数学建模 高校教师综合评价
数学建模之综合评价问题

数学建模之综合评价问题综合评价是数学建模中的一类常见的问题,在国赛和美赛中都经常出现,例如国赛05年长江水质的综合评价、2010年上海世博会影响力的定量评估问题、2014年美赛“最好大学教练“问题、2015年的“互联网+”时代的出租车资源配等,这些都属于综合评价类问题。
综合评价问题是数学建模问题中思路相对清晰的一类题目,从每学期的综合测评、旅游景点的选择到挑选手机,评价类问题在生活中也是处处存在。
今天小编和大家一起梳理一下综合评价类问题的一般思路。
首先,综合评价模型一般步骤为:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
1. 选择恰当的评价指标选取合理的评价指标是综合评价问题的第一步,要考虑四个准则——代表性、确定性、独立性、区别能力。
•代表性:各层次指标能最好地表达所代表的层次;•确定性:指标值要确定、可量化,高低在评价中有确切的含义;•独立性:选定的指标要互相独立,不能相互替代;•区别能力/灵敏性:指标有一定的波动范围。
当建模过程中需要确定评价指标时,我们首先要将赛题中给出的指标考虑进来,然后再从不同维度确定评价指标,这个时候我们应该大量查阅相关文献,看看类似问题前人都选取了哪些指标,在全面考虑问题的基础上,尽可能选择被广泛利用的指标。
例如在05年国赛题目《长江水质的综合评价》中,题目中给出了评价水环境的指标:溶解氧、高锰酸盐指数、氨氮、PH值四项指标;例如当我们选择一个旅游景点时,可能选取的指标有景色、费用、居住环境、饮食、旅途等指标。
2. 评价指标的规范化处理在我们选取的众多评价指标中,有些指标数值越大越好(“极大型”指标),有些指标越小越好(“极小型”指标),有些指标是在一定范围内(“区间型”指标)。
教师评价模型_数学建模

教师评价模型_数学建模work Information Technology Company.2020YEAR教师评价模型一、摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。
毫不夸张地说评价教师是学校里每个人的“日常功课”。
由于教师职业劳动的特殊性,它是复杂劳动。
不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。
评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。
所以教师评价的确定就显的很重要。
新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。
那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。
本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。
从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。
然后确定三方面的比重来评价教师。
同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。
在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。
161160iii P Q D ==∑ ( i ∈[1,16]) (Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数Di 表示对教师自评要求各项所加给的权重)2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。
90j i ij i d c a ==∑ ij a =ij n u ij a =A (U ,V )( U 为评价的主要因素,V 为评价因素分等。
C i 为学生对教师的各项评价要求所付的权重N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。
数学建模综合评价

其中: m 和 M 分别为指标 f k 允许下界和上界.
(4)标准化
Ⅰ.向量归一化法:
x ( x1 , x2 , , xn )
xn x1 x2 0 x n , n , , n xi xi xi i 1 i 1 i 1
Ⅱ.极差变换法:
一致阵 性质 • A的任一列向量是对应于n 的特征向量 • A的归一化特征向量可作为权向量 对于不一致(但在允许范围内)的 成对比较阵A,对应于最大特征根 的特征向量作为权向量w ,即
• A的秩为1,A的唯一非零特征根为n
Aw maxw
成对比较阵和权向量 Saaty等人提出1~9尺度——aij 取值 比较尺度aij 1,2,… , 9及其互反数1,1/2, … , 1/9 • 便于定性到定量的转化:
a12 1/ 2 (C1 : C2 )
a13 4 (C1 : C3 )
一致比较
不一致
a23 8 (C2 : C3 )
w1 w2 w2 w2 wn w2 w1 wn w2 wn wn wn
允许不一致,但要确定不一致的允许范围
w1 考察完全一致的情况 w 1 W ( 1) w1 , w2 ,wn w2 A w1 令aij wi / w j T w (w1 , w2 ,wn ) ~ 权向量 wn w1
xik
* ak aik
(i 1, 2
n)
* 其中 ak min aik 1 i n
0 xij 1
(aij 0)
一、常用综合评价方法
1. 线性加权综合法
用线性加权函数 y
w x
j 1 j
数学建模竞赛在提高高校师生综合素质中的作用

2 1 年 1 2期 0 1 —
嵌anxi oyu・Gaojao Ji . i 高教 Sh a a
生科技创 新活动相结合 。
2广 泛 宣传 动 员和 精 心 的 组 织 培 训 .
理 工农 医 博 览
逻辑思维能力 、 语言表达能力等能力 的综合体现 。 学生通过培训
和参赛活动 , 在论文写作 中 , 熟悉了科技论文 的写作规范和写作 要求 , 以清晰的逻辑思维 、 畅的语言 表述 、 顺 精确 的数 据推理表 述、 论证 了 自己运用数学方法解决实际问题 的独特见解 。 这既培 养 了学生写作科技论文的能力 ,也 为其 以后 的科研工作奠定 了
新思维能力。
() 1 促进高等数学教学 改革 , 提高教 师的教学水平。
数学建模要解决 的都是一些实际问题 ,通过对实际问题进 行 一定 的假设简化把它转换为数学问题 , 从而建立模型并求解 ,
() 2 培养了学生科技学术论文写作 能力 。
一
篇合格 的数模竞赛论 文是参赛选手数学方法 运用能力 、
长补短 , 齐心协力 , 在攻 克难关 的同时 , 也提高 教师 的团队协 作 能力 。
十多年来 , 学建模竞赛 的规 模以平均每 年增 长 2 %以上 数 5
的速度快速发展 。但据调查 ,在 20 年 的竞赛活动 中, 09 全国有
13 14所院校 、5 4 队、5 3 10 6个 4 1 8名学 生参加 了竞赛 ,相对 于全
2 1 年 1 2期 01 —
更 放有. 高教
S a n i io u・ o io h a x Ja y Ga j a 理 工农 医 博 览
数学建模综合评价方法(定)

