综合评价决策模型方法_数学建模

合集下载

数学建模评价模型方法

数学建模评价模型方法
• 对于不同的指标可以取相同的权函数, 也可以取不同的权函数。
四、数据建模的动态加权方法
2. 动态加权函数的设定
四、数据建模的动态加权方法
2. 动态加权函数的设定
四、数据建模的动态加权方法
2. 动态加权函数的设定
返回
四、数据建模的动态加权方法
3. 动态加权的综合评价模型
五、数据建模的综合排序方法
定的区间内为最好。
什么是一 致化处理? 为什么要
一致化?
二、数据处理的一般方法
1. 数据类型的一致化处理方法
二、数据处理的一般方法
1. 数据类型的一致化处理方法
二、数据处理的一般方法
2. 数据指标的无量纲化处理方法
常用方法: 标准差法、极值差法和功效系数法等 。
二、数据处理的一般方法
2. 数据指标的无量纲化处理方法 (1) 标准差方法
数据处理与数据建模方法
1. 一般数据建模问题的提出 2. 数据处理的一般方法 3. 数据建模的综合评价方法 4. 数据建模的动态加权方法 5. 数据建模的综合排序方法 6. 数据建模的预测方法
一、一般数据建模问题的提出 一般问题:
•实际对象都客观存在一些相关的数据信息;
•如何综合利用这些相关信息给出综合评价结果 、制定决策方案,或预测未来?
4. 其他综合评价法
因子分析 聚类分析 模糊评价 层次分析法等
四、数据建模的动态加权方法
1. 动态加权问题的一般提法
问题:如何对n个系统做出综合评价呢?
四、数据建模的动态加权方法
2005年中国大学生数学建模竞赛的A题:“长江水质的 评价和预测”问题的第一部份给出了17个观测站(城市)的 最近28个月的实际检测指标数据,包括反映水质污染程度的 最主要的四项指标:溶解氧(DO)、高锰酸盐指数(CODMn) 、氨氮(NH3-N) 和PH值,要求综合这四种污染指标的28个月 的检测数据对17个城市的水质情况做出综合评价。

