BC 1与平面ABCD 的夹角θ的余弦值.解 (1)证明:∵在△A 1BC 1中,E 、F 别离为A 1B 、BC 1的中点,∴EF ∥A 1C 1. ∵在长方体ABCD -A 1B 1C 1D 1中,AC ∥A 1C 1,∴EF ∥AC .(2分)∵EF ⊄平面ABCD ,AC ⊂平面ABCD ,∴EF ∥平面ABCD .(4分)(2)以D 为坐标轴原点,以DA 、DC 、DD 1方向别离为x ,y ,z 轴,成立空间直角坐标系,不妨设AD =DC =12DD 1=1, 则A (1,0,0),B (1,1,0),C 1(0,1,2),D 1(0,0,2),A 1(1,0,2),A 1B →=(0,1,-2),C 1B →=(1,0,-2),(5分)∵DD 1⊥平面ABCD ,∴平面ABCD 的一个法向量为DD 1→=(0,0,2),(6分)设平面A 1BC 1的一个法向量为n =(a ,b ,c ),则⎩⎨⎧ n ·A 1B →=0,n ·C 1B →=0,即⎩⎨⎧b -2c =0,a -2c =0,取a =1,得n =⎝ ⎛⎭⎪⎫1,1,12,(8分) ∴cos θ=|cos 〈n ,DD 1→〉|=⎪⎪⎪⎪⎪⎪DD 1→·n |DD 1→||n |=13. ∴平面A 1BC 1与平面ABCD 的夹角θ的余弦值为13.(10分)18.[2021·江西南昌模拟](本小题满分12分)如图所示,点P 为斜三棱柱ABC —A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.(1)求证:CC1⊥MN;(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF cos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.解(1)证明:∵PM⊥BB1,PN⊥BB1,PM∩PN=P,∴BB1⊥平面PMN,∴BB1⊥MN.又CC1∥BB1,∴CC1⊥MN.(4分)(2)在斜三棱柱ABC—A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1cosα,其中α为平面BCC1B1与平面ACC1A1所成的二面角的大小.(7分)证明:∵CC1⊥平面PMN,∴上述的二面角的平面角为∠MNP.在△PMN中,∵PM2=PN2+MN2-2PN·MN cos∠MNP,∴PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SCBB1C1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,∴S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1cosα.(12分)19.[2021·长春质检](本小题满分12分)已知等腰梯形ABCD如图1所示,其中AB∥CD,E,F别离为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点,现将梯形ABCD按EF所在直线折起,使平面EFCB⊥平面EFDA,如图2所示,N是线段CD上一动点,且CN=λND.(1)当λ=12时,求证:MN ∥平面ADFE ; (2)当λ=1时,求二面角M -NA -F 的余弦值.解 (1)证明:过点M 作MP ⊥EF 于点P ,过点N 作NQ ⊥FD 于点Q ,连接PQ .由题意,平面EFCB ⊥平面EFDA ,所以MP ⊥平面EFDA ,且MP =BE +CF 2=2,(2分) 因为CF ⊥EF ,DF ⊥EF ,所以EF ⊥平面CFD ,所以NQ ⊥EF ,由NQ ⊥FD ,所以NQ ⊥平面EFDA ,又CN =12ND ,所以NQ =23CF =2,(4分) 即MP ∥NQ ,MP =NQ ,则MN ∥PQ ,由MN ⊄平面ADFE ,PQ ⊂平面ADFE ,所以MN ∥平面ADFE .(6分)(2)以F 为坐标原点,FE 方向为x 轴,FD 方向为y 轴,FC 方向为z 轴,成立如图所示坐标系.由题意,M (1,0,2),A (2,1,0),F (0,0,0),C (0,0,3),D (0,3,0),N ⎝ ⎛⎭⎪⎫0,32,32. 设平面AMN 与平面FAN 的法向量别离为n 1,n 2,平面AMN 的法向量为平面ABCD 的法向量,即n 1=(1,1,1),(8分)在平面FAN 中,FA →=(2,1,0),FN →=⎝ ⎛⎭⎪⎫0,32,32,即n 2=(1,-2,2),(10分) 则cos θ=39,所以二面角M -NA -F 的余弦值为39.(12分) 20.[2021·沈阳质检](本小题满分12分)四棱锥P -ABCD 中,PD ⊥平面ABCD,2AD =BC =2a (a >0), AD ∥BC ,PD =3a ,∠DAB =θ.(1)若θ=60°,AB =2a ,Q 为PB 的中点,求证:DQ ⊥PC ;(2)若θ=90°,AB =a ,求平面PAD 与平面PBC 所成二面角的大小.(若非特殊角,求出所成角余弦即可)解 (1)证明:连接BD ,△ABD 中,AD =a ,AB =2a ,∠DAB =60°,由余弦定理:BD 2=DA 2+AB 2-2DA ·AB cos60°,解得BD =3a ,所以△ABD 为直角三角形,BD ⊥AD ,因为AD ∥BC ,所以BC ⊥BD ,(1分)又因为PD ⊥平面ABCD ,所以BC ⊥PD ,(2分)因为PD ∩BD =D ,所以BC ⊥平面PBD ,(3分)BC ⊂平面PBC ,所以平面PBD ⊥平面PBC ,(4分)又因为PD =BD =3a ,Q 为PB 中点,所以DQ ⊥PB .因为平面PBD ∩平面PBC =PB ,所以DQ ⊥平面PBC ,(5分)PC ⊂平面PBC ,所以DQ ⊥PC .(6分)(2)由θ=90°,AB =a ,可得BD =CD =2a .取BC 中点M ,可证得ABMD 为矩形.(7分)以D 为坐标原点别离以DA ,DM ,DP 所在直线为x ,y ,z 轴,成立空间直角坐标系Dxyz ,则A (a,0,0),B (a ,a,0),DM ⊥平面PAD ,所以DM →是平面PAD 的法向量,DM →=(0,a,0).(9分)设平面PBC 的法向量为n =(x ,y ,z ),P (0,0,3a ),B (a ,a,0),C (-a ,a,0),所以PB →=(a ,a ,-3a ),BC →=(-2a,0,0),⎩⎨⎧ n ·PB →=0,n ·BC →=0,令z =1,可得⎩⎨⎧ax +ay -3a =0,-2ax =0,解得n =(0,3,1),(10分) 所以cos θ=DM →·n |DM →||n |=3a 2a =32.