所谓指标就是用来评价系统旳参量. 例如, 在校学生规模、教学质量、师资构造、科研水平等, 就可以作为评价高等院校综合水平旳重要指标. 一般说来, 任何—个指标都反映和刻画事物旳—个侧面.从指标值旳特性看, 指标可以分为定性指标和定量指标. 定性指标是用定性旳语言作为指标描述值, 定量指标是用品体数据作为指标值. 例如, 旅游景区质量等级有、、、和之分, 则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值旳变化对评价目旳旳影响来看, 可以将指标分为如下四类:(1)极大型指标(又称为效益型指标)是指标值越大越好旳指标;(2)极小型指标(又称为成本型指标)是指标值越小越好旳指标;(3)居中型指标是指标值既不是越大越好, 也不是越小越好, 而是适中为最佳旳指标;(4) 区间型指标是指标值取在某个区间内为最佳旳指标.例如, 在评价公司旳经济效益时, 利润作为指标, 其值越大, 经济效益就越好, 这就是效益型指标;而管理费用作为指标, 其值越小, 经济效益就越好, 因此管理费用是成本型指标. 再如建筑工程招标中, 投标报价既不能太高又不能太低, 其值旳变化范畴一般是×标旳价, 超过此范畴旳都将被裁减, 因此投标报价为区间型指标. 投标工期既不能太长又不能太短, 就是居中型指标.在实际中, 不管按什么方式对指标进行分类, 不同类型旳指标可以通过相应旳数学措施进行互相转换8.2.4 评价指标旳预解决措施一般状况下, 在综合评价指标中, 各指标值也许属于不同类型、不同单位或不同数量级, 从而使得各指标之间存在着不可公度性, 给综合评价带来了诸多不便. 为了尽量地反映实际状况, 消除由于各项指标间旳这些差别带来旳影响, 避免浮现不合理旳评价成果, 就需要对评价指标进行一定旳预解决, 涉及对指标旳一致化解决和无量纲化解决.1. 指标旳一致化解决所谓一致化解决就是将评价指标旳类型进行统一.一般来说, 在评价指标体系中, 也许会同步存在极大型指标、极小型指标、居中型指标和区间型指标, 它们都具有不同旳特点.如产量、利润、成绩等极大型指标是但愿取值越大越好;而成本、费用、缺陷等极小型指标则是但愿取值越小越好;对于室内温度、空气湿度等居中型指标是既不盼望取值太大, 也不盼望取值太小, 而是居中为好.若指标体系中存在不同类型旳指标, 必须在综合评价之前将评价指标旳类型做一致化解决.例如, 将各类指标都转化为极大型指标, 或极小型指标.一般旳做法是将非极大型指标转化为极大型指标.但是, 在不同旳指标权重拟定措施和评价模型中, 指标一致化解决也有差别.(1) 极小型指标化为极大型指标对极小型指标, 将其转化为极大型指标时, 只需对指标取倒数:1j jx x '=, 或做平移变换: j j j x M x '=-,其中 , 即n 个评价对象第j 项指标值 最大者. (2) 居中型指标化为极大型指标对居中型指标 , 令 , , 取2(),;2 2(),.2j j j j j j j jj j j j j j j j j x m M m m x M m x M x M m x M M m -+⎧≤≤⎪-⎪'=⎨-+⎪≤≤⎪-⎩就可以将 转化为极大型指标.(3) 区间型指标化为极大型指标对区间型指标 , 是取值介于区间 内时为最佳, 指标值离该区间越远就越差. 令 , ,取1,;1, ; 1,.j jj j jj j j j j jj j j a x x a c x a x b x bx b c -⎧-<⎪⎪⎪'=≤≤⎨⎪-⎪->⎪⎩就可以将区间型指标 转化为极大型指标.类似地, 通过合适旳数学变换, 也可以将极大型指标、居中型指标转化为极小型指标.2. 指标旳无量纲化解决所谓无量纲化, 也称为指标旳规范化, 是通过数学变换来消除原始指标旳单位及其数值数量级影响旳过程. 因此, 就有指标旳实际值和评价值之分. —般地, 将指标无量纲化解决后来旳值称为指标评价值. 无量纲化过程就是将指标实际值转化为指标评价值旳过程.对于 个评价对象 , 每个评价对象有 个指标, 其观测值分别为(1,2,,;1,2,,)ij x i n j m ==.(1) 原则样本变换法 令* (1,1).ij jij jx x x i n j m s -=≤≤≤≤其中样本均值 , 样本均方差 , 称为原则观测值.特点:样本均值为 , 方差为 ;区间不拟定, 解决后各指标旳最大值、最小值不相似;对于指标值恒定( )旳状况不合用;对于规定指标评价值 旳评价措施(如熵值法、几何加权平均法等)不合用.(2) 线性比例变换法对于极大型指标, 令*11 (max 0, 1, 1).max ij ij ij i niji n x x x i n j m x ≤≤≤≤=≠≤≤≤≤对极小型指标, 令*1min (1,1).iji nijijx x i n j m x ≤≤=≤≤≤≤或*111 (max 0, 1, 1).max ij ij ij i niji nx x x i n j m x ≤≤≤≤=-≠≤≤≤≤该措施旳长处是这些变换方式是线性旳, 且变化前后旳属性值成比例. 但对任一指标来说, 变换后旳 和 不一定同步浮现.特点:当 时, ;计算简便, 并保存了相对排序关系. (3) 向量归一化法对于极大型指标, 令* (1,1).ij x x i n j m =≤≤≤≤对于极小型指标, 令*1,1).ij x x i n j m =≤≤≤≤长处: 当 时, , 即 . 该措施使 , 且变换前后正逆方向不变;缺陷是它是非线性变换, 变换后各指标旳最大值和最小值不相似.(4) 极差变换法对于极大型指标, 令*111min (1, 1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=≤≤≤≤-对于极小型指标, 令*111max (1, 1).max min ij iji nijij iji ni nx x x i m j n x x ≤≤≤≤≤≤-=≤≤≤≤-其长处为通过极差变换后, 均有 , 且最优指标值 , 最劣指标值 . 该措施旳缺陷是变换前后旳各指标值不成比例, 对于指标值恒定( )旳状况不合用.(5) 功能系数法 令*111min (1,1).max min ij iji nijij iji ni nx x x c d i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-其中 均为拟定旳常数. 表达“平移量”, 表达指标实际基础值, 表达“旋转量”, 即表达“放大”或“缩小”倍数, 则 .一般取 , 即*111min 6040 (1,1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-则 实际基础值为 , 最大值为 , 即 .特点: 该措施可以当作更普遍意义下旳一种极值解决法, 取值范畴拟定, 最小值为 , 最大值为 .3. 定性指标旳定量化(1) 在综合评价工作中, 有些评价指标是定性指标, 即只给出定性地描述, 例如:质量较好、性能一般、可靠性高、态度恶劣等.对于这些指标, 在进行综合评价时, 必须先通过合适旳方式进行赋值, 使其量化.一般来说, 对于指标最优值可赋值 , 对于指标最劣值可赋值为 .对极大型和极小型定性指标常按如下方式赋值. (2) 极大型定性指标量化措施对于极大型定性指标而言, 如果指标可以分为很低、低、一般、高和很高等五个等级, 则可以分别取量化值为1.0,3.0,5.0,7.0和9.0, 相应关系如图8-2所示. 介于两个等级之间旳可以取两个分值之间旳合适数值作为量化值.图8-2 极大型定性指标量化措施(2) 极小型定性指标量化措施对于极小型定性指标而言, 如果指标可以分为很高、高、一般、低和很低等五个等级, 则可以分别取量化值为1.0,3.0,5.0,7.0和9.0, 相应关系如图8-3所示. 