2.2.1平面向量基本定理(用)

合集下载

2.2.1平面向量的基本定理

2.2.1平面向量的基本定理
+λ2e2表示吗?
e1 a a=λ1e1+0e2
e2 a
a=0e1+λ2e2
如果 e1 , e2 是同一平面内的两个
不共线的向量,那么对于这一平面内
的任意向量 a ,有且只有一对实数λ 1
λ 、 2 ,使
a =λe1 +λe2 1 2
我们把不共线的向量 e1 ,e2 叫做 表示这一平面内所有向量的一组基底.
B.平行于第一、三象限的角平分线
C.平行于y轴
D.平行于第二、四象限的角平分线
解析: 本题考查平面向量的基本概念、坐标运算。 a b (0,1 x 2 ) 取y轴的单位向量j=(0,1),则a+b= (1+x2)j ∴(a+b)∥j,故向量a+b平行于y轴,故选C
2(2007全国)把函数y=ex的图像按向量a=(2,0)平 移,得到y=f (x)的图像,则f (x)=( C ) A.ex+2 C. ex-2 B.ex-2 D.ex+2
C
B
A
O -3e1
2e2
例2 : 如图,ABCD的两条对角线相交于点M,且 AB = a AD = b , ,用a、表示MA、 、 和MD. b MB MC
解:在 ABCD中, ∵ AC = AB + AD = a + b DB = AB - AD = a - b
例1:已知向量e1 ,e2 (如图),求作向量 - 3e1 + 2e2 .
作法: 1.如图,任取一点O , 作OA = -3e1 , OB = 2e2 .

平行向量基本定理

平行向量基本定理
11小组长分配讨论任务小组长分配讨论任务分层讨论先一对一讨论再小分层讨论先一对一讨论再小组讨论
1
第二章
2Hale Waihona Puke 向量2.2向量的分解与向量的坐标运算
2.2.1 平面向量的基本定理
3

Company Logo
知识准备答案:
合作探究(8分钟)
讨论要求:
1、小组长分配讨论任务,分层讨论,先一对一讨论,再小 组讨论。
其他同学:认真思考,注意倾听,补充质疑,做好笔记。
2、注重效率,组长调控,做好展示、讲评准备。
3、大声参与,激情投入。
展示问题 探究一:1 探究二:2 探究三:3 探究四:4
展示 1组b1 4组b2 5组b2 6组b1
点评 5组a1 2组a2 7或4组a1 3组a2
展示要求:标好题号,书写规范,注重小结。 点评要求:面向同学,仪态大方,言简意赅,拓展提升。