(11分)所以平面PAD 与平面PBC 所成二面角为π6.(12分)21.[2021·贵阳月考](本小题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,PD ⊥底面ABCD ,PA =AB =2,BC=12PA ,BD =3,E 在PC 边上. (1)求证:平面PDA ⊥平面PDB ;(2)当E 是PC 边上的中点时,求异面直线AP 与BE 所成角的余弦值;(3)若二面角E -BD -C 的大小为30°,求DE 的长.解 (1)证明:因为底面ABCD 是平行四边形,∴AD =BC =1,又BD =3,AB =2,知足AD 2+BD 2=AB 2,∴AD ⊥BD .又因为PD ⊥底面ABCD ,∴PD ⊥BD ,∴BD ⊥平面PAD .(3分)∵BD ⊂平面PDB ,∴平面PDA ⊥平面PDB .(4分)(2)以D 为原点成立如图所示空间直角坐标系.则D (0,0,0),P (0,0,3),A (1,0,0),B (0,3,0),C (-1,3,0), ∵E 是PC 边上的中点,∴E ⎝ ⎛⎭⎪⎫-12,32,32, 则AP →=(-1,0,3),BE →=⎝ ⎛⎭⎪⎫-12,-32,32,(6分) ∴cos 〈AP →,BE →〉=|A P →·BE →||AP →||BE →|=277.(8分) (3)由C ,E ,P 三点共线,得DE →=λDP →+(1-λ)DC →,且0≤λ≤1,从而有DE →=(λ-1,3(1-λ),3λ),DB →=(0,3,0).设平面EDB 的法向量为n =(x ,y ,z ),由n ·DE →=0及n ·DB →=0,可取n =⎝⎛⎭⎪⎫3,0,1-λλ. 又平面CBD 的法向量可取m =(0,0,1),(10分)二面角E -BD -C 的大小为30°,∴cos30°=⎪⎪⎪⎪⎪⎪n ·m |n ||m |=32, ∴λ=14,∴DE →=⎝ ⎛⎭⎪⎫-34,334,34,∴|DE |=394.(12分)22.[2021·河北一模](本小题满分12分)如图,在三棱锥S-ABC 中,SC ⊥平面ABC ,SC =3,AC ⊥BC ,CE =2EB =2,AC =32,CD =ED . (1)求证:DE ⊥平面SCD ;(2)求二面角A -SD -C 的余弦值;(3)求点A 到平面SCD 的距离.解 (1)证明:以C 为原点,CA ,CB ,CS 所在直线别离为x 轴,y 轴,z 轴成立空间直角坐标系,如图,则C (0,0,0),A ⎝ ⎛⎭⎪⎫32,0,0,S (0,0,3),E (0,2,0),D (1,1,0), 因为DE →=(-1,1,0),CD →=(1,1,0),CS →=(0,0,3),所以DE →·CD →=-1+1+0=0,DE →·CS →=0+0+0=0,即DE ⊥CD ,DE ⊥CS .(2分)因为CD ∩CS =C ,所以DE ⊥平面SCD .(4分)(2)由(1)可知DE →=(-1,1,0)为平面SCD 的一个法向量.设平面SAD 的法向量为n =(x ,y ,z ),而AD →=⎝ ⎛⎭⎪⎫-12,1,0, AS →=⎝ ⎛⎭⎪⎫-32,0,3,则⎩⎨⎧ n ·AD →=0,n ·AS →=0,即⎩⎪⎨⎪⎧ -12x +y =0,-32x +3z =0. 不妨设x =2,可得n =(2,1,1).(6分)易知二面角A -SD -C 为锐角,因此有|cos 〈DE →,n 〉|=⎪⎪⎪⎪⎪⎪-2+1+02·6=36, 即二面角A -SD -C 的余弦值为36.(8分)(3)AC →=⎝ ⎛⎭⎪⎫-32,0,0,AD →=⎝ ⎛⎭⎪⎫-12,1,0,AS →=⎝ ⎛⎭⎪⎫-32,0,3,作AH ⊥平面SCD ,垂足为H , 设AH →=xAC →+yAD →+zAS →=⎝ ⎛⎭⎪⎫-32x -12y -32z ,y ,3z ,且x +y +z =1.(10分)由AH →⊥CD →,AH →⊥CS →,得 ⎩⎪⎨⎪⎧ -32x -12y -32z +y =0,9z =0,x +y +z =1,解得⎩⎪⎨⎪⎧ x =14,y =34,z =0.所以AH →=⎝ ⎛⎭⎪⎫-34,34,0,(11分)|AH →|=324,32即点A到平面SCD的距离为4.(12分)。
专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练
习
解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。
为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。
一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。
2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。
3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。
4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。
二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。
2. 设正方体的边长为3cm,求正方体的表面积和体积。
3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。
4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。
以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。
通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。
加油!。
立体几何、解析几何综合10题(含答案)