介于两个等级之间旳可以取两个分值之间旳合适数值作为量化值.模糊综合评价措施在客观世界中, 存在着许多不拟定性现象, 这种不拟定性有两大类: 一类是随机性现象, 即事物对象是明确旳, 由于人们对事物旳因果律掌握不够, 使得相应成果具有不可预知性, 例如晴天、下雨、下雪, 这是明确旳, 但浮现规律不拟定;另一类是模糊性现象, 即某些事物或概念旳边界不清晰, 使得事物旳差别之间存在着中间过渡过程或过渡成果, 例如年轻与年老、高与矮、美与丑等, 这种不拟定性现象不是人们旳结识达不到客观实际所导致旳, 在构造旳不拟定属性, 称为糊性现象.模糊数学就是用数学措施研究和解决具有“模糊性”现象旳一种数学分支.而模糊综合评价就是以模糊数学为基础, 应用模糊关系合成旳原理, 将某些边界不清、不易定量旳因素定量化, 进行综合评价旳一种措施.. 从属度函数旳拟定措施从属度旳思想是模糊数学旳基本思想, 拟定符合实际旳从属函数是应用模糊数学措施建立数学模型旳核心, 然而这是至今尚未完全解决旳问题.下面简介几种常用旳拟定从属函数旳措施.⑴ 模糊记录法模糊记录法是运用概率记录思想拟定从属度函数旳一种客观措施, 是在模糊记录旳基础上根据从属度旳客观存在性来拟定旳. 下面以拟定青年人旳从属函数为例来简介其重要过程.① 以年龄为论域 , 在论域 中取一固定样本点 .② 设 为论域 上随机变动旳一般集合, 是青年人在 上觉得 弹性边界旳模糊集, 对 旳变动具有制约作用.其中 , 或 , 使得 对 旳从属关系具有不拟定性.然后进行模糊记录实验, 若 次实验中覆盖 旳次数为 , 则称 为 对于 旳从属频率.由于当实验次数 不断增大时, 从属频率趋于某一拟定旳常数, 该常数就是 属于 旳从属度, 即0()lim .n An mx nμ→∞=例如在论域 中取 , 选择若干合适人选, 请他们写出各自觉得青年人最合适最恰当旳年龄区间(从多少岁到多少岁), 即将模糊概念明确化. 若 次实验中覆盖27岁旳年龄区间旳次数为 , 则称 为27岁对于青年人旳从属频率, 表8-4是抽样调查记录旳成果. 由于27岁对于青年人旳从属频率稳定在0. 78附近, 因此可得到 属于模糊集 旳从属度 .③ 在论域 中合适旳取若干个样本点 , 分别拟定出其从属度 , 建立合适坐标系, 描点连线即可得到模糊集 旳从属函数曲线.将论域 分组, 每组以中值为代表分别计算各组从属频率, 持续地描出图形使得到青年人旳从属函数曲线, 见表8-5与图8-5所示.拟定模糊集合从属函数旳模糊记录措施, 注重实际资料中涉及旳信息, 采用了记录分析手段, 是一种应用拟定性分析揭示不拟定性规律旳有效措施.特别是对某些从属规律不清晰旳模糊集合, 也能较好地拟定其从属函数.22.5~23.5 129 1.00 34.5~35.5 260.202 23.5~24.5 129 1.00 35.5~36.5 1 0.008 24.5~25.5128 0.992⑵ 三分法三分法也是运用概率记录中思想以随机区间为工具来解决模糊性旳旳一种客观措施. 例如建立矮个子 , 中档个子 , 高个子 三个模糊概念旳从属函数. 设3{}P =矮个子,中等个子,高个子,论域 为身高旳集合, 取 (单位: m). 每次模糊实验拟定 旳一次划分, 每次划分拟定一对数 , 其中 为矮个子与中档个子旳分界点, 为中档个子与高个子旳分界点, 从而将模糊实验转化为如下随机实验: 即将 看作二维随机变量, 进行抽样调查, 求得 、旳概率分布 、 后, 再分别导出 、 和 旳从属函数 、 和 , 相应旳示意图如图8-6所示.1()(),A x x P t dt ξμ+∞=⎰ 3()(),A xx P t dt ημ+∞=⎰213()1()().A A A x x x μμμ=--一般 和 分别服从正态分布 和 , 则 、 和 旳从属函数分别为111()1,A x a x μσ⎛⎫-=-Φ⎪⎝⎭322()1,A x a x μσ⎛⎫-=-Φ ⎪⎝⎭ 22121().A x a x a x μσσ⎛⎫⎛⎫--=Φ-Φ⎪ ⎪⎝⎭⎝⎭其中221().2t xx e dt π--∞Φ=⎰⑶ 模糊分布法根据实际状况, 一方面选定某些带参数旳函数, 来表达某种类型模糊概念旳从属函数(论域为实数域), 然后再通过实验拟定参数.在客观事物中, 最常见旳是以实数集作论域旳情形. 若模糊集定义在实数域 上, 则模糊集旳从属函数便称为模糊分布. 下面给出几种常用旳模糊分布, 在后来拟定从属函数时, 就可以根据问题旳性质, 选择合适(即符合实际状况)模糊分布, 根据测量数据求出分布中所含旳参数, 从而就可以拟定出从属函数了.为了选择合适旳模糊分布, 一方面应根据实际描述旳对象给出选择旳大体方向. 偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色旳“淡”等偏向小旳一方旳模糊现象, 其从属函数旳一般形式为图8-5 年轻人旳从属函数曲线 图8-6 由概率分布拟定模糊集从属函数1, ;()(),.A x a x f x x a μ≤⎧=⎨>⎩偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色旳“浓”等偏向大旳一方旳模糊现象, 其从属函数旳一般形式为0, ;()(),.A x a x f x x a μ<⎧=⎨≥⎩中间型模糊分布适合描述像“中”、“暖和“、“中年”等处在中间状态旳模糊现象, 其从属面数可以通过中间型模糊分布表达.① 矩形(或半矩形)分布(a)偏小型(b)偏大型(c)中间型1,;()0,.A x a x x a μ≤⎧=⎨>⎩0,;()1,.A x a x x a μ<⎧=⎨≥⎩0,;()1,;0,.A x a x a x b x b μ<⎧⎪=≤≤⎨⎪>⎩此类分布是用于确切概念. 矩形(或半矩形)分布相应旳示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图② 梯形(或半梯形)分布(a)偏小型(b)偏大型 (c)中间型1, ; (),;0, .A x a b xx a x b b ax b μ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩0, ;(),;1, .A x a x ax a x b b a x b μ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩ 0, ,;,; ()1, ;,;A x a x d x a a x b b ax b x c d xc xd d cμ<≥⎧⎪-⎪≤<⎪-=⎨≤<⎪⎪-≤<⎪-⎩梯形(或半梯形)分布旳示意图如图8-8所示.③ 抛物形分布(a)偏小型(b)偏大型(c)中间型(a)偏小型 (b)偏大型 (c)中间型(a)偏小型 (b)偏大型 (c)中间型 图8-8梯形(或半梯形)分布示意图1, ; (),;0, .k A x a b x x a x b b a x b μ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩ 0, ; (),;1, .k A x a x a x a x b b a x b μ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩ 0, ,;,; ()1, ;,;k A kx a x d x a a x b b a x b x c d x c x d d c μ<≥⎧⎪-⎛⎫⎪≤< ⎪⎪-⎪⎝⎭=⎨≤<⎪⎪-⎛⎫⎪≤< ⎪-⎪⎝⎭⎩抛物形分布旳示意图如图8-9所示.