平面向量基本定理

平面向量基本定理

平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。

2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。

同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。

故A×B=C×A+B,即平面向量基本定理得证。

3、应用:平面向量基本定理主要应用于平面向量运算。

它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。

4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。

(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。

平面向量基本定理及坐标表示讲义

平面向量基本定理及坐标表示讲义

专题3:平面向量基本定理及坐标表示核心知识点1:平面向量基本定理1.平面向量基本定理(1)由平面向量基本定理可知,在平面内任一向量都可以沿两个不共线的方向分解成两个向量的和,且这样的分解是唯一的,同一个非零向量在不同的基底下的分解式是不同的,而零向量的分解式是唯一的,即0=λ1e 1+λ2e 2,且λ1=λ2=0.(2)对于固定的e 1,e 2(向量e 1与e 2不共线)而言,平面内任一确定的向量的分解是唯一的,但平面内的基底却不唯一,只要平面内的两个向量不共线,就可以作为基底,它有无数组.(3)这个定理可推广为:平面内任意三个不共线的向量中,任何一个向量都可表示为其余两个向量的线性组合且形式唯一.核心知识点2:平面向量的正交分解及坐标表示1.平面向量的正交分解把一个平面向量分解为两个互相垂直的向量,叫做平面向量的正交分解.2.平面向量的坐标表示(1)基底:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.(2)坐标:对于平面内的一个向量a ,有且只有一对实数x 、y ,使得a =x i +y j ,我们把有序实数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做向量a 在x 轴上的坐标,y 叫做向量a 在y 轴上的坐标.(3)坐标表示:a =(x ,y )就叫做向量的坐标表示.(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0).3.向量与坐标的关系设OA →=x i +y i ,则向量OA →的坐标(x ,y )就是终点A 的坐标;反过来,终点A 的坐标就是向量OA →的坐标(x ,y ).因此,在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示.即以原点为起点的向量与实数对是一一对应的.【知识微点评】点的坐标与向量的坐标的联系与区别点的坐标反映的是点的位置,而向量的坐标反映的是向量的大小和方向,向量仅由大小和方向决定,与位置无关.1.联系:(1)当且仅当向量的起点为原点时,向量终点的坐标等于向量本身的坐标.(2)两个向量相等,当且仅当它们的坐标相同.即若a =(x 1,y 1),b =(x 2,y 2),则a =b ⇔⎩⎪⎨⎪⎧x 1=x 2,y 1=y 2. 注意:相等向量的坐标是相同的,但是两个相等向量的起点、终点的坐标却可以不同.2.区别:(1)书写不同,如a =(1,2),A (1,2).(2)给定一个向量,它的坐标是唯一的;给定一个有序实数对,由于向量可以平移,故以这个有序实数对为坐标的向量有无穷多个.因此,符号(x ,y )在平面直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量.为了加以区分,在叙述中,常说点(x ,y )或向量(x ,y ).4.平面向量的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:核心知识点3:平面向量的垂直与平行1.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2=x 2y 1时,a ∥b .【知识微点评】两个向量共线条件的三种表示方法已知a =(x 1,y 1),b =(x 2,y 2).(1)当b ≠0时,a =λb .这是几何运算,体现了向量a 与b 的长度及方向之间的关系.(2)x 1y 2-x 2y 1=0.这是代数运算,用它解决向量共线问题的优点在于不需要引入参数“λ”,从而减少未知数的个数,而且使问题的解决具有代数化的特点和,程序化的特征.(3)当x 2y 2≠0时,x 1x 2=y 1y 2. 即两向量的相应坐标成比例,通过这种形式较易记忆向量共线的坐标表示,而且不易出现搭配错误.2.平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2). 数量积 两个向量的数量积等于它们对应坐标的乘积的和,即a·b =x 1x 2+y 1y 2 两个向量垂直 a ⊥b ⇔x 1x 2+y 1y 2=0知识微点评】1.公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.2.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.3.平面向量的模与夹角的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表:坐标表示模 |a |2=x 21+y 21或|a |=x 21+y 21 设A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2夹角cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21x 22+y 22(a ,b 为非零向量) 【知识微点评】向量的模的坐标运算的实质向量的模即向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离.同样,若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=(x 2-x 1)2+(y 2-y 1)2,即平面直角坐标系中任意两点间的距离.由此可知,向量的模的坐标运算的实质为平面直角坐标系中两点间的距离的运算. 必考必会题型1:用基底表示向量【典型例题】在平行四边形ABCD 中,,且,则λ+μ= .【题型强化】1.如图,在△ABC 中,,P 是BN 上的一点,若m ,则实数m 的值为 .2.如图,已知,与的夹角为60°,与的夹角为30°,,用,表示,则.【名师点睛】用基底表示向量的两种基本方法:用基底表示向量的基本方法有两种:一种是运用向量的线性运算对待求向量不断地进行转化,直至用基底表示为止;另一种是通过列向量方程(组),利用基底表示向量的唯一性求解.必考必会题型2:平面向量基本定理在平面几何中的应用【典型例题】如图,在长方形ABCD中,E为边DC的中点,F为边BC上一点,且.设.(Ⅰ)试用基底{,},表示;(Ⅱ)若G为长方形ABCD内部一点,且.求证:E,G,F三点共线.【题型强化】1.如图所示,在△ABO中,,,AD与BC相交于点M.设,.(1)试用向量表示;(2)在线段AC上取点E,在线段BD上取点F,使EF过点M.设,其中λ,μ∈R.当EF与AD重合时,λ=1,μ,此时5;当EF与BC重合时,λ,μ=1,此时5;能否由此得出一般结论:不论E,F在线段AC,BD上如何变动,等式5恒成立,请说明理由.2.如图,M为△ABC的中线AD的中点,过点M的直线分别交AB,AC两边于点P,Q,设,请求出x、y的关系式,并记y=f(x)(1)求函数y=f(x)的表达式;(2)设△APQ的面积为S1,△ABC的面积为S2,且S1=kS2,求实数k的取值范围.(参考:三角形的面积等于两边长与这两边夹角正弦乘积的一半.)必考必会题型3:平面向量坐标运算【典型例题】已知向量,.那么向量的坐标是.【题型强化】1.已知A(﹣4,6),B(2,4),点P在线段AB的延长线上,且||||,则点P的坐标为.2.如图所示,在平面直角坐标系中,(2,﹣3),则点D的坐标为.【名师点睛】利用向量线性运算的坐标表示解决有关问题的基本思路:1.向量的线性运算的坐标表示主要是利用加、减、数乘运算法则进行的,若已知有向线段两端点的坐标,则应先求出向量的坐标,然后再进行向量的坐标运算,另外解题过程中要注意方程思想的运用.2.利用向量线性运算的坐标表示解题,主要根据相等向量的坐标相同这一原则,通过列方程(组)进行求解.3.利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出相应系数.必考必会题型4:向量共线、垂直的坐标表示的应用【典型例题】已知向量(1,3),(2,),若单位向量与2平行,则.【题型强化】1.已知向量(1,3),(﹣2,1),(3,2).若向量与向量k共线,则实数k=.2.已知2,2,与的夹角为45°,且λ与垂直,则实数λ=.【名师点睛】根据向量共线、垂直求参数的值的基本思路:借助两向量平行和垂直的条件求解某参数的值,是向量坐标运算的重要应用之一,具体做法就是先借助或(其中,),列关于某参数的方程(或方程组),然后解之即可.必考必会题型5:向量坐标运算与平面几何的交汇【典型例题】如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【题型强化】1.如图,平行四边形ABCD中,E,F分别是AD,AB的中点,G为BE与DF的交点.若,.(1)试以,为基底表示,;(2)求证:A,G,C三点共线.2.如图,在△ABC中,AB=8,AC=5,BC=7,O为△ABC的外心,,求x,y的值.【名师点睛】利用向量解决平面几何问题的基本思路:利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,其解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算转化为代数问题来解决.必考必会题型6:向量坐标运算与三角函数的交汇【典型例题】设向量.(1)当时,求的值;(2)若,且,求的值.【题型强化】1.已知△ABC内角A,B,C的对边分别为a,b,c,向量(cos A,a﹣2b),(2c,1)且.(1)求角C;(2)若c=2,△ABC的面积为,求△ABC的周长.2.已知A,B,C为△ABC的三个内角,向量(2﹣2sin A,sin A+cos A)与向量(sin A﹣cos A,1+sin A)共线,且角A 为锐角.(Ⅰ)求角A 的大小; (Ⅱ)求函数的值域. 【名师点睛】解决数量积的坐标表示与三角函数交汇问题的基本思路: 先运用平面向量数量积的坐标表示的相关知识(平面向量数量积的坐标表示、平面向量模与夹角的坐标表示、平面向量平行与垂直的坐标表示等)将问题转化为与三角函数有关的问题(如化简、求值、证明等),再利用三角函数的相关知识求解即可.解决这类问题时应注意充分挖掘题目中的隐含条件,使问题得到快速解决,注意到,可以简化运算. 【课后巩固】 1.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .-3B .-2C .2D .32.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC 3.已知向量(sin ,2),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( )A .1B .2C .12D .34.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( ) A .1233AD AB - B .2133AD AB + C .2133AD AB - D .1233AD AB + 5.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11 D .126.已知向量a,b 满足a 1=,a b 1⋅=-,则a (2a b)⋅-=A .4B .3C .2D .07.设向量a =(1,0),b =(−1,m ),若()a ma b ⊥-,则m =_________.8.已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 9.已知()2,1a =--,(),1b λ=,若a 与b 的夹角α为钝角,则实数λ的取值范围为______. 10.已知向量a =(﹣1,2),b =(m ,1),若()a b a +⊥,则m=_________.11.在平面直角坐标系xoy 中,已知向量2(,2m =,(sin ,cos )n x x =,(0,)2x π∈. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值. 12.已知平面向量()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥.(1)求b 和c ; (2)若2m a b =-,n a c =+,求向量m 与向量n 的夹角的大小.13.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,(,),(,)p a c b q b a c a =+=--,若//p q , (1)求角C 的大小;(2)若()cos 23ab C c =,求11tan tan A B +的值.。