城北中学高二上期第八周20班周末双休数学练笔题目及参考答案1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2,从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 212=1.2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ;(1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF ,又BC ∩BF =B ,∴AE ⊥平面BCE .(2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD .3、设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB(2)求CD 与平面ABD 所成角的余弦值.(1)证明 过C 点作AD 的垂线,垂足为E 则CE ⊥面ABD ,∵AD ⊥AB ,∴CD ⊥AB(2)解:∵CE ⊥面ABD∴∠CDE 为CD 与平面ABD 所成的角,cos ∠CDE =DECDDE ∶CD =CD ∶DA =AB ∶DA =2∶3∴CD 与平面ABD 所成角的余弦值为32 5、设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解: 由QM →=λMP →知Q 、M 、P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2), 即y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ →=λQA →, 即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21, 再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2,(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2, 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因为λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.6、如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面P AC ⊥平面PBD ; (2)若AB =6,∠APB =∠ADB =60°,求四棱锥P —ABCD 的体积.证明(1) 因为PH 是四棱锥P —ABCD 的高,所以AC ⊥PH .又AC ⊥BD ,PH ,BD 都在平面PBD 内,且PH ∩BD =H , 所以AC ⊥平面PBD , 故平面P AC ⊥平面PBD .(2)因为ABCD 为等腰梯形,AB ∥CD ,AC ⊥BD ,AB =6, 所以HA =HB = 3. 因为∠APB =∠ADB =60°, 所以P A =PB =6,HD =HC =1, 可得PH = 3.等腰梯形ABCD 的面积为S =12AC ×BD =2+ 3.所以四棱锥的体积为V =13×(2+3)×3=3+233.7、已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程;(2)求直线l 的方程.解: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4.而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y11+3,⎩⎨⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎨⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3),即2x -y -6=0.8、如图,在梯形ABCD 中,AD//BC ,∠ABC=900,AB=a,AD=3a,sin ∠ADC=55,又PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的正切值。
立体几何与解析几何部分解析

《中档解答题计划》——专题训练7——立体几何(一)1.如图,在直三棱柱111ABC A B C -中,E 为棱1AA 的中点,90ABC ∠=︒,12CC =.(1)若1AB =,求证:1B E ⊥平面BCE ;(2)若平面11AB C 与平面ABC 的夹角的余弦值是55,且直线1AC 与平面1BCC 所成角的正弦值是13,求异面直线EC 与1AB 所成角的余弦值.【解答】(1)证明:在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,BC ⊂平面ABC ,所以1BB BC ⊥,又90ABC ∠=︒,即AB BC ⊥,又1BB AB B = ,所以BC ⊥平面11ABB A ,因为1B E ⊂平面11ABB A ,所以1B E BC ⊥,因为1BB AB ⊥,1AB =,1112AE AA ==,所以BE =同理,1B E =,又12BB =,所以22211BE B E BB +=,即1BE B E ⊥,又BE 、BC ⊂平面BCE ,BE BC B = ,所以1B E ⊥平面BCE ;(2)解:因为1BB ⊥平面ABC ,所以1B AB ∠为平面11AB C 与平面ABC 所成的角,由11cos 15AB B AB AB AB ∠==⇒=,11AB BC AB BB AB BC BB B ⎫⊥⎪⊥⇒⊥⎬⎪=⎭平面1BCC ,所以1AC B ∠为1AC 与平面11BCC B 所成的角,由111111sin 33AB AC B AC AC AC ∠===⇒=,132AC BC ===⇒=,因为AB BC ⊥,1BB ⊥平面ABC ,故以BA、BC、1BB所在直线分别为x、y、z轴建立空间直角坐标系,1111(1,2,1),(1,0,2),cos,||||EC ABEC AB EC ABEC AB⋅=--=--〈〉==⋅,异面直线EC与1AB所成的角的余弦值为30.2.如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PAB⊥平面ABCD,O为AB中点,AC与OD交于点E,PAB∆的重心为G.(1)求证://EG平面PCD;(2)若5PA PB==,8AB=,4BC=,求二面角C GE D--的正弦值.【解答】证明:(1) 底面ABCD为矩形,O为AB的中点,AEO CED∴∆∆∽,可得12OE OAED DC==,又PAB∆的重心为G,∴12OGGP=,则OE OGED GP=,得//EG PD,PD⊂平面PDC,EG⊂/平面PDC,//EG∴平面PCD;解:(2)PA PB=,O为AB中点,PO AB∴⊥,平面PAB⊥平面ABCD,平面PAB⋂平面ABCD AB=,PO∴⊥平面ABCD,以O为坐标原点,建立如图所示空间直角坐标系,则(4C,4,0),(4D,4-,0),(0G,0,1),44(,,0)33E-,816(,,0)33EC=,44(,,1)33EG=-,88(,,0)33ED=-,设平面CEG与平面DEG的一个法向量分别为111(,,)m x y z= ,222(,,)n x y z= ,由1111181603344033m EC x y m EG x y z ⎧⋅=+=⎪⎪⎨⎪⋅=-++=⎪⎩,取11y =-,得(2,1,4)m =- ;由222224403388033n EG x y z n ED x y ⎧⋅=-++=⎪⎪⎨⎪⋅=-=⎪⎩ ,取21y =,得(1,1,0)n =.cos ,||||42m n m n m n ⋅∴<>=== .