④ 正态分布(a)偏小型(b)偏大型(c)中间型21, ;(),.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭≤⎧⎪=⎨⎪>⎩20, ;()1,.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭<⎧⎪=⎨⎪-≥⎩ 2().x a A x eσμ-⎛⎫- ⎪⎝⎭=正态分布旳示意图如图8-10所示.⑤ 柯西分布(a)偏小型(b)偏大型(c)中间型1, ;()1,.1() (0,0)A x a x x a x a βμααβ≤⎧⎪=⎨>⎪+-⎩>> 0, ;()1,.1() (0,0)A x a x x a x a βμααβ-≤⎧⎪=⎨>⎪+-⎩>> 1(),1()(0,).A x x a βμααβ=+->为正偶数柯西形分布旳示意图如图8-11所示. (a)偏小型 (b)偏大型 (c)中间型 图8-9 抛物形分布示意图(a)偏小型 (b)偏大型 (c)中间型 图8-10 正态分布示意图 (a) 偏小型 (b)偏大型 (c)中间型图8-11 柯西分布示意图⑥Γ型分布(a)偏小型(b)偏大型(c)中间型()1, ;(),.k x a A x a x ex a μ--≤⎧=⎨>⎩ ()0, ;()1,.k x a A x a x ex a μ--≤⎧=⎨->⎩()(),;()1, ;,.k x a A k b x e x a x a x b ex b μ----⎧<⎪=≤<⎨⎪≥⎩其中 . 型分布旳示意图如图8-12所示.(a) 偏小型 (b)偏大型 (c)中间型图8-12 Γ型分布示意图。
数学建模综合评价方法

建模参考资料综合评价方法一、对于评论指标所谓指标就是用来评论系统的参量.比如,在校学生规模、教课质量、师资构造、科研水同等,就能够作为评论高等院校综合水平的主要指标.一般说来,任何—个指标都反应和刻画事物的—个侧面.从指标值的特色看,指标能够分为定性指标和定量指标.定性指标是用定性的语言作为指标描绘值,定量指标是用详细数据作为指标值.比如,旅行景区质量等级有 5A 、 4A 、3A 、 2A 和 1A 之分,则旅行景区质量等级是定性指标;而景区年游客招待量、门票收入等就是定量指标.从指标值的变化对评论目的的影响来看,能够将指标分为以下四类:(1)极大型指标 ( 又称为效益型指标 ) 是指标值越大越好的指标;(2)极小型指标 ( 又称为成本型指标 ) 是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间内为最好的指标.比如,在评论公司的经济效益时,收益作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理花费作为指标,其值越小,经济效益就越好,所以管理花费是成本型指标.再如建筑工程招标中,招标报价既不可以太高又不可以太低,其值的变化范围一般是( 10%, 5%) ×标的价,超出此范围的都将被裁减,所以招标报价为区间型指标.招标工期既不可以太长又不可以很短,就是居中型指标.在实质中,无论按什么方式对指标进行分类,不一样种类的指标能够经过相应的数学方法进行互相变换1评论指标的办理方法一般状况下,在综合评论指标中,各指标值可能属于不一样种类、不一样单位或不一样数目级,进而使得各指标之间存在着不行公度性,给综合评论带来了诸多不便.为了尽可能地反应实质状况,除去因为各项指标间的这些差异带来的影响,防止出现不合理的评论结果,就需要对评论指标进行必定的预办理,包含对指标的一致化办理和无量纲化办理.1.指标的一致化办理所谓一致化办理就是将评论指标的种类进行一致.一般来说,在评论指标系统中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都拥有不一样的特色.如产量、收益、成绩等极大型指标是希望取值越大越好;而成本、花费、缺点等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不希望取值太大,也不希望取值太小,而是居中为好.若指标系统中存在不一样种类的指标,一定在综合评论之前将评论指标的种类做一致化办理.比如,将各种指标都转变为极大型指标,或极小型指标.一般的做法是将非极大型指标转变为极大型指标.可是,在不一样的指标权重确立方法和评论模型中,指标一致化办理也有差异.(1)极小型指标化为极大型指标对极小型指标x j,将其转变为极大型指标时,只要对指标x j取倒数:x j 1x j,或做平移变换:x j M j x j,此中M j max{ x ij } ,即1 i nn 个评论对象第j项指标值x ij最大者.(2)居中型指标化为极大型指标对居中型指标 x j,令M j max{ x ij } , m j min{ x ij } ,取1 i n 1 i n就能够将 x j转变为极大型指标.(3)区间型指标化为极大型指标对区间型指标x j, x j是取值介于区间[a j , b j ] 内时为最好,指标值离该区间越远就越差.令M j max{ x ij } ,1 i n m j min{ x ij }1 i n,c j max{a j m j, M j b j }, 取就能够将区间型指标x j转变为极大型指标.近似地,经过适合的数学变换,也能够将极大型指标、居中型指标转变为极小型指标.2.指标的无量纲化办理所谓无量纲化,也称为指标的规范化,是经过数学变换来除去原始指标的单位及其数值数目级影响的过程.所以,就有指标的实质值和评论值之分.—般地,将指标无量纲化办理此后的值 称为指标评论值.无量纲化过程就是将指标实质值转变为指标评论值的过程.对于 n个评论对象 S 1, S 2 ,L , S n ,每个评论对象有 m 个指标,其观察值分别为x ij (i 1,2,L ,n; j1,2,L , m) .(1) 标准样本变换法令1n1n2 *此中样本均值 x jx ij ,样本均方差 s j( x ijx j ),x ij 称为标准观察值.n i 1n i 1特色:样本均值为 0 ,方差为 1;区间不确立,办理后各指标的最大值、最小值不同样; 对于指标值恒定 ( s j 0 ) 的状况不合用; 对于要求指标评论值 x ij * 0 的评论方法 ( 如熵值法、几何加权均匀法等 ) 不合用.(2) 线性比率变换法对于极大型指标,令 对极小型指标,令 或该方法的长处是这些变换方式是线性的, 且变化前后的属性值成比率. 但对任一指标来说,变换后的 x ij *1 和 x ij * 0 不必定同时出现.特色:当 x ij 0 x *[0,1];计算简易,并保存了相对排序关系.时, ij(3) 向量归一化法对于极大型指标,令对于极小型指标,令n长处:当 x ij0 时, x ij * [0,1] ,即(x ij * )2 1 .该方法使 0 x ij *1,且变换i 1前后正逆方向不变;弊端是它是非线性变换,变换后各指标的最大值和最小值不同样.(4) 极差变换法对于极大型指标,令对于极小型指标,令其长处为经过极差变换后,均有 0 x ij * 1 ,且最优指标值 x ij * 1,最劣指标值 x *ij 0 .该方法的弊端是变换前后的各指标值不行比率,对于指标值恒定( s j 0) 的状况不合用.(5) 功能系数法令此中 c, d 均为确立的常数. c 表示“平移量”,表示指标实质基础值, d 表示“旋转量”,即表示“放大”或“减小”倍数,则x ij*[ c, c d ] .