初一数学尺规作图
七年级数学同步拔高第四讲《尺规作图》讲义

第四讲尺规作图(讲义)一、知识点睛1.五种基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③作已知线段的垂直平分线;④作已知角的角平分线;⑤过平面内一点,作已知直线的垂线.书写作法时注意:________________,________________.2.应用作图:①______________________,设计作图方案;②调用__________________完成图形.二、精讲精练1.作一条线段等于已知线段.已知:如图,线段a.求作:线段AB,使AB=a.作法:(1)作射线AP;(2)以为圆心,为半径作弧,交射线AP于点B;___________即为所求.2.作一个角等于已知角.已知:如图,∠ABC.求作:∠DEF,使∠DEF=∠ABC.作法:(1)作射线EF;(2)以_____为圆心,______为半径作弧,交BA于点M,交BC于点N;(3)以____为圆心,_____为半径作弧,交EF于点P;(4)___________,___________作弧,交前弧于点D;(5)作射线ED.∠DEF______________.证明:连接_____,_____.在______和______中___________()___________()___________()⎧⎪⎨⎪⎩已作已作已作∴_______________()∴_______________3.作已知线段的垂直平分线.已知:线段MN .求作:直线AB ,使AB 垂直平分MN.作法:(1)分别以_______,______为圆心,___________为半径作弧,两弧相交于点A 和点B ;(2)_______________________________________._______________________________________.4.作已知角的角平分线.已知:如图,∠AOB .求作:射线OP ,使∠AOP =∠BOP (即OP 平分∠AOB).作法:(1)________________,________________作弧,交OA 于点M ,交OB 于点N ;(2)分别以_______,_______为圆心,_________为半径作弧,两弧在交于点P ;(3)_____________________________________._____________________________________.5.(1)过直线上一点,作已知直线的垂线.已知:A为直线MN上一点.求作:直线AB,使AB⊥MN.作法:(1)___________________________________________ ______________________________________;(2)__________________________________________ ______________________________________;(3)________________________________________.___________________________________________.5.(2)过直线外一点,作已知直线的垂线.已知:A为直线MN外一点.求作:直线AB,使AB⊥MN.作法:(1)__________________________________________ _______________________________________;(2)__________________________________________;_______________________________________;(3)__________________________________________;(4)__________________________________________.____________________________________.6.已知三边作三角形.已知:如图,线段a,b,c.求作:△ABC,使AB=c,AC=b,BC=a.作法:(1)作线段__________;(2)___________________作弧,_______________作弧与前弧相交于点B;(3)连接AB,BC.__________________.7.过直线外一点作已知直线的平行线.已知:如图,A是直线MN外一点.求作:直线AB,使AB∥MN.作法:(1)过点A作_____________________________;(2)过点A作_____________________________.直线AB即为所求.8.已知两边及夹角作三角形.已知:如图,线段m,n,∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.作法:(1)___________________;(2)在射线______上截取__________,在射线______上截取____________;(3)连接BC.___________________.9.以下叙述的作图方法中能够实现的有____________.①过点A作直线BC的垂线;②过点A作线段BC的垂直平分线;③作∠AOB的平分线;④延长AB交CD的中点于E;⑤延长AB使AB⊥CD.10.电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m,n的距离也必须相等,发射塔P应修建在什么位置?11.为打造“宜居城市”,某市拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图所示.请在题目给的原图上利用尺规作图作出音乐喷泉M的位置.12.请画出草图,解决下列问题:(1)已知:在△ABC中,CE平分∠ACB交AB于E,过点E 作ED∥AC交BC于D,过D作DF∥CE交AB于F,则∠EDF和∠BDF的数量关系是______________________.(2)在△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,则∠AED和∠EDB的数量关系是____________________________.(3)已知:在△ABC中,BO平分∠ABC,CO平分∠ACB,BO与CO交于点O,过点O作DE∥BC交AB于D,交AC 于E,则DE_____BD+CE(选填“>”、“<”或“=”)(4)已知:在Rt△ABC中,∠C=90º,BD平分∠B交AC于点D,在AB边上取一点E,使BE=BC,连结ED.则∠BED=_________.三、回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________。
数学人教版七年级上册尺规作图