∴二面角C GE D --172242=.3.如图,在三棱锥P ABC -中,AB 是ABC ∆外接圆的直径,PC 垂直于圆所在的平面,D 、E 分别是棱PB 、PC 的中点.(1)求证:DE ⊥平面PAC ;(2)若二面角A DE C --为3π,4AB PC ==,求AE 与平面ACD所成角的正弦值.【解答】解:(1)证明:AB 是圆的直径,BC AC ∴⊥,PC 垂直于圆所在的平面,BC ⊂平面ABC ,BC PC ∴⊥,又AC PC C = ,AC ⊂平面PAC ,PC ⊂平面PAC ,BC ∴⊥平面PAC ,又D 、E 分别是棱PB 、PC 的中点,//BC DE ∴,DE ∴⊥平面PAC ;(2)由(1)可知DE ⊥平面PAC ,又AE 、EC ⊂平面PAC ,DE AE ∴⊥,DE EC ⊥,AE ⊂平面DAE ,EC ⊂平面DEC ,AEC ∴∠为二面角A DE C --的平面角,∴3AEC π∠=,∴12,2EC PC AC ===又BC AC ⊥,4AB =,2BC ∴=,以,,CB CA CP 的方向分别为x 轴、y 轴、z 轴的正方向,建系如图,则根据题意可得:(0C ,0,0),A ,(0E ,0,2),(2B ,0,0),(0P ,0,4),(1D ,0,2),∴(0,AE =-,CA =,(1,0,2)CD = ,设(,,)n x y z = 是平面ACD 的一个法向量,则020n CA n CD x z ⎧⋅==⎪⎨⋅=+=⎪⎩ ,取(2,0,1)n =- ,设AE 与平面ACD 所成角为θ则||5sin 10||||n AE n AE θ⋅== ,AE ∴与平面ACD所成角的正弦值为10.4.如图1,在等边ABC ∆中,点D 、E 分别为边AB 、AC 上的动点且满足//DE BC ,记DE BCλ=.将ADE ∆沿DE 翻折到MDE ∆的位置并使得平面MDE ⊥平面DECB ,连接MB ,MC 得到图2,点N 为MC 的中点.(1)当//EN 平面MBD 时,求λ的值;(2)试探究:随着λ值的变化,二面角B MD E --的大小是否改变?如果是,请说明理由;如果不是,请求出二面角B MD E --的正弦值大小.【解答】解:(1)取MB 的中点为P ,连接DP ,PN ,因为MN CN =,MP BP =,所以//NP BC ,又//DE BC ,所以//NP DE ,即N ,E ,D ,P 四点共面,又//EN 面BMD ,EN ⊂面NEDP ,平面NEDP ⋂平面MBD DP =,所以//EN PD ,即NEDP 为平行四边形,所以//NP DE ,且NP DE =,即12DE BC =,即12λ=.(2)解:取DE 的中点O ,由平面MDE ⊥平面DECB ,且MO DE ⊥,所以MO ⊥平面DECB ,如图建立空间直角坐标系,不妨设2BC =,则)M ,(D λ,0,0),),0)B λ-,所以(,0,)MD λ=,(1),0)DB λλ=-- .设平面BMD 的法向量为(,,)m x y z =,则0(1))0MD m x z BD m x y λλλ⎧⋅=-=⎪⎨⋅=-+-=⎪⎩ ,令x =,即1,1)m =- ,又平面EMD 的法向量(0,1,0)n = ,所以cos ,||||m n m n m n ⋅〈〉== λ值的变化,二面角B MD E --的大小不变.且sin ,5m n 〈〉= ,所以二面角B MD E --的正弦值为5.《中档解答题计划》——专题训练17——立体几何(二)5.如图(1),已知菱形ABCD 中60DAB ∠=︒,沿对角线BD 将其翻折,使90ABC ∠=︒,设此时AC 的中点为O ,如图(2).(Ⅰ)求证:点O 是点D 在平面ABC 上的射影;(Ⅱ)求直线AD 与平面BCD 所成角的余弦值.【解答】证明:()I 因为DA DC =,O 为AC 的中点,所以DO AC ⊥,设菱形ABCD 的边长为2,又因为90ABC ∠=︒,所以22AC =,连接BO ,则2BO =,又因为2,22AD DC AC ===,所以222AD DC AC +=,所以AD DC ⊥,所以2DO =又因为2BD =,所以222DO BO DB +=,所以DO BO ⊥;又AC BO O = ,所以DO ⊥平面ABC ,所以点O 是点D 在平面ABC 上的射影;解:()II 设点A 到平面BCD 的距离为h ,设菱形ABCD 的边长为2,则BCD ∆3,所以13333A BCD V h -==;ABC ∆的面积为2,由()I 知DO ⊥平面,2ABC DO =所以132233D ABC V -==,所以263h =,设直线AD 与平面BCD 所成角为θ,则2663sin 23h AD θ===,所以3cos θ=.6.如图所示,三棱锥P ABC -,BC 为圆O 的直径,A 是弧 BC上异于B 、C 的点.点D 在直线AC 上,//OD 平面PAB ,E 为PC 的中点.(1)求证://DE 平面PAB ;(2)若4PA PB PD AB AD =====,求平面PAB 与平面PBC 夹角的余弦值.【解答】解:(1)证明:因为//OD 平面PAB ,平面CAB ⋂平面PAB AB =,OD ⊂平面CAB ,所以//OD AB .又O 为BC 中点,所以D 为AC 中点.又E 为PC 中点,所以//DE PA ,因为PA ⊂平面PAB ,DE ⊂/平面PAB ,所以//DE 平面PAB ;(2)如图1,取BD 的中点F ,连结PF 、AF .由已知底面ABC ∆在半圆O 上,BC 为圆O 的直径,可得AD AB ⊥.因为4AB AD ==,所以2242BD AB AD =+=,所以22FA FB FD ===.又4PB PD ==,则有22232PB PD BD +==,所以PB PD ⊥,22FP =所以22216FP FB PB +==,22216FP FA PA +==,22216FP FD PD +==,所以FP FB ⊥,FP FA ⊥,FP FD ⊥,又FA FB F = ,FA ⊂平面ABD ,FB ⊂平面ABD .所以PF ⊥平面ABD .如图2,建立如图所示的空间直角坐标系,由4AB AD ==,2PF =,可得8AC =,所以(0A ,0,0),(0B ,4,0),(4D ,0,0),(8C ,0,0),(2F ,2,0),(2,2,22)P ,所以(0,4,0)AB = ,(8,4,0)BC =- ,(2,2,22)BP =- .