往常取 c 60,d 40 ,即则 x ij*实质基础值为 60 ,最大值为 100,即 x ij*[60,100] .特色:该方法能够当作更广泛意义下的一种极值办理法,取值范围确立,最小值为 c ,最大值为c d .3.定性指标的定量化在综合评论工作中,有些评论指标是定性指标,即只给出定性地描绘,比如:质量很好、性能一般、靠谱性高、态度恶低等.对于这些指标,在进行综合评论时,一定先经过适合的方式进行赋值,使其量化.一般来说,对于指标最优值可赋值10.0 ,对于指标最劣值可赋值为0.0 .对极大型和极小型定性指标常按以下方式赋值.(1)极大型定性指标量化方法对于极大型定性指标而言,假如指标能够分为很低、低、一般、高和很高等五个等级,则能够分别取量化值为,,,和,对应关系如图 2 所示.介于两个等级之间的能够取两个分值之间的适合数值作为量化值.很低低一般高很高图 2 极大型定性指标量化方法(2)0极小型定性指标量化方法对于极小型定性指标而言,假如指标能够分为很高、高、一般、低和很低等五个等级,则能够分别取量化值为,,,和,对应关系如图 3 所示.介于两个等级之间的能够取两个分值之间的适合数值作为量化值.很高高一般低很低二、对于模糊综合评论方法在客观世界中,存在着很多不确立性现象,这类不确立性有两大类:一类是随机性现象,即事物对象是明确的, 因为人们对事物的因果律掌握不够,使得相应结果拥有不行预知性,比如晴日、下雨、下雪,这是明确的,但出现规律不确立;另一类是模糊性现象,即某些事物或观点的界限不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,比如年青与年迈、高与矮、美与丑等,这类不确立性现象不是人们的认识达不到客观实质所造成的,而是事物的一种内在构造的不确立属性,称为模糊 性现象.模糊数学就是用数学方法研究和办理拥有“模糊性”现象的一个数学分支.而模糊综合评论就是以模糊数学为基础,应用模糊关系合成的原理,将一些界限不清、不易定量的要素定量化,进行综合评论的一种方法.. 1 隶属度函数确实定方法隶属度的思想是模糊数学的基本思想, 确立切合实质的隶属函数是应用模糊数学方法成立数学模型的重点,但是这是到现在还没有完整解决的问题.下边介绍几种常用确实定隶属函数的方法.⑴ 模糊统计法模糊统计法是 利用概率统计思想确立隶属度函数的一种客观方法, 是在模糊统计的基础上依据隶属度的客观存在性来确立的. 下边以确立青年人的隶属函数为例来介绍其主要过程.① 以年纪为论域 X ,在论域 X 中取一固定样本点 x 0 27 .*°*② 设 A 为论域 X 上随机改动的一般会合,A 是青年人在 X 上以A 为弹性界限的模糊集,对 * 的改动拥有限制作用.此中x 0 ° °AA ,或 x 0 A ,使得 x 0对 °A 的隶属关系拥有不确立性. 而后进行模糊统计试验, 若 n 次试验中覆盖 x 0的次数为 m n ,则称 m n°n 为 x 0 对于 A 的隶属频次.因为当试验次数 n 不停增大时,隶属频次趋于某一确立的常数,该常数就是°x 0 属于 A 的隶属度,即比方在论域 X 中取 x 0 27 ,选择若干适合人选,请他们写出各自以为青 年人最适合最适合的年纪区间( 从多少岁到多少岁 ) ,马上模糊观点明确 化.若 n 次试验中覆盖 27 岁的年纪区间的次数为 m ,则称 m为 27 岁对于青n年人的隶属频次,表 4 是抽样检查统计的结果.因为 27 岁对于青年人的隶属频次稳固在0 . 78 邻近,所以可获得x 0 27 属于模糊集°的隶属度AA.°(27) 0.78试验次数 n表 4 27 岁对青年人的隶属频次1020 30 40 50 60 70 80 90 100 110 120 129隶属次数 m 61423313947536268768595101隶属频次 mn③ 在论域 X 中适合的取若干个样本点x 1 , x 2 ,L , x n ,分别确立出其隶属度A i)(i 1,2,L , n),成立适合坐标系,描点连线即可获得模糊集A 的隶属函数°(x°曲线.将论域 X 分组,每组以中值为代表分别计算各组隶属频次,连续地描出图形使获得青年人的隶属函数曲线,见表 5 与图 5 所示.确立模糊会合隶属函数的模糊统计方法,重视实质资猜中包含的信息,采纳了统计剖析手段,是一种应用确立性剖析揭露不确立性规律的有效方法.特别是对一些隶属规律不清楚的模糊会合, 也能较好地确立其隶属函数.表 5 分组计算隶属频次 ( 试验次数 129)分组 频数 隶属频次 分组 频数 隶属频次~ 2 ~ 103 ~ 27 ~ 101 ~ 51 ~ 99 ~ 67 ~ 80 ~ 124 ~ 77 ~ 125 ~ 27 ~ 129 ~ 27 ~ 129 ~ 26 ~ 129 ~ 26 ~ 129 ~ 26 ~129 ~1~128⑵ 三分法三分法也是利用概率统计中思想以随 机区间为工具来办理模糊性的的一种客观方法.比如成立矮个子 ° ° ,高 个1 2A ,中等个子 A°子 A 3 三个模糊观点的隶属函数.设P 3 {矮个子 , 中等个子 , 高个子 } ,论域 X 为身高的会合, 取 X (0,3) ( 单位: 图 5 年青人的隶属函数曲 线 m).每 次模糊试验确立 X 的一次区分,每次划 分 确 定一对数 ( , ) ,此中 为矮个子与中等个子的分界点, 为中等个子与高个子的分界点, 进而将模糊试验转变为以下随机试验: 马上 ( , ) 看作二维随机变量,进行抽样检查,求得°、、 的概率散布 P ( x) 、 P (x) 后,再分别导出 A 1 ° 和 °的隶属函数 ± (x) 、 ±( x) 和 ± ( x) ,相应的表示图如图 6 所示.A 2A 3AA2 A13往常 和 分别听从正态散布 2 ) 和 N ( a 2 2° ° °的隶属N (a 1, 1 , 2),则 A 1 、 A 2 和 A 3 函数分别为x1 t 2此中 ( x)e 2dt.2 图 6 由概率散布确立模糊集隶属函数⑶ 模糊散布法依据实质状况,第一选定某些带参数的函数,来表示某种种类模糊观点的隶属函数(论域为实数域),而后再经过实验确立参数.在客观事物中,最常有的是以实数集作论域的情况.若模糊集定义在实数域 R 上,则模糊集的隶属函数便称为模糊散布.下边给出几种常用的模糊散布,在此后确立隶属函数时,就能够依据问题的性质,选择适合 ( 即切合实质状况 ) 模糊散布,依据丈量数据求出散布中所含的参数,进而就能够确立出隶属函数了.为了选择适合的模糊散布,第一应依据实质描绘的对象给出选择的大概方向.偏小型模糊散布适合描绘像“小”、“冷”、“青年”以及颜色的“淡”等倾向小的一方的模糊现象,其隶属函数的一般形式为偏大型模糊散布适合描绘像“大”、“热”、“老年”以及颜色的“浓”等倾向大的一方的模糊现象,其隶属函数的一般形式为中间型模糊散布适合描绘像“中”、“温暖“、“中年”等处于中间状态的模糊现象,其隶属面数能够经过中间型模糊散布表示.①矩形(或半矩形 )散布(a) 偏小型(b) 偏大型(c) 中间型此类散布是用于切实观点.矩形( 或半矩形 ) 散布相应的表示图如图7 所示.(a) 偏小型(b)偏大型(c)中间型图 7 矩形 ( 或半矩形 ) 散布表示图②梯形 ( 或半梯形 ) 散布(a) 偏小型(b) 偏大型(c) 中间型梯形 ( 或半梯形 ) 散布的表示图如图8 所示.③ 抛物形散布(a) 偏小型(b) 偏大型(c) 中间型(a) 偏小型(b)偏大型(c)中间型图 8 梯形 ( 或半梯形 ) 散布表示图抛物形散布的表示图如图9 所示.(a) 偏小型(b)偏大型(c)中间型图 9 抛物形散布表示图④ 正态散布(a) 偏小型(b) 偏大型(c) 中间型正态散布的表示图如图10 所示.⑤ 柯西散布(a) 偏小型(b) 偏大型(c) 中间型偏小型柯西形散布的表示图如图(a)型偏大型(b)11所示.(c)中间图 10 正态散布表示图⑥型散布(a) 偏小型(b) 偏大型(c) 中间型(a)偏小型(b)图 11偏大型柯西散布表示图(c)中间型此中k0 .型散布的表示图如图12 所示.(a)偏小型(b)图 12偏大型型散布表示图(c)中间型。
