平面向量基本定理PPT课件

合集下载

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1


→ AM
= 1,12

→ BN

-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3

人教版高中数学必修4(A版) 平面向量基本定理 PPT课件

人教版高中数学必修4(A版) 平面向量基本定理  PPT课件
2.3.1 平面向量基本定理
问题提出
1. 向量加法与减法有哪几种几何运算 法则? 2.怎样理解向量的数乘运算λa?
(1)|λ a|=|λ ||a|; (2)λ >0时,λa与a方向相同;
λ<0时,λa与a方向相反;
λ=0时,λa=0.
3.平面向量共线定理是什么?
非零向量a与向量b共线 存在唯 一实数λ ,使b=λa. 4.如图,光滑斜面上一个木块受到的重 力为G,下滑力为F1,木块对斜面的压 力为F2,这三个力的方向分别如何? 三者有何相互关系?
理论迁移
例1 如图,已知向量e1、e2,求作向 量-2.5e1+3e2.
C e1 e2 3e2 A -2.5e 1 O B
例2 如图,在平行四边形ABCD中, AB =a, AD =b,E、M分别是AD、DC的中 点,点F在BC上,且BC=3BF,以a,b为 基底分别表示向量 AM 和 EF .
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
思考8:上述定理称为平面向量基本定理, 不共线向量e1,e2叫做表示这一平面内所 有向量的一组基底. 那么同一平面内可 以作基底的向量有多少组?不同基底对 应向量a的表示式是否相同?
a
e2 a
a=λ1e1+0e2
a =0 e1 + λ 2 e2
思考7:根据上述分析,平面内任一向 量a都可以由这个平面内两个不共线的 向量e1,e2表示出来,从而可形成一个 定理.你能完整地描述这个定理的内容 吗?
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.

人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)

人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)

x
e2
O
a 3e1 2e2
3 a x 4y 2
yn
A
a 3m 2n
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线).
若1与2中只有一个为零 , 情况会是怎样?
若2 0, 则a 1 e1 ,即a与e1共线, 若1 0, 则a 2 e2 ,即a与e2共线,
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
课堂总结 1.平面向量基本定理可以联系物理 学中的力的分解模型来理解,它说明在
同一平面内任一向量都可以表示为不共
线向量的线性组合,该定理是平面向量
D
A
N M B
C
例2.用向量的方法证明: 1 平行四边形OACB中, BD BC , OD与BA 3 1 相交于E , 求证 : BE BA. 4 D B C E
O
A
例3.证明: 向量OA, OB, OC的终点A, B, C共线 的等价条件是存在实数 、 且 1, 使得 OC OA OB.

问题 3 : 设 e1 , e2 是同一平面内两个不共 线的向量, a是这一平面内的任一向 量, 我们来通过作图研 究a与e1 , e2 之间的关系?
平面向量基本定理: 如果e1 , e2 是同一平面内两个不共 线的向量, 那 么对于平面内的任一向 量a , 有且只有一对实数
1 , 2 , 使得a 1 e1 2 e2 .
坐标表示的基础,其本质是一个向量在
其他两个向量上的分解。
2. 在实际问题中的指导意义在于

高中数学必修四《平面向量的基本定理》PPT

高中数学必修四《平面向量的基本定理》PPT
栏目 导引
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:

平面向量基本定理-完整版课件

平面向量基本定理-完整版课件

中不能作为基底的是
()
A.{e1,e2}
B.{e1+e2,3e1+3e2}
C.{e1,5e2}
D.{e1,e1+e2}
[名师点津]
1.平面向量基本定理包括两个方面的内容:一是存在性,即 存在实数λ1,λ2,使a =λ1e1+λ2e2;二是唯一性,即对任意 向量a ,存在唯一实数对λ1,λ2,使a =λ1e1+λ2e2.
[问题探究] 1.如图所示,OM∥AB,点P在由射线
OM、线段OB及AB的延长线围成的阴影 区域内(不含边界)运动,且―O→P =-12―O→A +m―O→B ,求实数m的取值范围.
[迁移应用] 如图所示,在边长为 2 的正六边形 ABCDEF 中,动圆 Q 的半径为 1,圆心在线段 CD(含 端点)上运动,P 是圆 Q 上及其内部的动点, 设向量―A→P =m―A→B +n―A→F (m,n∈R ),则
提示:都能. 2.基底是否是固定不变的?
提示:不是.
[做一做]
1.判断正误(正确的打“√”,错误的打“×”)
(1)平面内不共线的任意两个向量都可作为一组基底.( )
(2)基底中的向量可以是零向量.
()
(3)平面内的基底一旦确定,该平面内的向量关于基底的线
性分解形式也是唯一确定的.
()
2.设e1,e2是同一平面内的两个不共线向量,则以下各组向量
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否 共线.若共线,则不能作基底,反之,则可作基底; (2)一个平面的基底一旦确定,那么平面上任意一个向量都 可以由这组基底唯一线性表示出来.设向量a与b是平面内两个
不共线的向量,若x1a +y1b =x2a +y2b ,则x1=x2且y1=y2. [提醒] 一个平面的基底不是唯一的,同一个向量用不同