设1111(,,)n x y z = 为平面PAB 的一个法向量,则11111140220n AB y n BP x y ⎧⋅==⎪⎨⋅=-+=⎪⎩,取1(n = ,设2222(,,)n x y z = 为平面PBC 的一个法向量,则2222222840220n BC x y n BP x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取2n = ,设平面PAB 与平面PBC 的夹角为1θ,则1211212||cos |cos |||||n n n n n n θ⋅=〈⋅〉==.7.某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E 、F 、G 分别是边长为4的正方形的三边AB 、CD 、AD 的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB 、CG 就得到了一个“刍甍”(如图2).(1)若O 是四边形EBCF 对角线的交点,求证://AO 平面GCF ;(2)若二面角A EF B --的大小为23π,求平面OAB 与平面ABE 夹角的余弦值.【解答】解:(1)取CF 的中点H ,连接GH ,OH ,如图所示, 四边形EBCF 是矩形,且2CB BE =,O ∴为线段BF 与CE 的中点,//OH BC ∴,且12OH BC =,由图1可知,//AG BC 且12AG BC =,//EF BC ,且EF BC =,∴在图2中,//AG BC 且12AG BC =,//AG OH ∴且AG OH =,∴四边形AOHG 是平行四边形,//AO GH ∴,又AO ⊂/ 平面GCF ,GH ⊆平面GCF ,//AO ∴平面GCF .(2)由图1可知,EF AE ⊥,EF BE ⊥,折起后在图2中仍有EF AE ⊥,EF BE ⊥,AEB ∴∠即为二面角A EF B --的平面角,23AEB π∴∠=,以E 为坐标原点,EB ,EF 分别为x 轴和y 轴正方向,建立空间直角坐标系,如图所示,设224CB BE EA ===,则(0E ,0,0)(2B ,0,0),(0F ,4,0),(1O ,2,0),又EF AE ⊥ ,EF BE ⊥,AE BE E = ,EF ∴⊥平面AEF ,∴点A 在xOz 平面上,∴(0EF = ,4,0)为平面ABE 的一个法向量,又23AEB π∠= ,2AE =,(1A ∴-3),∴(2OA =- ,2-3),(1OB = ,2-,0),设平面OAB 的一个法向量为(n x = ,y ,)z ,则00OA n OB n ⎧⋅=⎪⎨⋅=⎪⎩ ,即223020x y z x y ⎧--=⎪⎨-=⎪⎩,取1y =得223x z =⎧⎪⎨=⎪⎩∴(2,1,23)n = ,∴平面OAB 与平面ABE 夹角的余弦值为|cos EF < ,17|17||||417EF n n EF n ⋅>==⨯ .8.如图,三棱台111ABC A B C -中,1122AB BC B C ===,D 是AC 的中点,E 是棱BC 上的动点.(1)试确定点E 的位置,使1//AB 平面1DEC ;(2)已知1AB BC ⊥,1CC ⊥平面ABC .设直线1BC 与平面1DEC ,所成的角为θ,试在(1)的条件下,求cos θ的最小值.【解答】解:(1)连接1DC ,DE ,三棱台111ABC A B C -中,1122AB BC B C ===,D 是AC 的中点,E 是棱BC 上的动点,11//A C AD ∴,11A C AD =,∴四边形11ADC A 为平行四边形,11//AA DC ∴,1AA ⊂/平面1DEC ,1DC ⊂平面1DEC ,1//AA ∴平面1DEC ,又1//AB 平面1DEC ,且1AB ,1AA ⊂平面11ABB A ,11AB AA A = ,∴平面11//ABB A 平面1DEC ,又平面11ABB A ⋂平面ABC AB =,平面ABC ⋂平面1DEC DE =,//DE AB ∴,D 是AC 中点,E ∴是BC 的中点,E ∴在BC 的中点处,1//AB 平面1DEC ;(2)1CC ⊥ 平面ABC ,AB ⊂平面ABC ,1CC AB ∴⊥,又1AB BC ⊥,111CC BC C = ,AB ∴⊥平面11BCC B ,BC ⊂ 平面11BCC B ,AB CB ∴⊥,由(1)知E 是BC 的中点,D 是AC 的中点,//DE AB ∴,DE BC ∴⊥,连接1B E ,11//B C EC ,11B C EC =,∴四边形11B C CE 是平行四边形,11//CC B E ∴,1CC ⊥ 平面ABC ,1B E ∴⊥平面ABC ,ED ∴,EC ,1EB 两两垂直,建立如图所示的空间直角坐标系,设1B E a =,则(0E ,0,0),(1B -,0,0),(1C ,0,0),(0D ,1,0),1(1C ,0,)a ,1(0B ,0,)a ,∴(0ED = ,1,0),1(1EC = ,0,)a ,设平面1DEC 的法向量为(m x = ,y ,)z ,则100ED m y EC m x az ⎧⋅==⎪⎨⋅=+=⎪⎩ ,取x a =,则(m a = ,0,1)-,又1(2BC = ,0,)a ,1sin |cos BC θ∴=< ,11||1|3||||BC m m BC m ⋅>====⋅ ,当且仅妆224a a =,即a =要使cos θ的最小值,只需要sin θ最大,sin 最大值为13,此时cos θ==.《中档解答题计划》——专题训练5——解析几何1.已知点(1,0)A -,(2,0)B ,(4,4)N -,动点M 满足||1||2MA MB =,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)求过点N 与曲线C 相切的直线方程;(3)曲线C 与圆2220x y y +-=相交于E ,F 两点,求||EF .【解析】:(1)因为点(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设(,)M x y12=,化简得22(2)4x y ++=.(2)由(1)可知曲线C 为圆心为(2,0)-,半径为2的圆.设过点N 的切线方程为(4)4x k y =--,即440ky x k ---=,所以圆心(2,0)-到切线的距离为半径,2=,所以0k =或43k =-,所以直线4x =或444()4033y x ---⨯--=,即切线方程为4x =或4340y x +-=.(3)曲线22:(2)4C x y ++=,①圆2220x y y +-=,②①-②得2y x =,圆心(2,0)-到直线2y x =的距离d ==,所以弦长||5EF ===.2.设椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F 、2F ,离心率12e =,长轴为4,且过椭圆右焦点2F 的直线l 与椭圆C 交于M 、N 两点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若2OM ON ⋅=- ,其中O 为坐标原点,求直线l 的斜率;(Ⅲ)若AB 是椭圆C 经过原点O 的弦,且//MN AB ,判断2||||AB MN 是否为定值?若是定值,请求出,若不是定值,请说明理由.【解析】:(Ⅰ)由题意可得2222412a c e a b a c=⎧⎪⎪==⎨⎪=-⎪⎩,解得24a =,23b =,所以椭圆C 的标准方程为:22143x y +=;(Ⅱ)由(Ⅰ)可得右焦点2(1,0)F ,()i 当直线l 的斜率为0时,则直线l 的方程为0y =,代入椭圆的方程可得24x =,即2x =±,设(2,0)M -,(2,0)N ,则42OM ON ⋅=-≠- ,所以可得直线l 的斜率不为0,()ii 斜率不为0时,设直线l 的方程为:1x my =+,设1(M x ,1)y ,2(N x ,2)y ,联立2213412x my x y =+⎧⎨+=⎩,整理可得:22(43)690m y my ++-=,因为2F 在椭圆内部,显然△0>,122643m y y m +=-+,122943y y m -=+,222212*********96412(1)(1)()11434343m m m x x my my m y y m y y m m m ---=++=+++=++=+++,所以2121222941224343m OM ON x x y y m m --⋅=+=+=-++ ,整理可得:212m =,解得m =即直线l的斜率1k m ==3.已知抛物线22(0)y px p =>,过点(1,0)-向抛物线引切线,斜率为1,切点为P .(1)求抛物线的标准方程;(2)已知H ,T 是抛物线上的两点,90HPT ∠=︒,HPT ∆的重心G 在x 轴上,PG 交HT 于点M ,求直线HT的方程.【解析】:(1)易知切线方程为1y x =+,将1x y =-代人22y px =,整理得2220y py p -+=,△2480p p =-=,解得2p =,故抛物线的标准方程为24y x =;(2)由(1)知2440y y -+=,解得2y =,即点P 的纵坐标为2,故(1,2)P ,又G 为HPT ∆的重心,故M 为HT 的中点,则由23PG PM = 可得M 点的纵坐标1M y =-,由题意易知直线HT 的斜率一定存在且不为0,设1(H x ,1)y ,2(T x ,2)y ,则121222121212442244HT M y y y y k y y x x y y y --=====--+-.设HT 的方程为2y x m =-+,将2m y x -=代人24y x =,整理得2220y y m +-=,故122y y m =-,122y y +=-,因为90HPT ∠=︒,所以121222111y y x x --⋅=---,即1222122211144y y y y --⋅=---,整理得12122()200y y y y +++=,即24200m --+=,解得8m =,故直线HT 的方程为28y x =-+.4.已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b +=>>的左、右焦点,离心率12e =,点E 在椭圆C 上,△12EF F(Ⅰ)求C 的方程;(Ⅱ)设C 的上、下顶点分别为A ,B ,点M 是C 上异于A ,B 的任意一点,直线MA ,MB 分别与x 轴交于P ,Q 两点,O 为坐标原点,证明:||||OP OQ ⋅为定值.【解析】:(Ⅰ)设C 的半焦距为(0)c c >,由题意可得22212122c e a c b c a b ⎧==⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩24a =,23b =,所以C 的方程为:22143x y +=;(Ⅱ)证明:由题意可得A,(0,B ,设椭圆上任意一点0(M x,00)(y y ≠,则22003124x y =-,所以直线AM的方程为00y y x x =+BM的方程为00y y x x -=-令0y =,得P x =,Q x =,所以220022003124||||||4|3||3|x yOP OQy y-⋅=⋅====--为定值.。
新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
中职数学基础模块下立体几何测试题 (一)

中职数学基础模块下立体几何测试题 (一)
中职数学基础模块下的立体几何是数学知识中的重要内容之一,本文
将根据中职数学基础模块下的立体几何测试题,从以下几点进行分析。
一、二维与三维
立体几何是几何的一个分支,与平面几何、解析几何等其他几何分支
不同,它关注的是三维模型,如正方体、球体、棱柱等。
而在立体几
何中存在一些与二维几何相似的概念,如点、线、面等,但这些概念
在立体几何中具有更加丰富的内涵,需要结合三维模型进一步理解。
二、空间距离
在立体几何中,我们还需要掌握空间距离的概念。
空间距离表示的是
物体之间的距离,需要在三维模型的基础上进行计算。
例如,在确定
两个顶点之间的距离时,我们需要绘制一条连接这两个顶点的线段并
计算其长度。
三、基本图形
正方体、球体、棱柱等是立体几何中的基本图形,在掌握这些基本图
形的基础上,我们才能进一步理解和掌握其他复杂的立体模型。
例如,当我们要确定一个棱锥的体积时,我们需要先将其分解为一个棱锥和
一个棱柱,再进行计算。
四、综合运用
在立体几何测试题中,我们需要综合应用上述知识点来解决问题。
例
如,可能会给出一个立方体的体积和表面积,要求我们根据这些数据
计算其边长;或者可能会要求我们计算一个锥体的侧面积和总表面积,需要我们首先将其进行分解。
总之,立体几何作为数学知识中的一部分,其相关概念和计算方法是
非常重要的,而在学习和应用的过程中,需要结合不同的题目进行理
解和练习,不断提高自己的认知水平和实际应用能力。
3立体几何及平面解析几何练习(含答案)