数学建模案例大学教师工作评估
计算 B2 与 P 的 Hadamard 乘积的权向量,得 W=(0.480, 0.304, 0.115, 0.101)T。
̃ | 1 4 | Wi − W i =12.6%.。如果决策者能够接受此数值,则进行后继工作;否则要对判 ∑ ̃ 4 i =1 Wi
断矩阵进行调整。 3、 层次总排序及一致性检验 A 层的总排序 CR=0<0.10; B 层的总排 CR=0.0949<0.10;C 层的总排序 CR=0.所以这是可
7
大学教师工作评估
以接受的层次分析结果。 带权的阶梯层次结构如下:
4、 评分标准的给出 我们结合浙江大学的实际情况, 给出下面的评分标准供参考。 我们为了在工作效果有差 异的老师之间拉开档次, 以等比数列确定各级分值。 各级的具体评分标准应该由教育学专家 给出。
评价标准 分值
1
2 100 人以 下
̃ 得出的排序权重;当 t’∈(1/3,2/3)时,称 A ̃ 是半可信的,此时要根据具体情况和专家 用由 A ̃ 是可疑的还是可信的;当 t’∈(2/3,1)时,称 A ̃ 是可疑的, A ̃ 必须交回有关 的权威性来决定 A ̃ 得出的权重。 专家审查,才能用由 A
由于 B2 的一致性很差,所以要对其进行调整: Step1:W=(0.0531, 0.285, 0.113, 0.071)T p=0.87
≤2 人 较差 较差 较差 较差
符号的说明
四、问题分析 对教师工作评估的目的是: 客观反映大学教师在一定时期内的工作绩效。 评估方法要体 现学校在各方面对教师的激励和导向。 对教师工作的评估是一个较为复杂和模糊的过程, 影响评估的因素很多, 其中有的因素 存在定量指标,有的因素不存在定量指标,只能定性表示。为尽量克服因主观臆断而造成的 片面性, 我们采用层次分析法建模。 在建模的过程中, 我们力求提高模型的可信性和稳定性。
数学建模 综合评价法
什么是综合评价法?运用多个指标对多个参评单位进行评价的方法,称为多变量综合评价方法,或简称综合评价方法。
其基本思想是将多个指标转化为一个能够反映综合情况的指标来进行评价。
如不同国家经济实力,不同地区社会发展水平,小康生活水平达标进程,企业经济效益评价等,都可以应用这种方法。
编辑本段综合评价方法的种类现代综合评价方法包括主成分分析法、数据包络分析法、模糊评价法等。
(1)主成分分析法。
主成分分析是多元统计分析的一个分支。
是将其分量相关的原随机向量,借助于一个正交变换,转化成其分量不相关的新随机向量,并以方差作为信息量的测度,对新随机向量进行降维处理。
再通过构造适当的价值函数,进一步做系统转化。
(2)数据包络分析法。
它是创建人以其名字命名的DEA模型——CR模型。
DEA法不仅可对同一类型各决策单元的相对有效性做出评价与排序,而且还可进一步分析各决策单元非DE有效的原因及其改进方向,从而为决策者提供重要的管理决策信息。
(3)模糊评价法。
模糊评价法奠基于模糊数学。
它不仅可对评价对象按综合分值的大小进行评价和排序,而且还可根据模糊评价集上的值按最大隶属度原则去评定对象的等级。
编辑本段综合评价法的特点综合评价法的特点表现为:(1)评价过程不是逐个指标顺次完成的,而是通过一些特殊方法将多个指标的评价同时完成的;(2)在综合评价过程中,一般要根据指标的重要性进行加权处理;(3)评价结果不再是具有具体含义的统计指标,而是以指数或分值表示参评单位"综合状况"的排序。
编辑本段综合评价法的要素构成综合评价的要素主要有:1.评价者。
评价者可以是某个人或某团体。
评价目的的给定、评价指标的建立、评价模型的选择、权重系数的确定都与评价者有关。
因此,评价者在评价过程的作用是不可轻视的。
2.被评价对象。
随着综合评价技术理论的开展与实践活动,评价的领域也从最初的各行各业经济统计综合评价拓展到后来的技术水平、生活质量、小康水平、社会发展、环境质量、竞争能力、综合国力、绩效考评等方面。
数学建模中的综合评价方法
综合评价评价是人类社会中一项经常性的、极重要的认识活动,是决策中的基础性工作。
在实际问题的解决过程中,经常遇到有关综合评价问题,如医疗质量的综合评价问题和环境质量的综合评价等。
它是根据一个复杂系统同时受到多种因素影响的特点,在综合考察多个有关因素时,依据多个有关指标对复杂系统进行总评价的方法;综合评价的要点:(1)有多个评价指标,这些指标是可测量的或可量化的;(2)有一个或多个评价对象,这些对象可以是人、单位、方案、标书科研成果等;(3)根据多指标信息计算一个综合指标,把多维空间问题简化为一维空间问题中解决,可以依据综合指标值大小对评价对象优劣程度进行排序。
综合评价的一般步骤1.根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2.根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重; 3.合理确定各单个指标的评价等级及其界限;4.根据评价目的,数据特征,选择适当的综合评价方法,并根据已掌握的历史资料,建立综合评价模型;5.确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用实践中,对选用的评价模型进行考察,并不断修改补充,使之具有一定的科学性、实用性与先进性,然后推广应用。
目前,综合评价有许多不同的方法,如综合指数法、TOPSIS 法、层次分析法、RSR 法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊,由于受多方面因素影响,怎样使评价法更为准确和科学,是人们不断研究的课题。
下面仅介绍综合评价的TOPSIS 法、RSR 法和层次分析法的基本原理及简单的应用。
8.1 TOPSIS 法(逼近理想解排序法)Topsis 法是系统工程中有限方案多目标决策分析的一种常用方法。
教师评价模型 数学建模
教师评价模型一、 摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。
毫不夸张地说评价教师是学校里每个人的“日常功课”。
由于教师职业劳动的特殊性,它是复杂劳动。
不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。
评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。
所以教师评价的确定就显的很重要。
新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。
那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。
本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。
从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。