高中数学 第二章 平面向量 2.2 向量的分解与向量的坐标 2.2.1 平面向量基本定理示范教案 新人教B版必修4

高中数学 第二章 平面向量 2.2 向量的分解与向量的坐标 2.2.1 平面向量基本定理示范教案 新人教B版必修4

2.2.1 平面向量基本定理示范教案整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.教科书中,先用实例归纳出基本定理,然后做形式化的证明.教学时要注意,形式化证明可以省略,特别是唯一性证明,可能多数学生难以理解,但一定要对“唯一性”加以说明,以便应用唯一性解题.建议引导学生推导直线的向量表达式和中点公式.特别强调直线的向量表达式和中点公式应让学生记忆.三维目标1.通过探究活动,推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达,并通过例题的探究,掌握直线的向量表达式和中点公式.重点难点教学重点:平面向量基本定理和直线的向量表达式.教学难点:平面向量基本定理的灵活运用.课时安排1课时教学过程导入新课思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,用课件给出图象演示和讲解.通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题(1)给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?(2)如图1(1),设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,你能通过作图探究a与e1、e2之间的关系吗?(1) (2)图1活动:如图1(2),在平面内任取一点O ,作OA →=e 1,OB →=e 2,OC →=a .过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM →=λ1e 1,ON →=λ2e 2.由于OC →=OM →+ON →,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.或先让学生计算特例,从感性猜想入手.如图2,e 1,e 2是两个不平行的向量,容易看出AB →=2e 1+3e 2,CD →=-e 1+4e 2, EF →=4e 1-4e 2,GH →=-2e 1+5e 2.图2由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.由此可得:平面向量基本定理:如果e 1和e 2是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2,使a =a 1e 1+a 2e 2.教师强调:①我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底,记为{e 1,e 2},a 1e 1+a 2e 2叫做向量a 关于基底{e 1,e 2}的分解式;②基底不唯一,关键是不共线;③由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解; ④基底给定时,分解形式唯一.接下来教师可引导学对该定理给出证明.证明:在平面内任取一点O(如图3),作OE 1→=e 1,OE 2→=e 2,OA →=a .图3由于e 1与e 2不平行,可以进行如下作图:过点A 作OE 2的平行(或重合)直线,交直线OE 1于点M ,过点A 作OE 1的平行(或重合)直线,交直线OE 2于点N ,于是依据平面向量基本定理,存在两个唯一的实数a 1,a 2,分别有OM →=a 1e 1,ON →=a 2e 2,所以a =OA →=OM →+ON →=a 1e 1+a 2e 2.证明表示的唯一性:如果存在另一对实数x ,y 使OA →=x e 1+y e 2,则a 1e 1+a 2e 2=x e 1+y e 2,即(x -a 1)e 1+(y -a 2)e 2=0.由于e 1与e 2不平行,如果x -a 1,y -a 2中有一个不等于0,不妨设y -a 2≠0,则e 2=-x -a 1y -a 2e 1,由平面向量基本定理,得e 1与e 2平行.这与假设矛盾,因此x -a 1=0,y -a 2=0,即x =a 1,y =a 2.讨论结果:(1)(2)略. 应用示例思路1例 1如图4,ABCD 中,AB →=a ,AD →=b ,H 、M 分别是AD 、DC 的中点,F 使BF =13BC ,以a ,b 为基底分解向量AM →与HF →.图4解:由H 、M 、F 所在位置,有AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a .HF →=AF →-AH →=AB →+BF →-AH →=AB →+13BC →-12AD →=AB →+13AD →-12AD →=a -16b .点评:以a 、b 为基底分解向量AM →与HF →,实为用a 与b 表示向量AM →与HF →.变式训练已知ABCD 的两条对角线相交于点M ,设AB →=a ,AD →=b .试用基底{a ,b }表示MA →,MB →,MC →和MD →(图5)图5解:因为AC →=AB →+AD →=a +b , DB →=AB →-AD →=a -b ,MA →=-12AC →=-12(a +b )=-12a -12b ,MB →=12DB →=12(a -b )=12a -12b ,MC →=12AC →=12a +12b ,MD →=-12DB →=-12a +12b .例 2 如图6,质量为10 kg 的物体A 沿倾斜角为θ=30°的斜面匀速下滑,求物体受到的滑动摩擦力和支持力.(g =10 m/s 2)图6解:物体受到三个力:重力AG →,斜面支持力AN →,滑动摩擦力AM →.把重力AG →分解为平行于斜面的分力AF →和垂直于斜面的分力AE →.因为物体做匀速运动,所以AN →=-AE →,AM →=-AF →.因为|AG →|=10(kg)×10(m/s 2)=100(N), |AF →|=|AG →|·sin30°=100×12=50(N),|AE →|=|AG →|·cos30°=100×32=503(N),所以|AM →|=|AF →|=50(N),|AN →|=|AE →|=503(N).答:物体所受滑动摩擦力大小为50 N ,方向沿斜面平行向上;所受斜面支持力大小为50 3 N ,方向与斜面垂直向上.例 3下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A .①② B.②③ C .①③ D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解析:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B图7.a>0,b<0 .a<0,b<0 思路2例 1如图8,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →.图8活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a=a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎩⎪⎨⎪⎧a 1=b 1,a 2=b 2.解:∵AM →=AN →+NM →,BM →=BN →+NM →,∴由AM →+2BM →+3CM →=0,得(AN →+NM →)+2(BN →+NM →)+3CM →=0.∴AN →+3NM →+2BN →+3CM →=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线, 设AN →=λBN →,CM →=μNM →,∴λBN →+3NM →+2BN →+3μNM →=0.∴(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴⎩⎪⎨⎪⎧λ=-2,μ=-1.∴CM →=-NM →=MN →. ∴CN →=CM →+MN →=2CM →=2a .点评:这里选取BN →,NM →作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形例 2如图9,△ABC 中,AD 为△ABC 边上的中线且AE =2EC ,求AG GD 及BGGE的值.图9活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化后,结合向量的相等进行求解.解:设AG GD =λ,BGGE =μ.∵BD →=DC →,即AD →-AB →=AC →-AD →, ∴AD →=12(AB →+AC →).又∵AG →=λGD →=λ(AD →-AG →), ∴AG →=λ1+λAD →=λ21+λAB →+λ21+λAC →.①又∵BG →=μGE →,即AG →-AB →=μ(AE →-AG →), ∴(1+μ)AG →=AB →+μAE →,AG →=11+μAB →+μ1+μAE →.又AE →=23AC →,∴AG →=11+μAB →+2μ31+μAC →.②比较①②,∵AB →、AC →不共线,∴⎩⎪⎨⎪⎧λ21+λ=11+μ,λ21+λ=2μ31+μ.解之,得⎩⎪⎨⎪⎧λ=4,μ=32.∴AG GD =4,BG GE =32. 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.3已知A ,B 是直线l 上任意两点,O 是l 外一点(如图10),求证:对直线l 上任意一点P ,存在实数t ,使OP →关于基底{OA →,OB →}的分解式为OP →=(1-t)OA →+tOB →. ① 并且,满足①式的点P 一定在l 上.证明:设点P 在直线l 上,则由平面向量基本定理知,存在实数t ,使AP →=tAB →=t(OB →-OA →).图10所以OP →=OA →+AP →=OA →+tOB →-tOA →.所以点P 满足等式OP →=(1-t)OA →+tOB →,即有AP →=tAB →,即P 在l 上.点评:由本例可知,对直线l 上任意一点P ,一定存在唯一的实数t 满足向量等式①;反之,对每一个实数t ,在直线l 上都有唯一的一个点P 与之对应.向量等式①叫做直线l 的向量参数方程式,其中实数t 叫做参变数,简称参数.在①中,令t =12,点M 是AB 的中点,则OM →=12(OA →+OB →).课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,回忆我们是如何探究发现定理的?并通过思路2例3的证明又探究得到了线段AB 中点的向量表达式.教师点拨学生,在今后的学习中,要继续发扬这种勇于探索、勇于发现的科学精神.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图等,并把本节所学纳入知识体系中.作业课本本节练习B 组 2,3.设计感想1.本节课内容是在上节向量学习的基础上探究到的一个新定理——平面向量基本定理.教科书首先通过特例验证:对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题目.3.应充分借助多媒体进行教学,整节课的教学主线应以学生探究为主,教师给予引导和点拨.充分让学生经历分析、探究问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决问题的方法就越恰当而简捷.备课资料 一、三角形中三条中线共点的证明如图11所示,已知在△ABC 中,D 、E 、L 分别是BC 、CA 、AB 的中点,设中线AD 、BE 相交于点P.图11求证:AD 、BE 、CL 三线共点.分析:欲证三条中线共点,只需证明C 、P 、L 三点共线.证明:设AC →=a ,AB →=b ,则AL →=12b ,CL →=AL →-AC →=-a +12b .设AP →=mAD →,则AC →+CP →=m(AC →+CD →),CP →=(-1+m)AC →+mCD →=(-1+m)a +m[12(b -a )]=(-1+12m)a +12m b .①又设EP →=nEB →,则CP →-CE →=n(EC →+CB →),∴CP →=(1-n)CE →+nCB →=-12(1-n)a +n(b -a )=(-12-12n)a +n b .②由①②,得⎩⎪⎨⎪⎧-1+12m =-12-12n ,12m =n.解之,得⎩⎪⎨⎪⎧m =23,n =13.∴CP →=-23a +13b =23(-a +12b )=23CL →.∴C、P 、L 三点共线.∴AD、BE 、CL 三线共点.二、备用习题1.如图12所示,已知AP →=43AB →,AQ →=13AB →,用OA →、OB →表示OP →,则OP →等于( )图12A.13OA →+43OB → B .-13OA →+43OB →C .-13OA →-43OB → D.13OA →-43OB →2.已知e 1,e 2是两非零向量,且|e 1|=m ,|e 2|=n ,若c =λ1e 1+λ2e 2(λ1,λ2∈R ),则|c |的最大值为( )A .λ1m +λ2nB .λ1n +λ2mC .|λ1|m +|λ2|nD .|λ1|n +|λ2|m3.已知G 1、G 2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且A 1A 2→=e 1,B 1B 2→=e 2,C 1C 2→=e 3,则G 1G 2→等于( )A.12(e 1+e 2+e 3)B.13(e 1+e 2+e 3) C.23(e 1+e 2+e 3) D .-13(e 1+e 2+e 3) 4.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心5.已知向量a 、b 且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A 、B 、D B .A 、B 、C C .C 、B 、D D .A 、C 、D6.如图13,平面内有三个向量OA →、OB →、OC →,其中与OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.图13参考答案:1.B 2.C 3.B 4.B 5.A 6.611。