立体几何练习1.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定2.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为( ) A .43 B .23 C .433 D .33.在正三棱柱ABC-A 1B 1C 1中,若AB=2BB 1,则AB 1与C 1B 所成的角的大小为 ( )A.60ºB. 90ºC.105ºD. 75º4. 如图四棱锥P —ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,GD AG 31=,BG ⊥GC ,GB =GC =2,E 是BC 的中点. (1)求异面直线GE 与PC 所成的角的余弦值;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF ⊥GC ,求FCPF 的值.5.已知四棱锥S -ABCD 的底面ABCD 是正方形,SA ⊥底面ABCD ,E 是SC 上的任意一点.(1)求证:平面EBD ⊥平面SAC ;(2)设SA =4,AB =2,求点A 到平面SBD 的距离;6如图,四面体PABC 的六条边均相等,D E F 、、分别是AB BC CA 、、的中点,则下列四个结论中不成立...的是 ( )A .平面PDE ⊥平面ABCB .D F ⊥平面PAEC .BC //平面PDFD .平面PAE ⊥平面ABC 7已知四棱柱1111ABCD A B C D -的底面是边长为1的正方形,侧棱垂直底边ABCD 四棱柱,12AA =,E 是侧棱AA 1的中点,求(1)求异面直线BD 与B 1E 所成角的大小;(2)求四棱柱1111ABCD A B C D -的体积PA GB CD FE P A DF E C B.E A 1D 1C 1B 1AD CB平面解析几何(1)1a =“”是“直线x+y =0和直线0x ay -=互相垂直”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件(2)设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( )A .05=-+y xB .012=--y xC .042=--y xD .072=-+y x(3)直线1y x =-上的点到圆C :224240x y x y ++-+=的最近距离为( )A. 1B. 22C. 2-1D. 22-1(4)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( )A .3或3-B .3-或33C .33-或3D .33-或33(5)若圆22680x y x y +--=的过点(3 5),的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .106B .206C .306D .4066、已知圆C :012822=+-+y y x ,直线l :02=++a y ax . (I) 当a 为何值时,直线l 与圆C 相切;(Ⅱ) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.1、答案B2、B3、B5解析:(1)∵SA ⊥平面ABCD ,BD ⊂平面ABCD ,∴SA ⊥BD ,∵四边形ABCD 是正方形,∴AC ⊥BD ,∴BD ⊥ 平面SAC ,∵BD ⊂平面EBD ,∴平面EBD ⊥平面SAC .(2)设AC ∩BD =F ,连结SF ,则SF ⊥BD ,∵AB =2,SA =4,∴BD =22,SF =SA 2+AF 2=42+(2)2=32,∴S △SBD =12BD ·SF =12·22·32=6, 设点A 到平面SBD 的距离为h ,∵SA ⊥平面ABCD ,∴13·S △SBD ·h =13·S △ABD ·SA ,∴6·h =12·2·2·4,∴h =43, 即点A 到平面SBD 的距离为43. 6、A7 (1)解:连接B 1D 1 ED 1四棱柱中BD// B 1D 1,所以∠EB 1D 1或其补角为所求因为AA 1=2 AB=1 所以B 1D 1=ED 1=B 1E=2 ∠EB 1D 1=600因此异面直线BD 与B 1E 成600角 ……6分(2)因为21121=⨯⨯=-C A V 柱平面解析几何1——5 CADCB6解:将圆C 的方程012822=+-+y y x 配方得标准方程为4)4(22=-+y x , 则此圆的圆心为(0 , 4),半径为2.(Ⅰ) 若直线l 与圆C 相切,则有21|24|2=++a a . 解得43-=a . ………………6分 (Ⅱ) 解:过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎪⎪⎪⎩⎪⎪⎪⎨⎧====+++=.221,2,1|24|22222AB DA AC DA CD a a CD 解得1,7--=a . ∴直线l 的方程是0147=+-y x 和02=+-y x . ………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C D E B
M
立体解析综合题练习1
1.如图,正方形ADEF 与梯形ABCD 所在平面互相垂直, 已知//,AB CD AD CD ⊥,1
2
AB AD CD ==.
(Ⅰ)求证:BF //平面CDE ;
(Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值; (Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面
BDF 若存在,
求出EM EC
的值;若不存在,说明理由.
2.已知1(2,0)F -,2(2,0)F 两点,曲线C 上的动点P 满足12123
||||||2
PF PF F F +=. (Ⅰ)求曲线C 的方程;
(Ⅱ)若直线l 经过点(0,3)M ,交曲线C 于A ,B 两点,且1
2
MA MB =,求直线l 的方程.
立体解析综合题练习2
1. 在如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,BC AC ⊥,
且22====AE BD BC AC ,M 是AB 的中点. (Ⅰ)求证:CM ⊥EM ;
(Ⅱ)求平面EMC 与平面BCD 所成的锐二面角的余弦值; (Ⅲ)在棱DC 上是否存在一点N ,使得直线MN 与平面EMC
所成的角为60︒.若存在,指出点N 的位置;若不存在,请说明理由.
2.椭圆C:22
221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥==
(Ⅰ)求椭圆C 的方程;
(Ⅱ)若直线l 过圆M: x 2+y 2+4x-2y=0的圆心,交椭圆C 于,A B 两点,且A 、B 关于点M 对称,
求直线l 的方程.
立体解析综合题练习3
1.在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA //BE ,AB =PA =4,BE =2. (Ⅰ)求证:CE //平面PAD ;
(Ⅱ)求PD 与平面PCE 所成角的正弦值; (Ⅲ)在棱AB 上是否存在一点F ,使得
平面DEF ⊥平面PCE ?如果存在,求AF
AB
的值; 如果不存在,说明理由.