平面向量的基本定理PPT优秀课件

平面向量的基本定理PPT优秀课件
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
一向量 a 1e 1 + 2e 2
我们把不共线的向量 e 1 、e 2 叫做表示
这一平面内所有向量的一组基底。
特别的,若 a = 0 ,则有且只有 :
1= 2 = 0
?若 1与 2中只
有一个为零,情
可使 0 = 1e 1 + 2e 2 . 况会是怎样?
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
线的向量,a 是这一平面内的任一向量,
我们研究 a 与 e 1、e 2之间的关系。
e1
a
研究
e2
OC = OM + ON= 1OA + 2OB
即 a = 1e 1 + 2e 2 .
e1 a e2
M
C
Aa
e1
O
N e2 B

2022-2023学年人教A版必修第二册 6-3-1 平面向量基本定理 课件(70张)

2022-2023学年人教A版必修第二册 6-3-1 平面向量基本定理 课件(70张)

课堂篇·重点难点研习突破
研习 1 基底概念的理解 [典例 1] (多选)如果 e1,e2 是平面 α 内两个不共线的向量,那么下列说法中不正确的 是( BC ) A.λe1+μe2(λ,μ∈R)可以表示平面 α 内的所有向量 B.对于平面 α 内任一向量 a,使 a=λe1+μe2 的实数对(λ,μ)有无穷多个 C.若向量 λ1e1+μ1e2 与 λ2e1+μ2e2 共线,则有且只有一个实数 λ,使得 λ1e1+μ1e2=λ(λ2e1 +μ2e2) D.若实数 λ,μ 使得 λe1+μe2=0,则 λ=μ=0 [思路点拨] 应用平面向量基本定理解题时,要抓住基底向量 e1 与 e2 不共线和平面内 向量 a 用基底 e1,e2 表示的唯一性求解.
第六章 平面向量及其应用
6.3 平面向量基本定理及坐标表示
6.3.1 平面向量基本定理
新课程标准
新学法解读
平面向量基本定理是本节的重点又是难点.为了
更好地理解平面向量基本定理,可以通过改变向 理解平面向量基
量的方向及模的大小作图观察 λ1,λ2 取不同值时 本定理及其意义.
的图形特征,得到平面上任意一个向量都可以由
[练习 1] 设 e1,e2 是不共线的两个向量,给出下列四组向量: ①e1 与 e1+e2;②e1-2e2 与 e2-2e1; ③e1-2e2 与 4e2-2e1;④e1+e2 与 e1-e2. 其中,不能作为平面内所有向量的一组基底的是___③_____.(写出所有满足条件的序 号)
解析:①设 e1+e2=λe1,无解, ∴e1+e2 与 e1 不共线,即 e1 与 e1+e2 可作为一组基底; ②设 e1-2e2=λ(e2-2e1),则(1+2λ)e1-(2+λ)e2=0, 则12+ +2λ=λ=00,, 无解, ∴e1-2e2 与 e2-2e1 不共线, 即 e1-2e2 与 e2-2e1 可作为一组基底; ③∵e1-2e2=-21(4e2-2e1),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
2020年12月29日星期二
课堂总结 1.平面向量基本定理可以联系物理
学中的力的分解模型来理解,它说明在 同一平面内任一向量都可以表示为不共 线向量的线性组合,该定理是平面向量 坐标表示的基础,其本质是一个向量在 其他两个向量上的分解。
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
D
C
b
M
A
a
B
变式1 : 上题中,若N在AC上, 且 AN 3NC,
P为BC的中点,求PN .
2020年12月29日星期二
变式2、 已知平行四边形ABCD的边BC ,CD的中点
为M , N , AM e1 , AN e2 , 试用e1 , e2表示BC , CD.
D A
N C
M B
2020年12月29日星期二
2020年12月29日星期二
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