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。

它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。

数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。

下面将分别介绍这些主要建模方法。

1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。

它适用于对大量数据进行分析和归纳,提取有用的信息。

数理统计法可以通过描述统计和推断统计两种方式实现。

描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。

2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。

它可以用来寻找最大值、最小值、使一些目标函数最优等问题。

最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。

这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。

3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。

这种方法适用于可以用一些基本的方程来描述的问题。

方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。

通过求解这些方程,可以得到问题的解析解或数值解。

4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。

它可以用来处理随机变量、随机过程和随机事件等问题。

概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。

利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。

5.图论方法:图论方法是研究图结构的数学理论和应用方法。

它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。

图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。

综合评价决策模型方法_数学建模

综合评价决策模型方法_数学建模

综合评价决策模型方法_数学建模决策模型方法是一个重要的工具,用于解决复杂的决策问题。

综合评价决策模型方法是一个基于多个指标或因素对决策方案进行评价的方法。

该方法在数学建模中常用于分析多个决策方案的优劣,帮助决策者做出最优决策。

首先,层次分析法是一种定性与定量相结合的分析方法,用来解决多个指标之间的相对重要性问题。

它通过建立层次结构,将问题分解为若干个层次,并对各层次进行权值的确定,从而得到最终的评价结果。

层次分析法主要包括建立层次结构模型、构造判断矩阵、计算权重和一致性检验等步骤。

其优点是结构明确、能够定量地评价各指标之间的重要性,但也存在权重确定的主观性较强的问题。

其次,灰色关联度法是一种基于灰色理论的模型,用于评价多个指标之间的关联程度。

它通过建立灰色关联度模型,将多个指标的值转化为灰色数列,进行关联度计算,从而得到各指标的权重。

灰色关联度法主要包括灰色关联度计算和权重确定两个步骤。

其优点是能够考虑指标之间的关联关系,但也存在对指标值的灵敏度较高的问题。

再次,熵权法是一种基于信息熵的权重确定方法,用于评价多个指标的重要性。

它通过计算各指标的熵值和权重,得到最终的评价结果。

熵权法主要包括计算指标熵值、计算指标熵权和综合计算这三个步骤。

其优点是能够客观地确定指标的权重,但也存在对指标值范围要求较高的问题。

最后,矩阵法是一种定量化的综合评价方法,用于评价多个决策方案的优劣。

它通过构造评价指标矩阵,对各决策方案的各指标进行评分,并计算出加权总分,从而对决策方案进行排序。

矩阵法主要包括构造评价指标矩阵、对矩阵进行归一化和计算加权总分这三个步骤。

其优点是方法简单、易于理解和使用,但也存在在权重确定上存在一定主观性的问题。

总的来说,综合评价决策模型方法在数学建模中起着重要的作用。

不同的方法有不同的优缺点,适用于不同的决策问题。

决策者在选择合适的方法时,需要根据实际情况和需求综合考虑。

评价模型数学建模

评价模型数学建模

评价模型数学建模
评价模型数学建模是一项关键任务,它要求建立一个完善且可靠的评价体系,以对数学建模的过程和结果进行评估。

这个评价体系应该包括以下几个方面:
第一,对数学建模的过程进行评价。

这个过程包括问题分析、模型设计、数据采集、模型求解、结果分析等多个环节。

评价这个过程的关键是确定评价指标和评价方法。

比如,可以针对问题分析阶段的思考深度、模型设计的创新性、数据采集的有效性和准确性、模型求解的速度和精度、结果分析的逻辑性和实用性等方面进行评价,而评价的方法可以是专家评分、对比分析、统计分析等。

第二,对数学建模的结果进行评价。

这个结果包括模型的可行性、实用性、稳定性和精度等方面。

评价这个结果的关键是确定评价标准和评价方法。

比如,可以针对模型的预测精度、预测置信度、控制效果、决策支持能力等方面进行评价,而评价的方法可以是模型检验、模拟测试、实际应用等。

第三,对数学建模的实践能力进行评价。

这个能力包括问题识别、模型构建、数据处理、模型求解、结果解释等方面。

评价这个能力的关键是确定评价内容和评价方法。

比如,可以针对学生在数学建模竞赛中的表现、在实际应用中的表现等方面进行评价,而评价的方法可以是模型检验、模拟测试、实际应用等。

通过建立一个完善且可靠的评价体系,可以有效提高数学建模的质量和水平,促进数学建模的应用和发展。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

决策类问题数学建模模型

决策类问题数学建模模型

决策类问题数学建模模型
决策类问题数学建模模型是一种将现实生活中的问题转化为数学问题,并通过数学方法来进行分析和解决的方法。

一般来说,决策类问题包括了多个决策变量、目标函数以及一系列约束条件。

数学建模的目标是通过建立数学模型,确定决策变量的最优取值,使得目标函数的值达到最大或最小值,同时满足约束条件。

常见的决策类问题模型包括线性规划模型、非线性规划模型、整数规划模型、动态规划模型等。

这些模型可以根据问题的特点灵活应用,从而得到最优的决策结果。

例如,在生产调度中,可以使用线性规划模型来确定最佳的生产量,使得总成本最小化,同时满足产能约束和市场需求;在项目管理中,可以使用整数规划模型来确定最佳的资源分配方案,使得项目进度最短化,同时满足资源约束和技术要求。

决策类问题数学建模模型的优势在于能够将问题简化为数学形式,通过数学方法的求解,得到最优的决策结果。

然而,建立模型时需要考虑问题的实际情况、约束条件和目标函数的合理性,同时依赖于数学建模者的经验和专业知识。

因此,在建立模型时需要充分了解问题背景,并结合数学方法的特点和技巧,才能得到有效的决策结果。

数学建模常用方法

数学建模常用方法

数学模型分类(六大类)优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型数学建模常用方法一、机理分析法––从基本物理定律以及系统的结构数据来推导出模型。

1.比例分析法--建立变量之间函数关系的最基本最常用的方法。

2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3.逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。

6.量纲分析法二、数据分析法––从大量的观测数据利用统计方法建立数学模型。

1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)i="1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析表达式或系统结构图。

2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

3.人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

四、综合评价方法1.层次分析法2.模糊综合评判法3.数据包络分析法4.人工神经网络评价法5.灰色综合评价法6.上述综合评价方法的两两集成数学建模常用算法1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关)。