2.已知抛物线C :2
2y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上
异于O 的两点.
(Ⅰ)求抛物线C 的方程;
(Ⅱ)若直线OA ,OB 的斜率之积为1
2
-,求证:直线AB 过x 轴上一定点.
A
B
F
E
D C
立体解析综合题练习4
1.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD //BC ,AD DC ⊥,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 的中点,
1
2,1, 3.2
PA PD BC AD CD ===
== (I )求证:PQ AB ⊥;
(II )求直线PB 与平面PCD 所成角的正弦值; (III )求二面角P QB M --的余弦值.
2.已知椭圆,其短轴的一个端点到右焦点的距离为,且点在
椭圆上. 直线的斜率为,且与椭圆交于、两点.
(Ⅰ)求椭圆的方程; (Ⅱ)求面积的最大值.
立体解析综合题练习5
1.如图,棱柱ABCD —1111A B C D 的所有棱长都为2, AC BD O =,侧棱1AA 与底面ABCD 的所成角
为60°,1A O ⊥平面ABCD ,F 为1DC 的中点. (Ⅰ)证明:BD ⊥1AA ;
(Ⅱ)证明://OF 平面11BCC B ; (Ⅲ)求二面角D -1AA -C 的余弦值.
2.已知椭圆C 两焦点坐标分别为1(2,0)F -,2(2,0)F ,一个顶点为(0,1)A -. (Ⅰ)求椭圆C 的标准方程;
(Ⅱ)是否存在斜率为(0)k k ≠的直线l ,使直线l 与椭圆C 交于不同的两点,M N ,满足AM AN =. 若存在,求出k 的取值范围;若不存在,说明理由.
立体解析综合题练习6
1.如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面
ABCD 所成角为060.
(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求二面角D BE F --的余弦值;
(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.
2.已知椭圆C :22
221x y a b +=(0a b >>)过点(20),,且椭圆C 的离心率为12
.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M N ,两点,且P 为线段MN 中点,再过P 作直线l MN ⊥.证明:直线l 恒过定点,并求出该定点的坐标.
:M 22
221(0)x y a b a b
+=>>2A (2,1)M l 2
2
M B C M ABC ∆A
B
C
1
B 1
C 1
A D
F
1
D O
A B
C
D
F
E
立体解析综合题练习7
1.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,且//AD BC ,90ABC PAD ∠=∠=︒,侧面PAD ⊥底面ABCD . 若1
2
PA AB BC AD ===
. (Ⅰ)求证:CD ⊥平面PAC ;
(Ⅱ)侧棱PA 上是否存在点E ,使得//BE 平面PCD ?若存在,指出点E 的位置并证明,若不存
在,请说明理由;
(Ⅲ)求二面角A PD C --的余弦值.
2.已知直线022=+-y x 经过椭圆)0(1:22
22
>>=+b a b
y a x C 的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆上位于x
轴上方的动点,直线AS ,BS 与直线4=x l :分别 交于N M ,两点.
(Ⅰ) 求椭圆C 的方程;
(Ⅱ)(ⅰ) 设直线AS ,BS 的斜率分别为21,k k ,求证21k k ⋅为定值; (ⅱ)求线段MN 的长度的最小值.
立体解析综合题练习8
1.在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,
24BC AD ==,3EF =,2AE BE ==, G 是BC 的中点.
(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;
(Ⅲ) 求二面角C DF E --的余弦
2.已知椭圆()的长轴长是,且过点. (Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆交于两点,为椭圆的右焦点,直线与关于轴对称.求证:直线过定点,并求出该定点的坐标.
立体解析综合题练习9
1.在长方形11AA B B 中,124AB AA ==,C ,1C 分别是AB ,11A B 的中点(如图1). 将此长方形
沿1CC 对折,使二面角11A CC B --为直二面角,D ,E 分别是11A B ,1CC 的中点(如图2). (Ⅰ)求证:1C D ∥平面1A BE ; (Ⅱ)求证:平面1A BE ⊥平面11AA B B ; (Ⅲ)求直线1BC 与平面1A BE 所成角的正弦值.
2.已知直线与椭圆相交于两点,与轴相交于点,且当时,. (Ⅰ)求椭圆的方程;
(Ⅱ)设点的坐标为,直线,与直线分别交于,两点. 试判断以为直径的圆是否经过点?并请说明理由.
1:22
22=+b
y a x C 0>>b a 22)221( ,C )0(≠+=k m kx y l :C N M 、F MF NF x l :1()l x my m =+∈R ()22
:109x y C t t
+=>,E F x B 0m =8
3
EF =
C A (3,0)-AE AF 3x =M N MN B 图(1)
图(2)
C 1
B
C
A
A 1
B 1
B
C
A
D
E
A 1
B 1
C 1
M
Y S
D
N B
x
A
O
A B
P C
D
A D
F
E
B G C
立体解析综合题练习10
1.如图,在直三棱柱111ABC A B C -中,5AB AC ==,D ,E 分别为BC ,1BB 的中点,四边形11B BCC 是边长为6的正方形. (Ⅰ)求证:1A B ∥平面1AC D ; (Ⅱ)求证:CE ⊥平面1AC D ; (Ⅲ)求二面角1C AC D --的余弦值. 2
.
如
图
,
已
知
椭
圆
E:
2222
1(0)x y a b a b 的离心率为
32
,过左焦点(3,0)F -且斜率为k 的直线交椭圆E 于A,B 两点,线段AB 的中点为M,直线l :40x ky +=交椭圆E 于C,D 两点. (Ⅰ)求椭圆E 的方程; (Ⅱ)求证:点M 在直线l 上;
(Ⅲ)是否存在实数k ,使得四边形AOBC 为平行四边形?若存在求出k 的值,若不存在说明理由.。