然后确定三方面的比重来评价教师。
同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。
在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。
161160iii P Q D ==∑ ( i ∈[1,16])(Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数 Di 表示对教师自评要求各项所加给的权重) 2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。
9ji ij i d c a ==∑ ija=ijnuija=A (U ,V )( U 为评价的主要因素,V 为评价因素分等。
C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书我们仔细阅读了“行健杯”数学建模竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C中选择一项填写): A参赛队员(打印并签名) :1. 赖际亮2. 李柯3. 孙勇指导教师或指导教师组负责人(打印并签名):教练组日期: 2015 年 4 月 6 日评阅编号(由组委会评阅前进行编号):编号专用页评阅编号(由组委会评阅前进行编号):统一编号:评阅编号:基于AHP 、熵权法、灰色关联度评价法对高校教师进行综合评价摘要通过对教师考核评价,可以形成有效的人才激励机制,有助于教师改进教学质量。
而通过科学、合理的数学模型,处理由调查问卷得到的数据,将极大提高评价的准确性。
本次建模,我们经过优选,确定了1、层次分析法2、熵权法3、将层次分析法和熵权法得到的权重,通过合理的运算,得到综合权重的综合权重法4、灰度关联度评价法。
对教师进行了综合评价。
针对本题中领导评价指标值模糊的问题,通过与合理的隶属度曲线拟合,科学的将等级制度转换为百分制,使得与其他评价指标量纲相同。
针对工作量指标量纲与其他指标不统一,而且离散程度较大,对评价结果影响过大的问题,结合生活中的实际情况,发现将工作量指标的值拟合为一条斜率越来越小的曲线较为合理,即初期基本工作量阶段,该指标权重较大,随着工作量越来越多,该值的影响将越来越小。
为了减小随意性,本次选取了一条经过统计学验证的曲线进行拟合,既统一了量纲也解决了该问题。
通过上述四种评价方式的验证,发现在四次评价中,教师最终得分的排序基本相同,证明以上数据处理的方法较为合理。
本次选取的四种建模方法各有不同的特点:一、 层此分析模型结合权威专家的判断,确定各指标的权重,并通过分层两两比较的方法减小了人的主观判断的误差,并且数据通过一致性检验公式10.0003852.0<==RICICR ,可以认为确定的权重是可信的,其结果具有科学性,准确性。
二、 熵权法模型去除了人的主观因素的影响,仅从数据的波动中刷选出波动较大即有筛选价值的指标,给予较大的权重,使得出的结果有筛选价值。
三、 综合权重模型是本次建模的创新点,通过熵权法确定的权重与结合层次分析模型得出的权重相结合,通过科学运算得出综合权重,即解决了层次分析法中人的主观因素影响较大的问题又解决了熵权法中数据处理的机械性的问题,得出的结果较为合理。
四、 灰色综合分析法模型通过优选一个最佳的理想样本,求待评教师与该理想样本的相似度,相似度越高的教师则越优秀,客观的对教师进行了评价。
关键词: 隶属度拟合 统一量纲 AHP 熵权法 灰色关联度 综合权重一、问题重述某高校对教师考核有4个指标,它们分别是:学生的评价得分(1x)、领导评价(2x)、教学小组测评得分(3x)和工作量考核(4x);下表是某教学小组8名教师的考核结果:二、模型假设1,假设题目中的数据都真实可靠2,假设题目给出的数据都有代表性和合理性3,假设各评判人都公正客观。
无拉票,乱选等不正常因素4,假设各教师资质,教学科目,工作任务都相同三、符号说明由于本次建模采用了四种模型,故相应的符号说明放在各建模方法的开始,便于查阅四、问题分析本文根据题目给出的各项评价指标及各指标的值,建立数学模型,对八位教师工作教学情况进行科学的评价。
模型要求尽可能减少人的因素的影响,并通过一系列数学运算减小误差。
本题给出了四项评价指标,对八位教师进行了打分评价,需要科学的确定各评价指标的权重,根据权重对教师进行综合评价。
存在的问题:1)领导评价指标的值是模糊值。
2)工作效绩的值量纲与其他指标不同,且数据离散程度很大。
3)各评价指标在评价过程中所占的权重未定,需要科学的方法计算权重。
五、模型的建立和求解题目给出的评价指标如果按相同权重对待,直接相加求和,其结果将缺乏科学性和准确性,故应该通过数学模型确定权重,弱化不重要指标对评价结果的影响。
本问题中存在:1、工作量项的值离散较大,且未统一量纲。
本次建模,通过与拟合精选的统计学曲线得到了较为合理的百分制的值。
2、领导评价项的值模糊,故需要将等级制转换为百分制,为减小这种转换的的随意性,采用了偏大性柯西分布和对数函数构造了一个隶属函数,通过与该曲线拟合得到了科学合理的统一量纲的具体值。
具体实现:将领导评价项定为十个等级(优+,优,优-,…),以6为基准进行赋值。
“优+”为9.5,“优”为9.0, “良”为7.5,以此类推。
因为我们需要的是百分制的确定值,且不能直接进行线性转化。
故采用偏大型柯西分布和对数函数构造了一个隶属函数⎩⎨⎧≤≤+≤≤-+=--105,ln 51,])(1[)(12x b x a x x x f βα(其中α、β、a 、b 为待定参数)求解隶属函数当“优+”时,则隶属度为1,即f (10)=1; 当“良-”时,则隶属度为0.7;即f (5)=0.7; 当“差”时,则隶属度为0.01,即f (1)=0.01;通过MATLAB 计算得到α=7.8570, β=0.7183,a=0.4328,b=0.3422210-⨯则⎩⎨⎧≤≤⨯+≤≤-+=---105,103422.00.4328lnx 51,])7183.0(8570.71[)(212x x x x f画出隶属度函数图象根据这个规律,对于任何一个评价,都可以给出一个合理化的量化值。
将等级转化百分制:对于工作量指标,以最大工作量为10分,线性得出其余教师的工作量的分数,带入故采用偏大型柯西分布和对数函数的隶属函数⎩⎨⎧≤≤⨯+≤≤-+=---105,103422.00.4328lnx 51,])7183.0(8570.71[)(212x x x x f下面三种方法均基于上表数据(一) 层次分析法5.1.1符号说明 A : 表示目标层; B : 表示指标层; i μ:表示评价因素;ij μ:表示i μ对j μ的相对重要性数值;P :表示判断矩阵;max λ:表示判断矩阵的最大特征值根; ω:表示最大特征值对应的特征向量; CI :表示判断矩阵的一致性指标; CR:表示判断矩阵的随机一致性比率; RI:表示判断矩阵的平均一致性指标; i T :教师评价指标向量;i R :第i 位教师的最终成绩。
5.1.2层次分析法简介20 世纪 80 年代, 美国 T ·L ·Saaty 教授提出一种用于解决多目标、 多方案的决策方法——层次分析法。
它的基本原理是:根据问题的性质和需要达到的总目标, 把问题分解为不同的组成要素, 同时根据各要素之间的相互关联程度和隶属关系, 将要素按照不同层次进行组合, 从而得到一个多层次的分析结构模型。
其中, 把决策的备选方案放在最底层,考虑的因素、 准则放在中间层, 决策的目的、 解决的问题放在最高层。
