DEA的Matlab程序(数据包络分析)
数据包络法(DEA)matlab程序

原先学长给了一个matlab程阵的输入修改了一下下
数据包络法( DEA) matlab程序
DEA看了一天,结果学长告诉我说我们用的是方法,不需要去搞懂原理,知道怎么用就行了,我真是。。。唉,只有自己去找matlab程序。 原先学长给了一个matlab程序,但是只是给的一个特定例子即特定矩阵的程序,自己上网查找了一下matlab矩阵的输入,修改了一下下。
Y zeros(s,m) -eye(s) zeros(s,1) ones(1,n) zeros(1,m+s+1)]; beq=[zeros(m,1) Y(:,i) 1]; w(:,i)=linprog(f, A, b, Aeq, beq, LB, UB); end w Lambda=w([1:n],:) s_minus=w([n+1:n+m],:) s_plus=w([n+m+1:n+m+s],:) theta=w(n+m+s+1,:)
数据包络分析(DEA)简单实现

1 基本概念1.1 定义数据包络分析是运筹学中用于测量决策部门生产效率的一种方法,它是评价多输入指标和多输出指标的较为有效的方法,将多投入与多产出进行比较,得到效率分析,可广泛使用于业绩评价。
详细来说,通过使用数学规划模型,计算决策单元相对效率,从而评价各个决策单元。
每个决策单元(DMU)都可以看作为相同的实体,各DMU 有相同的输入、输出。
综合分析输入、输出数据,DEA 可得出各个DMU 的综合效率,据此定级排队DMU,确定有效(即相对效率最高)DMU,挖掘其他DMU非有效的程度和缘由。
1.2 特点●适合用于多输出-多输入的有效性综合评价问题,在处理所输出-多输入的有效性评价方面具有绝对优势●应用DEA方法建立模型前无需对数据进行量纲化处理●无需任何权重假设1.3 名词解释1、技术效率:指在保持决策单元投入不变的情况下,实际产出同理想产出的比值。
2、规模报酬:规模报酬是要说明,当生产要素同时增加了一倍,如果产量的增加正好是一倍,称之为规模报酬不变(-),如果产量增加多于一倍,则称之为规模报酬递增(irs),进而,如果产量增加少于一倍,就称为规模报酬递减(drs)。
3、决策单元(DMU)就是效率评价的对象,可以理解为一个将一定“投入”转化为一定“产出”的实体。
此文中,DMU就是每个楼盘。
4、DEA强有效:任何一项投入的数量都无法减少,除非减少产出的数量或者增加其他至少一种投入的数量;任何一项产出的数量都无法增加,除非增加投入的数量或减少其他至少一种产出的数量。
5、DEA弱有效:无法等比例减少各项投入的数量,除非减少产出的数量;无法等比例增加各项产出的数量,除非增加投入的数量。
这种情况下,虽然不能等比例减少投入或增加产出,但某一项或几项(但不是全部)投入可能减少,所以称为弱有效。
6、生产前沿面:(自己通俗的理解)对于给定的生产要素和产出价格,选择要素投入的最优组合和产出的最优组合,即投入成本最小、产出收益最大的组合。
数学建模数据包络分析(DEA)详细教程