综合评价模型——动态加权综合评价方法

综合评价模型——动态加权综合评价方法
(4)PH 值的处理 酸碱度(PH 值)的大小反映出水质呈酸碱性的程度, 通常的水生物都适应于中性水质, 即酸碱度的平衡值(PH 值略大于7)在这里不妨取正常值的中值 7.5。 PH<7.5 , 当 时水质偏碱性,当 PH>7.5 时偏酸性,而偏离值越大水质 就越坏,PH 值属于中间型指标。为此,对所有的 PH 值指 标数据作均值差处理,即令
2005年中国大学生数学建模竞赛的A题:“长江水质的 评价和预测”问题的第一部份给出了17个观测站(城市)的 最近28个月的实际检测指标数据,包括反映水质污染程度的 最主要的四项指标:溶解氧(DO)、高锰酸盐指数(CODMn) 、氨氮(NH3-N) 和PH值,要求综合这四种污染指标的28个月 的检测数据对17个城市的水质情况做出综合评价。
四、动态加权综合评价方法
1. 动态加权综合评价问题的提法 根据国标(GB 3838—2002)的规定,关于地表水的水 质可分为Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类、劣Ⅴ类共六个类 别,每一个类别对每一项指标都有相应的标准值(区间), 只要有一项指标达到高类别的标准就算是高类别的水质,所 以实际中不同类别的水质有很大的差别,而且同一类别的水 在污染物的含量上也有一定的差别。 在对17个城市的水质做综合评价时,要充分考虑这些指 标值不同类别水的“质的差异”和同类别水的“量的差异 ”,在此简称为“质差”和“量差”。因此,这是一个较复 杂的多因素多属性的综合评价问题。
i
。也就是对于每一个属性而言,既有不
同类别的差异,同类别的又有不同量值的差异。对于这种既有“质差” , 又有“量差”的问题,如果用通常的定常权综合评价法做综合评价显然是 不合理的,然而合理有效的方法是动态加权综合评价方法。
四、动态加权综合评价方法
2. 动态加权综合评价的一般方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归一化后得:
B1' (0.27,0.46,0.27) B2' (0.56,0.33,0.11)
B3' (0.27,0.27,0.46)
所以项目乙可推荐为优秀项目
二、层次分析法
层次分析法建模步骤:
(1)建立层次结构模型 (2)构造对比矩阵 (3)计算权向量并作一致性检验 (4)计算组合权向量并作组合一致性检验
1.问题的提出
1.2北部湾广西区的产业状况:
北部湾广西段主要由北海、钦州、防城三市构成,它 地处环北部湾的中心地带,对于整个北部湾经济圈的建设 和发展有着至关重要的作用。目前广西沿海地区经济基础 薄弱、技术实力欠缺、服务水平低下、商贸不够繁荣。如 何加快广西沿海地区经济发展,促进北部湾(广西)经济 区的建设,该重点建设那些产业?又应当优先发展那些产 业?
所以综合而言,电视机还是比较好的比重大。
例:对科技成果项目的综合评价
有甲、乙、丙三项科研成果,现要从中评选出 优秀项目。
三个科研成果的有关情况表
设评价指标集合:
U={科技水平,实现可能性,经济效益} 评语集合:
V={高,中,低} 评价指标权系数向量:
A=(0.2,0.3,0.5)
专家评价结果表
属性层次建模方法与层次分 析法的比较
广西沿海产业决策的属性 层次建模方法
1.问题的提出
1.1北部湾地区区位现状:
北部湾地区包括广东省雷州半岛、广西壮族自治区 南部、海南省西部和越南北部,其背靠大西南,毗邻 越南,邻近港澳地区,面向东南亚,有着明显的区位 优势。近几年来,这些地方的经济发展都显露出勃勃 生机,加快这一区域的开发,具有重大的现实意义。
由上表,可得甲、乙、丙三个项目各自的评价 矩阵P、Q、R:
0.7 0.2 0.1 P 0.1 0.2 0.7
0.3 0.6 0.1
0.3 0.6 0.1 Q 1 0 0
0.7 0.3 0
0.1 0.4 0.5 R 1 0 0
0.1 0.3 0.6
求得:
B1 AP (0.3,0.5,0.3) B2 AQ (0.5,0.3,0.1) B3 AR (0.3,0.3,0.5)
模糊综合评价的基本步骤:
(1)首先要求出模糊评价矩阵P,其中Pij表示方 案X在第i个目标处于第j级评语的隶属度,当对多 个目标进行综合评价时,还要对各个目标分别加 权,设第i个目标权系数为Wi,则可得权系数向 量: A=(W1,W2,…Wn)
(2)利用矩阵的模糊乘法得到综合模糊评价向量B B=A⊙P (其中⊙为模糊乘法)
i1
2.属性层次模型方法
记:
wG (wGu1 , wGu2 ,, wGun )T
称WG为相对属性权向量
wGu i
2 n(n 1)
n
uij
j 1
(4)
2.属性层次模型方法
元素ui的相对属性测度uij和属性权 WGU
2.属性层次模型方法
2.2 判断矩阵和属性判断矩阵
表1:AHP中1-9比例标度的含义
例如: a=(0.8,0.5,0.3,0.7) b=(0.4,0.7,0.5,0.2)
则a⊙b’
=(0.8∧0.4)∨(0.5 ∧0.7)… =0.4 ∨0.5 ∨0.3 ∨0.2 =0.5
例:对某品牌电视机进行综合模糊评价
设评价指标集合: U={图像,声音,价格};
评语集合: V={很好,较好,一般,不好};
1
2.属性层次模型方法
在AHM中,属性判断矩阵(uij)的元素可由AHP 的比例标度转换得到:
k
k
1
uij 0.5
aij k aij 1 i j
(5)
1
k
1
aij