2.2.1 平面向量基本定理

2.2.1 平面向量基本定理

张喜林制2.2.1 平面向量基本定理考点知识清单1.平面向量基本定理如果21e e 、是同一平面内的两个不平行向量,那么对于这一平面内的任意向量a ,有且只有一对实数,21a a 、使不共线的向量21e e 、叫做表示这一平面内所有向量的一组 记为 . 叫做向量a 关于基底,{1e }2e 的分解式. 2.直线l 的向量参数方程式A 、B 是直线l 上任意两点,O 是l 外一点,则对于l 上任意一点P ,存在实数t ,使= 3.线段中点的向量表达式A 、B 是直线l 上任意两点,O 是l 外一点,M 是线段AB 的中点,则=要点核心解读1.平面向量基本定理平面向量基本定理如果1e 和2e 是同一平面内的两个不平行的向量,那么对该平面内的任一向量a ,存在唯一的一对实数,,21a a 使⋅+=2211e a e a a我们把不共线向量21e e 、叫做表示这一平面内所有向量的一组基底,记为221121},{e a e a e e +⋅叫做向量a 关于基底,{1e }2e 的分解式.2.直线l 的向量参数方程式及线段的中点的向量表达式已知A 、B 是直线L 上任意两点,O 是l 外一点(如图2 -2 -1-1所示),求证:对直线L 上任一点P ,存在实数t ,使OP 关于基底},{OB OA 的分解式为(﹡)并且,满足(﹡)式的点P 一定在L 上. (1)证明如下:证明:设点P 在直线L 上,则由平行向量基本定理知,存在实数t ,使).(t t -==所以AP OA OP +=t t -+=.)1(OB t OA t +-=设点P 满足等式,)1(t t +-=则=-),t -得到,t =即P 在L 上. (2)由上面证明可知,对直线L 上任意一点P ,一定存在唯一的实数t 满足向量等式(﹡);反之,对每一个数值t ,在直线L 上都有唯一的一个点P 与之对应,向量等式(﹡)叫做直线L 的向量参数方程式,其中实数t 叫做参变数,简称参数.(3)在(﹡)中,令,21=t 点M 是AB 的中点,则这是线段AB 的中点的向量表达式,典例分类抛析考点1概念辨析问题[例2] 如图2-2-1-2,设O 是平行四边形ABCD 两对角的交点,下列向量组:;与①;与②;与③,与④其中可作为这个平行四边形所在平面内表示它的所有向量的基底的是( ).①②.A ①③.B ①④.C ③④.D[试解] (做后再看答案,发挥母题功能) [解析] AB AD 与①不共线,BC DA BC DA BC DA 与②,//,-=共线, ③不共线.与④,//,-=共线,由平面向量基底的概念知①③可构成平面内所有向量的基底 [答案] B[点拨] 关键是看向量组中向量是否共线.1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是(其中i ,j 是不共线的一组向量)( ).;75,221j i e j i e +=+-=① ;10,5321j e j i e +=+=α② ⋅-=-=j i e j i e 4321,3221③ .A ① .B ①③ .C ②③ .D ①②③考点2 向量的基底表示问题[例2] 在平行四边形ABCD 中,设,,b BD a AC ==试用a 、b 表示.BC AB 、 [解析] 可以用转化法,也可用方程的思想求解, 解法一:设BD AC 、相交于点0,则有,2121,21b a ==== ∴ ,2121b a -=-=+=.2121b a +=+=+=解法二:设,,y x ==则有⎪⎩⎪⎨⎧=-=+,,BD AB AD AC BC AB 且,y BC AD ==即⎩⎨⎧=-=+,,b x y a y x ),(21),(21b a x b a y -=+=∴ 即 .2121,2121b a BC b a AB +=-=[点拨] 本题事实上是平面向量基本定理的应用,由于.BD AC 、不共线.所以平面内的所有向量都可以用它们表示.以上两种解法,思想方法有所不同,解法一通过观察图形,直接寻求向量之间的关系;解法二则采用了方程思想,即直接用、表示a 、b ,然后将、看做是未知量,利用方程思想,解得、AB ,BC 为使问题表达简单,采用了代换⋅==y BC x AB 、2.(1)如图2-2 -1 -3,已知梯形ABCD 中,//AB N M CD CD 、且,2AB .=分别是DC 、AB 的中点,设,,b a ==试以b a 、为基底表示.、、(2)设M 、N 、P 是△ABC 三边上的点,它们使,31,31,31BM ===若==AC a AB , ,b 试用a ,b 将表示出来.考点3 直线的向量参数方程应用[例3] 如图2 -2 -1-4,设一直线上三点A 、B 、P 满足O ),1(-=/=λλ是平面上任一点,则( ).λλ++=10.OB A A λλ-+=10.OB A B λλ+-=1.OB OA C λλ--=10.OBA D[试解] .(做后再看答案,发挥母题功能)[解析] 本题可直接运用直线l 的向量参数方程式判断,由直线的向量参数方程式,若P 在直线AB 上(或P 、A 、B 共线),则一定存在实数t ,使得,)1(t t +-=注意(1-,1)=+t t 本题也可直接利用向量减法的几何意义,构造向量方程.从而解出.解法一:∵ A 、B 、P 三点共线,∴ 一定存在实数t ,使得=,)1(OB t OA t +-而t 满足,1)1(=+-t t 选项中只有++λ11:A 1111=++=+λλλλ符合, 解法二:由,λ=得),.(-=-λ⋅-=/++=∴)1(10λλλ[答案] A[点拨] 本题实质上是直线向量参数方程的变式.3.设、不共线, P 点在AB 上,求证:μλ+=且⋅∈=+),(1R μλμλ 考点4证明几何问题[例4] 平面内有一个△ABC 和一点o(如图2-2 -1-5),线段OA 、OB 、OC 的中点分别为E 、F 、G ,BC 、CA 、AB 的中点分别为L 、M 、N ,设.,,c OC b OB a OA ===(1)试用a 、b 、c 表示向量;GN FM EL 、、⋅(2)证明线段GN FM EL 、、交于-点且互相平分.[解析] (1)结合图形,利用向量的加、减法容易表示出向量.(2)要证三条线段交于一点且互相平分,可考虑证明P 点到三条线段中点的向量相等.(1)如图2-2 -1-5.),(21,21c b a +==⋅-+=-=∴)(21a cb OE OL EL 同理⋅-+=-+=)(21),(21c b a GN b c a FM(2)证明:设线段EL 的中点为,1P 则).(41)0(211C b a L OP ++=+=设FM 、GN 的中点分别为,P 32、P 同理可求得).(41),(4132C b a OP C b a OP ++=++=,321OP ==∴即GN FM EL 、、交于一点,且互相平分. [点拨] 用向量法证明三线相交于一点且互相平分常用的方法是:在平面上找一点,证明这点到三条线段中点的向量相等,找点时,要考虑运算的简便性.4.证明:三角形重心与顶点的距离等于它到对边中点的距离的两倍。