相对有效性评价问题举例
例3:行风(行业作风)建设有效性评价 本项目研究人员选定江苏省 S 市交通客运系统作为对象,包括7家交
通客运汽车公司。 选定了输入指标 4 项,输出指标 4 项。分别是:
输入指标:1、年末职工总数(单位:人); 2、单位成本(单位:元/千人公里); 3、燃料单位消耗(单位:升/千人公里); 4、行车责任事故率(单位:次/千人公里)。
20.06.2020
a
11
C2R的对偶输入模型模型
min
n
s .t
X j j X 0 ,
j1
n
Y j j Y0 ,
j1
j 0 , j 1, , n
20.06.2020
a
12
C2R的对偶输出模型模型
max z
n
s .t
X j j X 0,
j1
n
Y j j zY 0 ,
j1
• Output-DEA 模型:基于产出的技术效率,即在 一定的投入组合下,以实际产出与最大产出之 比来估计。或者说,决策者追求的倾向是输出 的增大,即求z的最大。
20.06.2020
a
10
C2R模型
max u T Y0 vT X 0
s .t
u TY0 vT X 0
1,
j 1,
,n,
u 0,v 0
X11 X21
… Xm1
2 …n
X12 … X1n X22 … X2n … …… Xm2 … Xmn
1
2 … n 决策单元
y11 y12 … y1n 1 产 y21 y22 … y2n 2 出 … … … … …项 ys1 ys2 … ysn s 目
MATLAB 在DEA-Malmquist 分析中的应用

software is competent for DEA-Malmquist's analysis work and can provide the researches on economics and management with a
10.0000
27.0000
1.0000
0.0000
0.0000
0.0000
8
27.0000
22.0000
30.0000
0.7577
0.0000
0.0000
0.0000
9
37.0000
14.0000
31.0000
0.8201
1.6402
0.0000
0.0000
10
42.0000
25.0000
26.0000
指标的值。DEA 等价于解决下列问题:
⑴
min
θ s.t θx i = Xλ, Yλ = y i , λ i ≥ 0
θ,λ
其中 λ = [ λ 1
λ2
…
λ n ] 是一个半正定向量。由于
T
表1
DMU
PTEC、SE 的值,能满足绝大多数场景的 DEA 分析。
将 文 献 [10]中 的 DEA 工 具 箱 下 载 后 ,将 文 件 夹
Computer Era No. 7 2021
·42 ·
DOI:10.16644/33-1094/tp.2021.07.011
数据包络分析方法

二、数据包络分析(DEA)方法数据包络分析(data envelopment analysis, DEA)是由着名运筹学家Charnes, Cooper和Rhodes于1978年提出的,它以相对效率概念为基础,以凸分析和线性规划为工具,计算比较具有相同类型的决策单元(Decision making unit,DMU)之间的相对效率,依此对评价对象做出评价 。
DEA方法一出现,就以其独特的优势而受到众多学者的青睐,现已被应用于各个领域的绩效评价中[2],[3]。
在介绍DEA方法的原理之前,先介绍几个基本概念:1. 决策单元一个经济系统或一个生产过程都可以看成是一个单位(或一个部门)在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。
虽然这种活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。
由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单位(或部门)被称为决策单元(DMU)。
因此,可以认为,每个DMU(第i个DMU 常记作DMU i)都表现出一定的经济意义,它的基本特点是具有一定的投入和产出,并且将投入转化成产出的过程中,努力实现自身的决策目标。
在许多情况下,我们对多个同类型的DMU 更感兴趣。
所谓同类型的DMU ,是指具有以下三个特征的DMU 集合:具有相同的目标和任务;具有相同的外部环境;具有相同的投入和产出指标。
2. 生产可能集设某个DMU 在一项经济(生产)活动中有m 项投入,写成向量形式为1(,,)Tmx x x =;产出有s 项,写成向量形式为1(,,)Tsy y y =。
于是我们可以用(,)x y 来表示这个DMU 的整个生产活动。
定义1. 称集合{(,)|T x y y x =产出能用投入生产出来}为所有可能的生产活动构成的生产可能集。
在使用DEA 方法时,一般假设生产可能集T 满足下面四条公理:公理1(平凡公理): (,),1,2,,jjx y T j n ∈=。
DEA数据包络分析