5、已知线段AC = 1,BC = 3则线段AB的长度 是( D ). A .4 B.2 C. 2或4 D. 以上答案都不对
变式:已知A、B、C是同一条直线上的三
点,且线段AC = 1,BC = 3,则线段AB的
长度是( C ).
现有A、B两个村庄位于小河边,要修一水 库,供应村民饮用水,请问该水库应当修 在哪里,费用最少?
间的距离.
A
B
C
D
线段AC的中点
A B C
你记住什么 是线段的中 点了吗?
定义:把一条线段分成相等的两条线段的点, 叫做这条线段的中点.
数量关系: AB + BC=AC 如上图,若AB=2cm,
1 AC 2
AB = BC=
则线段AC= 4 cm,
线段BC= 2 cm.
AC=2AB=2BC
例3 如图,点P是线段AB的中点,点C、D
6
∴ AB=6PC=6×1.5=9(cm) 即 AB的长是9cm.
例2 已知线段a、b,画一条线段c,使它 的长度等于两条已知线段的长度的和.
a b
画法: 1、画射线AD. 2、用圆规在射线AD上截取AB=a.
3、用圆规在射线BD上截取BC=b.
c a b B C D
A
线段AC就是所求的线段c.
线段c的长度是线段a、b的长度的和, 我们就说线段c是线段a、b的和, 记做c=a+b,即AC=AB+BC.
把线段AB三等分.已知线段CP的长为1.5cm, 求线段AB的长.
A C P
1.5cm
D
B
?
∵ 解:
点P是线段AB的中点,
1 ∴ AP=PB= AB. 2 ∵ 点 C、D把线 段AB三等分,
初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。
还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形—-这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的。
初中中考尺规作图十例(打印)

BPAaOQPNM 尺规作图【常识归纳】1.尺规作图的界说:尺规作图是指用没有刻度的直尺和圆规作图.最根本,最经常应用的尺规作图,平日称根本作图.一些庞杂的尺规作图都是由根本作图构成的.2.五种根本作图:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知线段的垂直等分线;4.作已知角的角等分线;5.过一点作已知直线的垂线; (1)标题一:作一条线段等于已知线段. 已知:如图,线段a . 求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形.(2)标题二:作已知线段的中点. 已知:如图,线段MN.求作:点O,使MO=NO (即O 是MN 的中点). 作法:(1)分离以M.N 为圆心,大于的雷同线段为半径画弧,ON MBPA NM BOA③②①A'A'N'O'B'M'O'A'N'M'M'O'两弧订交于P,Q;(2)衔接PQ 交MN 于O .则点O 就是所求作的MN的中点.(3)标题三:作已知角的角等分线. 已知:如图,∠AOB,求作:射线OP, 使∠AOP =∠BOP (即OP 等分∠AOB ). 作法:(1)以O 为圆心,随意率性长度为半径画弧,分离交OA,OB 于M,N;(2)分离以M.N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP.则射线OP 就是∠AOB 的角等分线.(4)标题四:作一个角等于已知角. 已知:如图,∠AOB. 求作:∠A ´O ´B ´,使∠A ´O ´B ´=∠AOB作法:(1)作射线O ´A ´;(2)以O 为圆心,随意率性长度为半径画弧,交OA 于M,交OB 于N;PBBAP(3)以O ´为圆心,以OM 的长为半径画弧,交O ´A ´于M ´; (4)以M ´为圆心,以MN 的长为半径画弧,交前弧于N ´; (5)衔接O ´N ´并延伸到B ´. 则∠A ´O ´B ´就是所求作的角.(5)标题五:经由直线上一点做已知直线的垂线. 已知:如图,P 是直线AB 上一点. 求作:直线CD,是CD 经由点P,且CD ⊥AB. 作法:(1)以P 为圆心,随意率性长为半径画弧,交AB 于M.N;(2)分离以M.N 为圆心,大于MN 21的长为半径画弧,两弧交于点Q;(3)过D.Q 作直线CD. 则直线CD 是求作的直线.(6)标题六:经由直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P.求作:直线CD,使CD 经由点P,且CD ⊥AB.作法:(1)以P 为圆心,随意率性长为半径画弧,交AB 于M.N;(2)分离以M.N 圆心,大于MN 21长度的一半为半径画弧,两弧交于点Q;(3)过P.Q 作直线CD.ca bmn 则直线CD 就是所求作的直线.(7)标题七:已知三边作三角形. 已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a. 作法:(1) 作线段AB = c;(2) 以A 为圆心,以b 为半径作弧,以B 为圆心,以a 为半径作弧与 前弧订交于C;(3) 衔接AC,BC.则△ABC 就是所求作的三角形.(8)标题八:已知双方及夹角作三角形. 已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法:(1) 作∠A=∠α;(2) 在AB 上截取AB=m ,AC=n; (3) 衔接BC.则△ABC 就是所求作的三角形.(9)标题九:已知两角及夹边作三角形. 已知:如图,∠α,∠β,线段m .求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.作法:(1)作线段AB=m;在AB的同旁作∠A=∠α,作∠B=∠β,∠A与∠B的另一边订交于C.则△ABC就是所求作的图形(三角形).(10)标题十:已知三角形,作三角形的外接圆和内切圆.已知:如图,△ABC.求作:△ABC外接圆和内切圆.作法:(1)外接圆的圆心是△ABC三条边的垂直等分线的交点(转化为作AB.BC的垂直等分线交点,半径是交点与△ABC个中一个极点的长度)(2)内切圆的圆心是△ABC三个角的角等分线的交点(转化为作∠B.∠C的角等分线交点,半径是交点到△ABC个中一条边的长度)。
(初一)尺规作图

