平面向量基本定理

合集下载

平面向量基本定理

平面向量基本定理

平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。

2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。

同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。

故A×B=C×A+B,即平面向量基本定理得证。

3、应用:平面向量基本定理主要应用于平面向量运算。

它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。

4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。

(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。

平面向量基本定理

平面向量基本定理

记作 : a b
练习: 1 ABC是正三角形, AB与BC 的夹角是 _____ 2 已知 | a | 2,| b | 2,(a b) a, 则 a, b ___
例1、梯形ABCD中, AB / /CD, M , N分别 是DA, BC的中点, 且 DC k, 设 AB
AD e1, AB e2 以e1, e2为基 底表示向量 DC, BC, MN .
e
,e
来表示吗?
12
一、平面向量基本定理:
如果 e1,e2是同一平面内的两个不共线向量,那么对
于这一平面内的任一向量 a, 有且只有一对实数
使
a 1 e1 2 e2
1
, 2
,
我们把不共线的向量e1,e2叫做表示这一平面内所有向 量的一组基底.
特别地 当a 0,即1e1+2e2 =0 1=2 =0
(e1 e2 )
思考:
在平面直角坐标系中,每一个点都可用一对有序 实数(坐标)表示。那么,对直角坐标平面内的 每一个向量,如何表示?
设i1, j2分别与x轴、y轴方向相同的单位向量
a xi y j (x, y)
i (1,0) j (0,1)
y
ja
j
O
i
i
x
例3、写出图中向量a、 b、 c、 d 的 坐标
在向量加法的平行四边形法则中, a e e , a 可看
1
2
作是 e , e 的合成 ; 反过来, 也可看成是 a 的分解 .
1
2
e
aee
1
2
1
e 2
问题:1) 是不是每一个向量都可分解成两个不共线
的向量之和?这样的分解是否唯一?
2)

向量基本定理证明

向量基本定理证明

向量基本定理证明一、向量基本定理内容1. 平面向量基本定理- 如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ_1,λ_2,使a = λ_1e_1+λ_2e_2。

其中{e_1,e_2}叫做表示这一平面内所有向量的一个基底。

2. 空间向量基本定理- 如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p = xa+yb + zc。

{a,b,c}叫做空间的一个基底。

二、平面向量基本定理的证明1. 存在性证明- 设e_1,e_2是同一平面内的两个不共线向量,a是这一平面内的任一向量。

- 过向量a的起点O作平行于e_1,e_2的直线,与e_1,e_2所在的直线分别交于A,B两点。

- 因为e_1≠0,设→OA=λ_1e_1,同理设→OB=λ_2e_2。

- 根据向量加法的平行四边形法则,a=→OA+→OB=λ_1e_1+λ_2e_2。

2. 唯一性证明- 假设a=λ_1e_1+λ_2e_2=μ_1e_1+μ_2e_2,其中λ_1,λ_2,μ_1,μ_2∈ R。

- 则(λ_1 - μ_1)e_1+(λ_2-μ_2)e_2 = 0。

- 因为e_1,e_2不共线,所以λ_1-μ_1 = 0且λ_2-μ_2 = 0,即λ_1=μ_1,λ_2=μ_2。

三、空间向量基本定理的证明1. 存在性证明- 设a,b,c是不共面的三个向量,p是空间任一向量。

- 把向量a,b,c,p的起点都移到同一点O。

- 过点P作直线PP_1平行于c,且与平面OAB交于点P_1。

- 在平面OAB内,过点P_1作直线P_1P_2平行于b,交OA于点P_2。

- 过点P_2作直线P_2P_3平行于a,交OB于点P_3。

- 设→OP_3=x a,→P_3P_2=y b,→P_2P_1=z c。

- 由向量加法的三角形法则可得p=→OP=→OP_3+→P_3P_2+→P_2P_1=xa + yb+zc。

平面向量的基本定理及坐标表示 课件

平面向量的基本定理及坐标表示   课件

d
a AB (4,5) (2,2) (2,3)
yj
a (x,y)叫做向量 a 的坐标,记作
j
x a (x, y)
O
x叫做 a 在x轴上的坐标,
i xi
y叫做 a 在y轴上的坐标,
正交单位
基底
(1)向量
i ,
j
方向 与
(x,y)叫做向量的坐标表示.
x 轴y轴同向,且 i 1,0 j 0,1
i j 1, i 与j垂直
a (2)对于给定向量 ,必有一对实数(x,y)与它对应;
思考? 在平面直角坐标系中:

(x, y)

向量
(x, y)
平面向量的正角分解及坐标表示.
如图,光滑斜面上一个木块受到的重力
为G,下滑力为F1,木块对斜面的压力
为F2,这三个力的方向分别如何?
三者有何相互关系?
物理背景:
F1
向量的
G
F2
正交分解
三.平面向量的正角分解及坐标表示.
y
a xi +y j
一、平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e1,e2 叫做表示这一平面内 所有向量的 一组基底 .
说明: 1、把不共线的非零向量 e1,e2 叫做表示 这一平面内所有向量的一组基底.
两个非零向量 a,b
B
b
AOB 叫做向量
O aA
a 和 b 的夹角.注意:同起点
夹角的范围:(0 180 ) B
a
ObB
0
a