平面向量基本定理推论

平面向量基本定理推论

平面向量基本定理推论1.引言1.1 概述概述部分的内容:在平面向量的研究中,平面向量基本定理是一个基础且重要的定理。

它是数学中向量的基本理论之一,描述了向量的基本性质和运算规律。

通过平面向量基本定理,我们可以深入理解和应用向量的概念,解决各种与向量相关的问题。

本文将以平面向量基本定理为基础,介绍其重要的推论。

这些推论是从平面向量基本定理中推导出来的,通过进一步分析和推理,得到了更具体、更实用的结论。

这些推论将帮助我们更好地理解和应用向量的性质,在解决实际问题中发挥重要作用。

通过对平面向量基本定理及其推论的学习,我们可以更深入地了解向量的几何和代数性质,进一步提升我们的数学思维和解题能力。

同时,这些推论也为我们进一步研究和应用向量提供了良好的基础。

本文将首先对平面向量基本定理进行简要介绍,然后详细阐述与该定理密切相关的两个重要推论。

最后,我们将对全文进行总结,并展望通过平面向量基本定理及其推论可以进一步拓展的领域和问题。

通过对这一主题的深入探讨,我们可以更好地理解平面向量的性质和运算,提高数学素养和问题解决能力。

同时,也为我们学习和研究其他相关数学理论打下了坚实的基础。

让我们开始这篇关于平面向量基本定理推论的探索吧!1.2文章结构文章结构部分的内容可以写成这样:1.2 文章结构本文主要分为三个部分,即引言、正文和结论。

- 引言部分(Section 1)对平面向量基本定理的推论进行了概述,说明了本文的背景和目的。

- 正文部分(Section 2)详细阐述了平面向量基本定理及其两个推论。

2.1小节介绍了平面向量基本定理的定义和特性,帮助读者建立起相关概念。

2.2小节阐述了推论1,探讨了其推导过程和应用。

2.3小节则讨论了推论2,深入分析了其意义和实际应用。

- 结论部分(Section 3)对全文进行了总结,并对未来可能的研究方向进行了展望。

通过以上的文章结构,读者可以逐步了解平面向量基本定理及其推论,并对其理论和应用有一个清晰的认识。

2.2.1平面向量基本定理概述.

2.2.1平面向量基本定理概述.