E C
A
α
B F
几何作图Βιβλιοθήκη 基本作图三、利用基本作图解决实际问题
例2 如图,107国道OA和320国道OB在某市相交于 点O,在∠AOB的内部有工厂C和D,现要修建一个 货站P,使P到OA、OB的距离相等且PC=PD,用尺
规作出货站P的位置(不写作法,保留作图痕迹,写出
结论).
A D O C
实际作图
B A
灌 溉总 渠
2、A、B是两个村庄,要从灌溉总渠 引两条水渠,使它们到A、B两村距 离之和最短,请你作出方案,不写 作法,保留作图痕迹。
B A
灌 溉总 渠
四、反思与提高
对尺规作图再认识的过程中,你有何 新的收获? 实际作图
几何作图
基本作图
作业: 书本P86习题2、3、4、6。
校本:尺规作图(2)
第19章 全等三角形
19.3 尺规作图
一、基本尺规作图
1、作一条线段等于已知线段.
2、作一个角等于已知角. 3、作已知角的平分线.
α a
4、过一点做已知直线的垂线;
(1) 过在直线上的点C 作出直线的垂线。
(2) 过直线外的点C ,作出直线的垂线。
5、作已知线段的垂直平分线.
小耍一下!看你怎么样
1.作线段PQ=BC; 2.作∠EDF=∠ABC ; 3.作射线AG平分∠BAC; 4.作线段AB的垂直平分线DH.
B C
A
5. 作BP⊥AC
二、基本作图的应用
例1 已知两边及其夹角,求作三角形.
E
C
α a
A
α
B F
b
练习:在上题图形的基础上,以线段 a、b为邻边作一个平行四边形.
初一数学第四章《几何图形初步》尺规作图——作线段