1 k
其中k为大于1的正整数, 常可取1或2。
3.广西沿海产业决策属性层 次结构
3.广西沿海产业决策属性层次结构
经济区的产业决策,是一个复杂的问题,要 考虑的因素很多,下面大家思考一下应考虑那 些因素?
2.属性层次模型方法
u1,u2 ,un
2.属性层次模型方法
2.1属性层次模型
属性层次模型是球赛模型:设元素u1,u2, …un为n支 球队,每两支球队进行1场比赛,每场比赛总得分为1 分。ui和uj比赛(i≠j),得分uij(uij≥0), uj和ui比赛 (i≠j),得分uji(uji≥0) 。
综合评价决策模型方法
综合评价决策模型 建模的两个主要方法:
1. 模糊综合评价方法 2.层次分析法
一、模糊综合评价模型
对方案、人才、成果的评价,人们的考虑的因素 很多,而且有些描述很难给出确切的表达,这时 可采用模糊评价方法。它可对人、事、物进行比 较全面而又定量化的评价,是提高领导决策能力
和管理水平的一种有效方法。
2.属性层次模型方法
所以uij满足:
uij u ji 1 (i j)
ui
j
0
(i j)
(1)
uij称为相对属性测度,矩阵(uij)称为属性判断矩阵。
2.属性层次模型方法
由模型的定义知ui的总得分为:
n
f i
u ij
(2)
j 1
由(1)(2)可得:
fi n(n 1) / 2
(3)
0.3 0.5 0.2 0 P 0.4 0.3 0.2 0.1
0.1 0.1 0.3 0.5
设三个指标的权系数向量:
A ={图像评价,声音评价,价格评价}
=(0.5, 0.3, 0.2) 所以有综合评价结果为:
B=A⊙P =(0.3, 0.5, 0.2, 0.2)
归一化处理:
B=(0.25, 0.42, 0.17, 0.17)
首先对图像进行评价: 假设有30%的人认为很好,50%的人认为较好,
20%的人认为一般,没有人认为不好,这样得到 图像的评价结果为
(0.3, 0.5, 0.2 , 0) 同样对声音有:0.4, 0.3, 0.2 , 0.1) 对价格为: (0.1, 0.1, 0.3 , 0.5) 所以有模糊评价矩阵:
1.问题的提出
1.3产业、项目决策的方法分析 :
此类决策问题的传统方法是层次分析法(Analytic Hierarchy Process, 简称AHP),但层次分析法在具体的处 理时,需求矩阵的特征根和特征向量,并要进行复杂的一 致性检验,对非专业人士的使用存在不便。
属性层次模型(Attribute Hierarchical Mode,简称AHM), 该方法建模和计算过程简单,只需做些加、乘运算就可达 到与AHP同等的效果。
相关文档
最新文档