若2 0,则a 1 e1 ,即a与e1共线, 若1 0,则a 2 e2 ,即a与e2共线,
2020年12月29日星期二
检测
1、给出下面三种说法: (1)一个平面内只有一对不共线的非零向量可
作为表示该平面所有向量的基底; (2)一个平面内有无数多对不共线非零向量可
作为表示该平面所有向量的基底; (3)零向量不可作为基底的向量
2020年12月29日星期二
例3:
已知向量 e1 、e2 求做向量-2.5 e1+3 e2
还有其他作法?
e2
e 2020年12月129日星期二
3e2 O 2.5e1
四、 例题分析 :
例1、如图, 平行四边形 ABCD的两条对角
线相交于点M , 且 AB a, AD b, 试用a, b
表示MA, MB, MC , MD.
其中正确的说法是( B )
A、(1)(2) B、(2)(3) C、(1)(3) D、(2)
2020年12月29日星期二
练习
1、若e1,e2是平面内向量的一组基底,则下面的
向量中不能作为一组基底的是(B)
A)e1 + e2和e1 - e2
B)3 e1 -2 e2和-6e1 +4 e2
C)e1+3 e2和3 e1 + e2 D) e1 + e2和 e2
不共线向量,a 是这一平面内的任一向量.
♦ 探究1:a 与 e1, e2, 的关系
e1
a
想一想?
e2
2020年12月29日星期二
学生活动:
e1
a
e2
2020年12月29日星期二
OC OM ON 1OA 2OB
即 a 1e1 2 e2
M
C
A AA
e1 e1e1
O
e2
N
B
唯一性 存在性
三.数学建构
B
a
e1 O e2
M A
2020年12月29日星期二
B
a x
Oy
M A
思考二、 若可以相同,也可以不同
B
M
B
M
a
a
e1
O e2
A
a 3e1 2e2
mx O yn
A
a 3 x4y 2
a 3m 2n
2020年12月29日星期二
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线). 若1与2中只有一个为零 ,情况会是怎样 ?
例2.用向量的方法证明 :
平行四边形OACB中, BD 1 BC ,OD与BA 3
相交于E,求证 : BE 1 BA. 4
BD
C
E
O
A
2020年12月29日星期二
例3.证明:向量OA,OB,OC的终点A, B,C共线
的等价条件是存在实数 、 且 1, 使得 OC OA OB.
2020年12月29日星期二
1)平面向量基本定理的内容
如果 e1, e2,是同一平面内的两个不共线向量,
那么对于这一平面的任意向量 a,
有且只存有在 一对实数, 1, 2 ,
使 a 1e1 2 e2
思考: 上述表达式中的 1,2 是否唯一?
2020年12月29日星期二
思考一、 平面内用来表示一个向 量的基底有 多少组 ? (有无数组)
a的方向与a相反;
(3) 0时, a 0.
2020年12月29日星期二
向量的数乘运算律 :
(1)(a) ( )a; (2)( )a a a; (3)(a b) a b.
特别地, 我们有( )a ( a) (a)
(a b) a b.
2020年12月29日星期二
共线向量定理 : 向量a(a 0)与b共线,当且仅当有唯一一个
2.3.1 平面向量基本定理
如果没有运算,向量只是一个“” .因为有了运算,向量的力量无限!
2020年12月29日星期二
一、 回顾 :向量的数乘运算
一般地, 规定实数与向量a的积是一个向量,这种运算 叫做向量的数乘 , 记作 a,它的长度与方向规定如 下 :
(1) | a || || a |; (2)当 0时, a的方向与a相同;当 0时,
实数 , 使b a.
2020年12月29日星期二
二、 新课导入 :
问题1 : 给定平面内任意两个向 量e1, e2 , 我们能 否作出向量3e1 2e2 , e1 2e2 ?
问题2 : 平面内的任一向量是否 都可以用形如
1 e1 2 e2的向量表示呢 ?
2020年12月29日星期二
问题3.学生活动: 已知 e1, e2, 是同一平面内的两个
相关文档
最新文档