DEA数据包络分析数据包络分析(Data Envelopment Analysis,DEA)是一种多变量效率评估方法,广泛应用于衡量组织、企业或其他单位的综合效率。
DEA方法可以根据输入和输出数据评估单位之间的相对效率,并确定最有效率的单位以及在哪些方面改进。
DEA方法的基本原理是利用线性规划技术,以最大化单位的输出为目标函数,同时限制每个单位的输入不超过其他单位。
通过这种方式,DEA 方法可以衡量每个单位实现生产最优水平的能力。
在DEA中,每个单位可以被看作是一个能够将一组输入转化为一组输出的生产者。
输入可以是任何有助于产出的资源,如劳动力、资本、原材料等;输出可以是组织产出的产品、服务或者其他结果。
DEA方法通过建立一个线性规划问题来衡量单位的效率。
该问题的目标是最大化单位的输出,并且输入不能超过其他单位。
DEA方法的优势是可以在没有事先确定权重的情况下,评估单位的效率。
这种方法对于评估多指标、多维度问题非常有效,因为它使用相对效率的概念,而不是绝对效率。
相对效率表示一个单位在给定输入和输出约束下的最佳性能水平。
这意味着即使单位的输入和输出数量不同,但DEA 可以根据它们的相对效率进行比较。
DEA方法还可以用于确定单位的最大效率范围。
通过对每个单位进行批量线性规划,可以找到最优解,即单位达到最大效率时的输入和输出比例。
这个最优解被称为有效前沿,它表示了实现最佳性能的边界。
通过比较每个单位的实际效率和有效前沿,可以识别出哪些方面可以改进以提高效率。
DEA方法在实践中有许多应用。
例如,在金融领域,DEA可以用于评估银行、保险公司等机构的效率。
在教育领域,DEA可以用于评估学校、大学等机构的教学效率。
在公共管理领域,DEA可以用于评估政府机构的绩效和效率。
在医疗领域,DEA可以用于评估医院、诊所等机构的医疗效果。
综上所述,DEA方法是一种强大的数据包络分析工具,可以用于衡量单位的效率。
它的主要特点是不需要事先设定权重,并且可以同时考虑多个输入和输出。
DEA数据包络分析教程

数据包络分析(the Data Envelopment Analysis,简称DEA)是1978年由美国著 名旳运筹学家A.Charnes和W.W.Cooper等 学者,以相对效率概念为基础发展起来旳 一种效率评价措施。他们旳第一种模型被 命名为C2R模型,从生产函数角度看,这 一模型是用来研究具有多种输入、尤其是 具有多种输出旳“生产部门”同步为“规 模有效”与“技术有效”旳十分理想且卓 有成效旳措施。1984年 R.D.Banker,A.Charnes和W.W.Cooper给出 了一种被称为BC2旳模型。
第三步,针对各成果,进行分析
针对成果进行效率分析、投入冗余产出不 足分析、投影分析等
怎样从EXCEL里读取数据
1.Excel编制,按照产出项,投入项,(要素价格)排列 2.将Excel工作表→ "另存新档" 3.档案名称为"数字或英文字母" 4.档案类型为"格式化文字(空白分隔)" →防止格 式走调.. 5.再按"储存" →储存位置须在"DEAP资料夹"中 6.储存后,副档名为.prn,再以笔记本旳另存新档方 式,将副档名改为.dta.
每一个DMU都有相应旳效率评价指数
n
hj
uT y j vT x j
ur yrj
r 1 m
vi xij
,
j 1, 2,
,t
i 1
x j (x1 j , , xmj )T , y j ( y1 j , , ynj )T , j 1, 2, , t
其中
可以适本地h选j 取1权, j系 数1, 2和, ,,使t 其满足:
数据包络分析(即DEA)能够看作是一种统计分析旳 新措施,它是根据一组有关输入-输出旳观察值来 估计有效生产前沿面旳。在有效性旳评价方面,除 了DEA措施以外,还有其他旳某些措施,但是那些 措施几乎仅限于单输出旳情况。相比之下,DEA措 施处理多输入,尤其是多输出旳问题旳能力是具有 绝对优势旳。而且,DEA措施不但能够用线性规划 来判断决策单元相应旳点是否位于有效生产前沿面 上,同步又可取得许多有用旳管理信息。所以,它 比其他旳某些措施(涉及采用统计旳措施)优越, 用处也更广泛。
数据包络分析DEA教程(全)