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。

(完整版)平面向量基本定理

(完整版)平面向量基本定理
a 与b 垂直, 记作 a b
例2.在等边三角形中,求 (1)AB与AC的夹角; (2)AB与BC的夹角。
C C'
1200
60
A
B
1. 平面向量基本定理 2.平面向量基本定理的应用 3.向量的夹角与垂直 4.转化思想方法及其应用
2.3.2平面向量正交分解及坐标表示
向量的正交分解
ur uur
一一、般地数,乘实数的定与义向量:a 的积是一个向量,记作:a
它的长度和方向规定如下:
(1)| ar (2)当
当 (3)当
||
0
0 0
时时时|| a,,r,或|;aaa的的方方0向向时与与, aaa
的方向相同; 的方向相同;

0
二(((213))、)第结第数一合二乘分 律分的配:配律律运::算(律((ar:ar )b)rar) (ara)rararbr
(2)定理中向量a 是任一向量,实数1与唯2 一.
(3)1e1 叫2 e做2 向量 关于a 基底 的e分1 , 解e2 式. (4)基底给定时,分解形式唯一.

基底的概念
例 【例1】若向量a,b不共线,且c 2a b,d 3a 2b,试判断
精 向量c 与d 能否作为基底.
反 (2x-3y)e2=6e1+3e2,则 x-y=________.

3.如图,两块斜边长相等的直角三角板拼在一起, 若A→D=xA→B+yA→C,则 x=_______,y=______.
知识点二、向r 量的r 夹u角uur 与r垂直: B
两个非零向量 a 和 b ,作OA a , b
D.A→B,D→A
巩 2.若点o是平行四边形ABCD 的中心,AB 4e1 ,BC 6e2 ,

平面向量的基本定理

平面向量的基本定理
是DC,AB的中点.请大家动手, 在图中确定一组基底,将 其他向量用这组基底表示 出来。
DM C
A
N
B
解析:设AB = e1,AD = e2,则有:
DC
=
1
2 AB
=
12e1
BC = BD + DC =(AD–AB)+DC
= e2
- e1+
1 2
e1=
-
1 2
e1
+
e2
MN = DN-DM
DM C
2=0(1=0),使得: a = 1e1 + 2e2 .
例1、已知向量e1、e2,求作 2.5e1 3e2.
C
B
e2
A e1 2.5e1
3e2
·O
例2、如图所示,平行四边形ABCD
的两条对角线相交于点M,且AB
a ,AD b,用a、b表示MCA、MB、MC、
MD.
D
C
M
A
e1 A
·O
B
例3、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别
平面向量基本定理
1、向量加法的平行四边 形法则
2、共线向量的基本定理
设e1、e2是同一平面内的两个 不共线向量,a是这一平面内
的任意向量,我们研究a与e1 、e2之间的关系.
e1
a
e2
OC = OM + ON =1OA + 2OB
即 a = 1e1+ 2e2 .
e1 a
e2
M
C
Aa
e1
O
N e2 B
解: A、B、D三点共线
AB与BD共线,则存在实数

平面向量基本定理及坐标表示知识点

平面向量基本定理及坐标表示知识点

平面向量基本定理及坐标表示知识点一、平面向量基本定理。

1. 定理内容。

- 如果B e_1,B e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量B a,有且只有一对实数λ_1,λ_2,使B a=λ_1B e_1+λ_2B e_2。

其中B e_1,B e_2叫做表示这一平面内所有向量的一组基底。

2. 基底的要求。

- 不共线:这是基底的重要条件。

若两个向量共线,则不能作为基底来表示平面内的所有向量。

例如,在平面内,如果B e_1与B e_2共线,那么对于与B e_1不共线的向量B a,就无法用B e_1和B e_2的线性组合来表示。

3. 唯一性。

- 对于给定的基底B e_1,B e_2和向量B a,实数对λ_1,λ_2是唯一确定的。

这可以通过反证法来证明,如果存在两组不同的实数对(λ_1,λ_2)和(μ_1,μ_2)使得B a=λ_1B e_1+λ_2B e_2=μ_1B e_1+μ_2B e_2,那么(λ_1-μ_1)B e_1+(λ_2-μ_2)B e_2=B0,由于B e_1,B e_2不共线,所以λ_1=μ_1且λ_2=μ_2。

二、平面向量的坐标表示。

1. 向量的坐标定义。

- 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量B i,B j 作为基底。

对于平面内的一个向量B a,由平面向量基本定理可知,有且只有一对实数x,y,使得B a=x B i+y B j,我们把有序数对(x,y)叫做向量B a的坐标,记作B a=(x,y)。