本题只提供了四项评价指标,为了便于一致性检验,把四项指标归于一层,则高校教师考核评价模型如下图所示。
5.1.3层次分析模型的基本步骤包括:1)建立层次模型如上图所示。
用成对比较法,构造判断矩阵,构造判断矩阵的规则如下:表1: 标度 定义 含义 1 同样重要 两元素对某准则同样重要 3 稍微重要 两元素对某准则,一元素比另一元素稍微重要 5 明显重要 两元素对某准则,一元素比另一元素明显重要 7 强烈重要 两元素对某准则,一元素比另一元素强烈重要 9 极端重要 两元素对某准则,一元素比另一元素极端重要 2,4,6,8 相邻标度中指 表示相邻两标度之间折中时的标度 倒数 反比较 元素i 对元素j 的标度为ij a ,反之为1/ij a(1-9表读法则符合人的认识规律,有一定的科学依据。
从人的直接判断能力看在区分事物数量差别时,习惯使用相同、稍强、强、明显强、绝对强等判断语言。
根据心理学试验表明,多数人对不同事物在相同准则上的差异,其分辨能力介于5-9级之间,1-9标度反映了多数人的判断能力。
Saaty 将1-9标度方法和其它标度方法进行对比,大量模拟实验证明,1-9标度是可行的,与其它标度方法比较,能更有效地将思维判断数量化。
)表2(RI ):1max --=n n CI λn:判断矩阵的维数;max λ:判断矩阵的最大特征值;(C.I 越大,偏离一致性越大。
反之,偏离一致性越小。
判断矩阵的阶数m 越大,判断的主观因素造成的偏差越大,偏离一致性也就越大,反之偏离一致性越小。
当阶数m 小于等于2时,C.I=0判断具有完全一致性,因此引入平均随即一致性指标R.I,并且一致性指标与其比较,得一致比率:RICI CR =RI :随机一次性指标,根据n 的取值查表。
)如果一致性检验指标 CR < 0. 10, 则认为判断矩阵的一致性是可以接受的, 否则应对判断矩阵作适当修正。
我们依据判断矩阵可以采用算术平均法(求和法) 计算出同一层次各元素所占的权重。
2)根据表1读法则对指标层进行两两比较,得到四个比值i u /1u ,i u /2u ,i u /3u ,i u /4u (i=1,2,3,4), 构成一个4行4列的判断四个因素重要的判断矩阵P 。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44342414433323134232221241312111/u /u /u /u /u /u /u /u /u /u /u /u /u /u /u /u u u u u u u u u u u u u u u u u P设计四个因素所组成的向量[]Tu u u u w 4321=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯432144342414433323134232221241312111/u /u /u /u /u /u /u /u /u /u /u /u /u /u /u /u u u u u u u u u u u u u u u u u u u u u W P ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1/u /u /u /u 1/u /u /u /u 1/u /u /u /u 134241443231342321241312144434241343332312423222114131211u u u u u u u u u u u u a a a a a a a a a a a a a a a a P 元素 ij a >0(正矩阵),I,j=1,2,3,4 并且满足下列两个条件:(1)ij a =1;(2)ij a =jia 1且此矩阵为互反矩阵5.1.4 模型计算则得出:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=12/113/12122/122/113/12321P 根据互反矩阵A 计算特征值和特征向量,运用MATLAB 和归一化0104.4max=λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1411.02630.01411.04547.0W3)验证P 的一致性,查表2得RI (4)=0.8910.0003467.01max <=--=n n CI λ10.0003852.0<==RICICR此矩阵的一致性可以接受 ]315.8710088.9087[1=T ]974.782.9816.7795[2=T ]974.782.9816.7789[3=T ]3053.945.9516.7782[4=T]4886.923.9744.9577[5=T]5273.7610044.9597[6=T ]7812.8497.9116.7788[7=T ]4566.7697.9116.7770[8=T0117.911411.02630.01411.04547.0]315.8710088.9087[11=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 0619.911411.02630.01411.04547.0]974.782.9816.7795[22=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 4902.911411.02630.01411.04547.0]974.782.9816.7789[33=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 6048.861411.02630.01411.04547.0]3053.945.9516.7782[44=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 1286.871411.02630.01411.04547.0]4886.923.9744.9577[55=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 4795.941411.02630.01411.04547.0]5273.7610044.9597[66=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 0600.841411.02630.01411.04547.0]7812.8497.9116.7788[77=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 7010.771411.02630.01411.04547.0]4566.7697.9116.7770[88=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯=⨯=W T R 对最总成绩进行排名如下表:(二) 熵权法计算权重5.2.1符号说明:ij x :表示第i 个评价项目的第j 个指标n m s ⨯:表示数据原始矩阵ij u :表示第i 个评价项目第j 个指标的指标值的比重 j e :表示第j 个指标的熵值 j w :表示第j 个指标的熵权1w :方法一中根据分层评价法的权重2w :表示方法二中的熵权值 j β:1w 与2w 的综合权重5.2.2熵权法原理熵原本是一热力学概念,它最先由申农 C. E.Shannon 引入信息论 ,称之为信息熵。