张喜林制2.2.1 平面向量基本定理考点知识清单1.平面向量基本定理如果21e e 、是同一平面内的两个不平行向量,那么对于这一平面内的任意向量a ,有且只有一对实数,21a a 、使不共线的向量21e e 、叫做表示这一平面内所有向量的一组 记为 . 叫做向量a 关于基底,{1e }2e 的分解式. 2.直线l 的向量参数方程式A 、B 是直线l 上任意两点,O 是l 外一点,则对于l 上任意一点P ,存在实数t ,使=OP 3.线段中点的向量表达式A 、B 是直线l 上任意两点,O 是l 外一点,M 是线段AB 的中点,则=要点核心解读1.平面向量基本定理平面向量基本定理如果1e 和2e 是同一平面内的两个不平行的向量,那么对该平面内的任一向量a ,存在唯一的一对实数,,21a a 使⋅+=2211e a e a a我们把不共线向量21e e 、叫做表示这一平面内所有向量的一组基底,记为221121},{e a e a e e +⋅叫做向量a 关于基底,{1e }2e 的分解式.2.直线l 的向量参数方程式及线段的中点的向量表达式已知A 、B 是直线L 上任意两点,O 是l 外一点(如图2 -2 -1-1所示),求证:对直线L 上任一点P ,存在实数t ,使关于基底},{的分解式为(﹡)并且,满足(﹡)式的点P 一定在L 上.(1)证明如下:证明:设点P 在直线L 上,则由平行向量基本定理知,存在实数t ,使).(t t -==所以AP OA OP +=t t -+=.)1(OB t OA t +-=设点P 满足等式,)1(t t +-=则=-),t -得到,t =即P 在L 上. (2)由上面证明可知,对直线L 上任意一点P ,一定存在唯一的实数t 满足向量等式(﹡);反之,对每一个数值t ,在直线L 上都有唯一的一个点P 与之对应,向量等式(﹡)叫做直线L 的向量参数方程式,其中实数t 叫做参变数,简称参数.(3)在(﹡)中,令,21=t 点M 是AB 的中点,则这是线段AB 的中点的向量表达式,典例分类抛析考点1概念辨析问题[例2] 如图2-2-1-2,设O 是平行四边形ABCD 两对角的交点,下列向量组:;与①;与②;与③,与④其中可作为这个平行四边形所在平面内表示它的所有向量的基底的是( ).①②.A ①③.B ①④.C ③④.D[试解] (做后再看答案,发挥母题功能) [解析] 与①不共线,与②,//,-=共线, DC CA 与③不共线.OB OD OB OD OB OD 与④,//,-=共线,由平面向量基底的概念知①③可构成平面内所有向量的基底 [答案] B[点拨] 关键是看向量组中向量是否共线.1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是(其中i ,j 是不共线的一组向量)( ).;75,221j i e j i e +=+-=① ;10,5321j e j i e +=+=α② ⋅-=-=j i e j i e 4321,3221③ .A ① .B ①③ .C ②③ .D ①②③考点2 向量的基底表示问题[例2] 在平行四边形ABCD 中,设,,b BD a AC ==试用a 、b 表示. [解析] 可以用转化法,也可用方程的思想求解, 解法一:设相交于点0,则有,2121,21b a ==== ∴ ,2121b a -=-=+=.2121b a BO OC OC BO BC +=+=+=解法二:设,,y x ==则有⎪⎩⎪⎨⎧=-=+,,AC BC AB 且,y ==即⎩⎨⎧=-=+,,b x y a y x ),(21),(21b a x b a y -=+=∴ 即 .2121,2121b a b a +=-=[点拨] 本题事实上是平面向量基本定理的应用,由于.BD AC 、不共线.所以平面内的所有向量都可以用它们表示.以上两种解法,思想方法有所不同,解法一通过观察图形,直接寻求向量之间的关系;解法二则采用了方程思想,即直接用BC AB 、表示a 、b ,然后将BC AB 、看做是未知量,利用方程思想,解得、,BC 为使问题表达简单,采用了代换⋅==y BC x AB 、2.(1)如图2-2 -1 -3,已知梯形ABCD 中,//AB N M CD CD 、且,2AB .=分别是DC 、AB 的中点,设,,b a ==试以b a 、为基底表示.、、(2)设M 、N 、P 是△ABC 三边上的点,它们使,31,31,31BM ===若==a , ,b 试用a ,b 将表示出来.考点3 直线的向量参数方程应用[例3] 如图2 -2 -1-4,设一直线上三点A 、B 、P 满足O ),1(-=/=λλ是平面上任一点,则( ).λλ++=10.A λλ-+=10.B λλ+-=1.C λλ--=10.D[试解] .(做后再看答案,发挥母题功能)[解析] 本题可直接运用直线l 的向量参数方程式判断,由直线的向量参数方程式,若P 在直线AB 上(或P 、A 、B 共线),则一定存在实数t ,使得,)1(OB t OA t OP +-=注意(1-,1)=+t t 本题也可直接利用向量减法的几何意义,构造向量方程.从而解出.解法一:∵ A 、B 、P 三点共线,∴ 一定存在实数t ,使得=,)1(t t +-而t 满足,1)1(=+-t t 选项中只有++λ11:A 1111=++=+λλλλ符合, 解法二:由,λ=得),.(-=-λ⋅-=/++=∴)1(10λλλOBA[答案] A[点拨] 本题实质上是直线向量参数方程的变式.3.设OB OA 、不共线, P 点在AB 上,求证:OB OA OP μλ+=且⋅∈=+),(1R μλμλ 考点4证明几何问题[例4] 平面内有一个△ABC 和一点o(如图2-2 -1-5),线段OA 、OB 、OC 的中点分别为E 、F 、G ,BC 、CA 、AB 的中点分别为L 、M 、N ,设.,,c b a ===(1)试用a 、b 、c 表示向量;、⋅(2)证明线段GN FM EL 、、交于-点且互相平分.[解析] (1)结合图形,利用向量的加、减法容易表示出向量.GN FM EL 、(2)要证三条线段交于一点且互相平分,可考虑证明P 点到三条线段中点的向量相等.(1)如图2-2 -1-5.),(21,21c b a +==⋅-+=-=∴)(21a cb 同理⋅-+=-+=)(21),(21c b a b c a FM(2)证明:设线段EL 的中点为,1P 则).(41)0(211C b a L OE OP ++=+=设FM 、GN 的中点分别为,P 32、P 同理可求得).(41),(4132C b a OP C b a OP ++=++=,321OP OP OP ==∴即GN FM EL 、、交于一点,且互相平分. [点拨] 用向量法证明三线相交于一点且互相平分常用的方法是:在平面上找一点,证明这点到三条线段中点的向量相等,找点时,要考虑运算的简便性.4.证明:三角形重心与顶点的距离等于它到对边中点的距离的两倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
M
思考1 AM呢?
1 1 AM a b 2 2
2013-5-17
A
a
B
小小基底作用大!
思考 2 在OAB中, 点C为直线AB上一点, 且 AC CB 1 , 设OA a, OB b, 试用基底a, b表示OC.
2.2.1平面向量基本定理
2013-5-17
给定两个不共线的向量e1, e2,可 依照速度的分解,平面内任一向 表示平面内任一向量a吗? 量a可作怎样的分解呢?
平行四边形法则
e2
e2
a
a
e1
a
a = e1 e2
e1
2013-5-17
设 e1、e2 是同一平面内的两个不共
线的向量,a 是这一平面内的任一向量,
2013-5-17
• 1.设 e1 ,e2 是同一平面内所有向量的一
组基底,则以下各组向量中,不能作 为基底的是( )