2. 坐标运算。

- 加法运算:若B a=(x_1,y_1),B b=(x_2,y_2),则B a+B b=(x_1+x_2,y_1+y_2)。

- 减法运算:若B a=(x_1,y_1),B b=(x_2,y_2),则B a-B b=(x_1-x_2,y_1-y_2)。

- 数乘运算:若B a=(x,y),λ∈ R,则λB a=(λ x,λ y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C B
作法: 1、任取一点O作OA = -2.5 e1 OB = 3 e2 2、以OA,OB为邻边作 OACB 3、OC为所求
A
-2.5 e1
o
例2. 已知平行四边形ABCD的两条对角线相交 于M,设 AB a , AD b ,试用基底{a,b} 表示 MA, MB任意两点,O是l外一点, 求证:对直线l上任一点P,存在实数t,使 OP 关于基底{ OA, OB }的分解式为
a1e1+a2e2=xe1+ye2, (x-a1)e1+(y-a2)e2=0
N
A
e2 O e1
M
我们把不共线向量e1,e2叫做这一平面内 所有向量的一组基底,记为{e1,e2}, a1e1+a2e2叫做向量a关于基底{e1,e2}的
分解式。
例1 已知:向量 e1 ,e2
e1 e2
求作:向量 -2.5 e1 + 3e2
由此可知,对直线l上任意一点P,一定存在唯一的实数t 满足向量等式(1);反之,对每一个实数t,在直线l上都有 唯一的一个点P与之对应.向量等式(1)叫做直线l的向量 参数方程式,其中实数t叫做参变数,简称参数. 1 令t= 2 , 点M是AB的中点,则
1 OM (OA OB ) 2
特征: OA 与OB 的系数之和是1 用途: 判断点P在直线AB上,即是判定 三点共线的依据。
2.已知平行四边形ABCD中,M,N分别是
DC,BC的中点且 AM c, AN d ,用 c, d 表示 AB, AD . 解:设 AB a, AD b
A
4 2 1 a d c c b a 3 3 2 b 4 c 2 d d a 1 b 3 3 2
教学目标
要求学生掌握平面向量的基本定理,能用 两个不共线向量表示一个向量;或一个向量分 解为两个向量,了解平面基本定理的证明。
教学重点
平面向量基本定理,应用向量基本定理解 决问题。
教学难点
对平面向 量基本定理的理解,应用定理解 决平面几何问题
知识链接
1、实数与向量的积 2、两个向量的和(差)的求法
三角形法则
平行四边形法则
3、两个向量共线定理 向量b与非零向量a共线 有且只有一个实数λ ,使得 b =λ a
如图,设e1、e2是同一平面内两个不共线的向量,
试用e1、e2表示向量
AB, CD, EF , GH
D H E B
e2 A e1 F
C
AB 2e1 3e2
EF 4e1 - 4e2
B
N
D M C
3、设G是△ABC的重心,若CA = a, CB = b 试用 a , b 表示AG A F
B G D
E
C
4、在正六边形ABCDEF中,AC = a , AD = b用 a , b 表示向量AB、BC、 CD、DE、EF、FA。
E O D
F
C B
A
课堂小结:
1、平面向量基本定理内容 2、对基本定理的理解 (1)实数对λ1、 λ2的存在性和唯一性 (2)基底的不唯一性 (3)定理的拓展性 3、平面向量基本定理的应用 求作向量、解(证)向量问题、解(证) 平面几何问题
如果e1、e2是平面内的两个不共线向量,那 么对于这一平面内的任一向量a,有且只有一 对实数a1、a2,使 a a1e1 a2e2 说明:① e1、e2是两个不共线的向量; ② a是平面内的任一向量; ③ a1,a2实数,唯一确定.
探究:
e1 e2
o A B N M C
OM与OA共线
OM = λ1OA = λ1e1
达标练习:
1、给出下面三种说法: (1)一个平面内只有一对不共线的非零向量可 作为表示该平面所有向量的基底; (2)一个平面内有无数多对不共线非零向量可 作为表示该平面所有向量的基底; (3)零向量不可作为基底的向量 其中正确的说法是( B ) A、(1)(2) B、(2)(3) C、(1)(3) D、(2)
CD e1 4e2
GH 2e1 5e2
设e1、e2是同一平面内两个不共线的向量, 该平面内给定的向量a能用e1、e2来线性表示。
问题:(1)任何向量a是否都可以用含有e1、
e2的式子来表示呢? (2)若向量a能够用e1、e2表示,这种表示
是否唯一?请说明理由.
平面向量基本定理
OP (1 t )OA tOB.
P
(1)
并且,满足该式的点P 一定在l上
B A
O
根据平面向量基本定理,同一平面内任一 向量都可以用两个不共线的向量表示,再由已 知可得
OP OA AP OA t AB
OA t (OB OA)
(1 t )OA tOB
设点P满足等式 OP , ( 1-t) OA t OB 则 AP t AB ,即P在l上
同理ON= λ2OB = λ2 e2
∴a = λ1e1 + λ2 e2
证明∵ OA OM ON ∴ 存 在 实 数 a1 , a2 使 OM a1e1 , ON a2e2 . 于 是
a a1e1 a2e2 . (存在性)
唯一性: 设存在实数 x,y 使 a xe1 ye2 ,只要证 a1 x 且 a2 y
课后作业:
P99 练习B 2、3
相关文档
最新文档