DEA的起源与发展
金融投资
在金融投资领域,DEA用于评估投资组合的相对效率,为投资者提供决策依据。
环境保护
在环境保护领域,DEA用于评估企业的环保投入与产出的相对效率,促进企业绿色发展。
公共部门
DEA也被广泛应用于公共部门,如政府机构、学校、医院等,用于评估其资源利用效率和改进方向。
运营管理
DEA被广泛应用于运营管理领域,用于评估企业的生产效率、资源配置效率和流程改进等方面。
02
随着DEA的应用范围不断扩大,许多学者对DEA模型进行了改进和发展。例如,Banker、Charnes和Cooper提出的BCC模型,解决了CCR模型中固定规模报酬假设的问题。
03
此外,DEA还与其他方法结合,如Malmquist指数、超效率DEA、方向距离函数等,进一步扩展了DEA的应用领域和评估准确性。
除了比率法和角度法,DEA有效性判定还可以采用其他方法,如SBM模型、全局DEA模型等。
03
CHAPTER
DEA的优化与改进
考虑了不同决策单元(DMU)在不同规模下的效率变化,能够更准确地评估DMU的效率。
总结词
规模报酬可变的DEA模型假设生产过程中可能存在规模效应,即随着生产规模的扩大,生产效率可能会提高。该模型通过调整权重来考虑不同规模下的效率变化,从而更准确地评估DMU的效率。
DEA的应用领域
02
CHAPTER
DEA基本模型
CCR模型
CCR模型(Charnes, Cooper和Rhodes模型)是最早提出的数据包络分析模型,用于评估决策单元(DMU)的相对效率。
02
CCR模型假设所有DMU都具有相同的输入和输出指标,并且规模报酬不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型((P C2R)的MATLAB程序
clear
X=[]; %用户输入多指标输入矩阵X
Y=[]; %用户输入多指标输出矩阵Y
n=size(X',1); m=size(X,1); s=size(Y,1);
A=[-X' Y'];
b=zeros(n, 1);
LB=zeros(m+s,1); UB=[];
for i=1:n;
f= [zeros(1,m) -Y(:,i)'];
Aeq=[X(:,i)' zeros(1,s)]; beq=1;
w(:,i)=LINPROG(f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU;的最佳权向量w;
E(i, i)=Y(:,i)'*w(m+1:m+s,i); %求出DMU i的相对效率值E ii
end
w %输出最佳权向量
E %输出相对效率值E ii
Omega=w(1:m,:) %输出投入权向量。
mu=w(m+1:m+s,:) %输出产出权向量。
模型(D C2R)的MATLAB程序
clear
X=[]; %用户输入多指标输入矩阵X
Y=[]; %用户输入多指标输出矩阵Y
n=size(X',1); m=size(X,1); s=size(Y,1);
epsilon=10^-10; %定义非阿基米德无穷小=10-10
f=[zeros(1,n) -epsilon*ones(1,m+s) 1]; %目标函数的系数矩阵:的系数为0,s-,s+的系数为-e,的系数为1;
A=zeros(1,n+m+s+1); b=0; %<=约束;
LB=zeros(n+m+s+1,1); UB=[]; %变量约束;
LB(n+m+s+1)= -Inf; %-Inf表示下限为负无穷大。
for i=1:n;
Aeq=[X eye(m) zeros(m,s) -X(:,i)
Y zeros(s,m) -eye(s) zeros(s,1)];
beq=[zeros(m, 1 )
Y(:,i)];
w(:,i)=LINPROG (f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU的最佳权向量w; end
w %输出最佳权向量
lambda=w(1:n,:) %输出
s_minus=w(n+1:n+m,:) %输出s-
s_plus=w(n+m+1:n+m+s,:) %输出s+
theta=w(n+m+s+1,:) %输出。