A.e1+ e2 和 e1 - e2 B.3e1 -2 e2 和4 e1 -6 e2 e C.e1 +2e和2e1 + 2D. e1+ e2 和 e2 2
N B O C
M
2013-5-17
思考题
2.平面直角坐标系中,O为坐标原
2013-5-17
点,已知两点A(3,1),B(-1,3),若点 C满足 OC =α OA +β OB ,其中,α、 β∈R,且α+β=1,则点C的轨迹方 程为 x+2y-5=0 ___________________________ _____.
所以不存在,故a,b不共线,可以作为一组基底。
=1 =1 2 3 =-2 =- 3
=(m+n) 1 +(-2m+3n) 2 e e
m n 3 m 2 所以 ,所以c = 2a+ b 2013-5-17 2m 3n 1 n 1
2013-5-17
类型一:作图
例1:已知向量e1, e2 (如图),求作向量-2.5e1 3e2 .
作法:
2.作
1.如图,任取一点O , 作OA 2.5e1
, OB 3e . 2
则, 就是所求的向量 OC
2.在△ABC中,设 AB =m, AC=n,D、E是边 2 BC上的三等分点,则 AD =______________, 1 1 2 3 AE =________________. 3 3 3
m+ n
m+ n
2013-5-17
3.已知
不共线的向量,且AB=2 e1 +ke2, CD
e1 , e2 是同一平面内两个
2013-5-17
平面向量基本定理
如果e1 , e2是同一平面内
两个不共线的向量 , 那么对于这一平面内的 任一向量a , 有且只有一对实数1 , 2 , 使 a 1e1 2 e2 .
1. 基底
e e1、 2 条件:
» 基底给定时,分解形式唯一. 探究定理内涵:
-2.5e1
OACB.
C
3e2
B
A
2013-5-17
O
类型二:知基底,表向量
例2 如图, ABCD的对角线AC和BD交于点M , AB a, AD b, 试用基底a、 b表示 MA, MB, MC 和 MD. D C
总结
1、平面向量基本定理内容 2、对基本定理的理解
(1)实数对λ1λ2的存在性和唯一性 (2)基底的不唯一性
3、平面向量基本定理的应用
求作向量、解(证)向量问题、
A、B、C三点共线 OC xOA yOB x y 1
4、思想方法总结:
待定系数法、反证法、数形结合 、转化思想、方程思想
例2.设e1,e2是不共线的非零向量, 且a = e1 - 2e2 ,b = e1 + 3e2

( )证明: 可以作为一组基底; 1 a,b (2)以a,b为基底,求向量c= 3e1 - e2的分解式;
A
a
OC 1 OA OB 1 1
O
C
A、B、C三点共线 OC xOA yOB x y 1
2013-5-17
b
B
练一练
(2011年中山高一检测)已知
三角形ABC中,D为AB上一点, 若AD=2DB,CD=1/3CA+xCB, 2/3 则x=----------
(1)证明:设a =λ ( R), b 则e1 - 2e2 =(e1 + 3e2 ),由e1, 不共线得 e2
(2)解:设c = m a + n b(m,n R)得 3e1 - e2 m(e1 - 2e2 ) n(e1 + 3e 2 )
检测:
=e1+ 3 e2 ,CB =3 e1 - e2 ,如果A,
B,D三点共线,则k的值 为 。
2013-5-17
思考题 (2007江西)如图,在Δ 练习:
ABC中,点O是BC的中点,过
点O的直线分别交直线AB,AC于不同的两点M,N, 若AB = mAM,AC = nAN,则m + n的值为________. A
2013-5-17
如果e1、e2是平面α内所有向量的一组基底,
那么( ) A.若实数λ1、λ2使λ1e1+λ2e2=0,则λ1=λ2=0 B.空间任一向量a可以表示为a=λ1e1+λ2e2,这 里λ1、λ2是实数 C.对实数λ1、λ2,λ1e1+λ2e2不一定在平面α内 D.对平面α中的任一向量a,使a=λ1e1+λ2e2的 实数λ1、λ2有无数对
2013-5-17
类型三:选基底,表向量
如图,已知梯形ABCD, AB CD, 且AB 2CD, M 、N 分别是DC、AB 的中点. M C D
请大家动手, 在图中确定一组基 底, 将向量 MN用这 组基底表示出来.

A
N
1 1 - e2 4
B
2013-5-17
=
e
.
类型四:基本定理的应用
1 2 不共线向量
2.基底组数:
无数组
3.定理中 1 、 2 的值是否唯一?
2013-5-17
特别的,若 a = 0 ,则有且只有 : ?若 1与 2中只有 1 = 2 = 0 可使 0 =
1 e1
+
2 e2 .
一个为零,情况会 是怎样?
特别的,若a与 e1 e2)共线,则有 ( 2 =0( 1 =0),使得: a = 1 e1 + 2 e2 .
我们研究 a 与 e1 e2 、 之间的关系。
e1
研究
2013-5-17
a
e2
OC = OM + ON = 即 a=
1OA 1e1 2e2 . +
A
+
2OB
C
e1
M a
a
N
e2
e2
O
2013-5-17
e1
B
2. 3. 1
平面向量基本定理
一组基底(base)
平面向量基本定理 如果e1 , e2是同一平面内 两个不共线的向量 , 那么对于这一平面内的 任一向量a , 有且只有一对实数1 , 2 , 使 a 1e1 2 e2 .
2013-5-17
类型四:基本定理的应用
例2.设e1, 2是不共线的非零向量, e 例题 且a = e1 - 2e2 ,b = e1 + 3e2

( )证明: 可以作为一组基底; 1 a,b (2)以a,b为基底,求向量c= 3e1 - e2的分解式;
相关文档
最新文档