教案尺规作图——线段一、学习目标:1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质;4.体验运用“两点之间,线段最短”解决生活中的问题;5.了解两点之间的距离的定义,并会求两点之间的距离.二、知识回顾:1.已知一条线段,如何画一条线段等于已知线段?先量出已知线段的长,再画一条这个长度的线段.2. 怎样比较两条线段的长短?用刻度尺分别量出两条线段的长度来比较.三、知识梳理:1.尺规作图和基本作图在几何里,把只用直尺和圆规画图的方法称为尺规作图;最基本、最常用的尺规作图,通常成为基本作图. 2.作一条线段等于已知线段已知线段a,画一条线段等于已知线段.作法:(1)作射线AM(2)在AM上截取AB= a.则线段AB为所求.3.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如下图)4.线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB.如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点.类似地,还有四等分点,等等.5.线段的性质两点所连的线中,线段最短.简单地说成:两点之间,线段最短.6.两点间的距离连接两点间的线段的长度,叫做这两点的距离.注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身.四、典例探究1.用尺规作已知线段的和、差【例1】如下图,已知线段a,b,画一条线段,使它等于a+b.总结:1.画线段的和时,一般在第一条线段向右的延长线上画,画图工具可选用直尺和圆规,注意保留圆弧的痕迹.2.画线段的差时,一般从被减的那线段的右端点向左在线段上画.3.所画线段含已知线段的和、差时,通常先画和,再画差.4.画完线段后,最后别忘了写结论.练1如图,已知线段a,b,c,画一条线段,使它等于a-b+c.2.线段中点的有关计算【例2】如图,已知线段AD=6,线段AC=BD=4,E、F分别是线段AB,CD的中点,求线段EF的长.总结:1.一条线段的中点只有一个.2.某一点要成为一条线段的中点,必须同时满足两个条件:①点必须在这条线段上;②它把这条线段分为相等的两条线段.3.若点C是线段AB 的中点,则AB=2AC=2BC,或AC=BC=12AB.反之,若AB=2AC=2BC,或AC=BC=12AB,则点C是线段AB 的中点.练2已知线段AB=12,直线AB上有一点C,且BC=6,M是线段AC的中点,求线段AM的长.3.两点之间线段最短的实际应用【例3】如图,A、B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在l上标注出点P的位置,并说明理由.总结:解决平面图形中最短路径(即最小距离或距离之和最小)问题时,通常会运用到线段的基本性质:两点之间,线段最短.练3如下图,一只壁虎要从圆柱体A点沿着表面尽快地爬到B点,因为B点有它要吃的一只蚊子,而它饿的十分厉害,问壁虎怎样爬行路线最短?4.两点之间的距离问题【例4】A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对总结:对于题目中没有给出图的几何问题,要注意考虑全面,必要时需分类讨论. 结合题目已知条件正确画图很重要,既直观形象,又不易漏掉情况.练4已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm五、课后小测一、选择题1.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边2.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm3.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=()A.10cm B.6cm C.8cm D.9cm4.如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是()A.3cm B.3.5cm C.4cm D.4.5cm5.在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB的长度是()A.0.5cm B.1cm C.1.5cm D.2cm6.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b7.如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A.0.5 B.1 C.1.5 D.28.已知A,B两点之间距离是10cm,C是线段AB上任意一点,则AC的中点与BC的中点距离是()A.3cm B.4cm C.5cm D.不能确定9.下列说法中,正确的有()A.两点之间,直线最短 B.连结两点的线段叫做两点的距离C.过两点有且只有一条直线 D.AB=BC,则点B是线段AC的中点10.下列说法错误的是()A.若AP=BP,则点P是线段的中点 B.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外 D.两点之间,线段最短11.A、B两点的距离是()A.连接A、B两点的线段 B.连接A、B两点间的线段的长度C.过A、B两点的直线 D.过A、B两点的射线12.下列说法正确的是()A.两点之间的连线中,直线最短 B.如果AP=BP,那么点P是线段AB的中点C.两点之间的线段叫做这两点之间的距离 D.如果点P是线段AB的中点,那么AP=BP13.下列说法中,正确的是()A.若AC=12AB,则C是AB的中点 B.若AC=BC,则C是AB的中点C.若C在线段AB上,且AC=BC,则C是AB的中点 D.若C在直线AB上,且AC=12AB,则C是线段AB的中点二.填空题14.已知线段AB=10,如图,若C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD的长度是.15.(1)线段的大小比较可以用测量出它们的长度来比较,也可以把一条线段另一条线段上来比较;(2)将一条线段分成两条相等的线段的点叫做_________,若P是AB•的中点,•则PA=12_____,或AB=2________.三、解答题16.如图,已知线段a,b,c,画一条线段,使它等于a+3b-2c.17.如图,P是线段AB上一点,M,N分别是线段AB,AP•的中点,若AB=16,BP=6,求线段MN的长.18.知识是用来为人类服务的,我们应该把它们用于有意义的方面.从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.19.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?20.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.21.如图所示,A,B,C三棵树在同一直线上,量得树A与树B的距离为4m,树B与树C的距离为3m,小亮正好在A,C两树的正中间O处,请你计算一下小亮距离树B多远?22.如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.六、小结。
新北师大版七年级数学下册第二章《尺规作图》公开课课件.ppt

•
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/142021/1/142021/1/142021/1/14
谢谢观看
。2021年1月14日星期四2021/1/142021/1/142021/1/14
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/142021/1/142021/1/141/14/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/142021/1/14January 14, 2021
尺规作图
用没有刻度的直尺和圆规画图 (不能使用测量工具测量)
z```xxk
1、已知线段a,作线段AB=a,保留作图痕迹, 不写做法。
a
2、已知∠ABC,作∠A’B’C’, 使得∠A’B’C’=∠ABC,保留作图痕迹, 不写做法。
A
B
C
3、已知∠ABC,作∠A’B’C’, 使得和∠2,作∠ABC和∠DEF z``xxk
使得∠ABC= ∠1+∠2,∠DEF= ∠2 -∠1
尺规作图(含五种基本作图)

O
c
B
第十三页,共32页。
探索
基本作图3 "平分已知角".
(1)以O 为圆心,以适当长为半径画弧,交OA 于C 点,交OB 于D 点;
(2)分别以C、D 为圆心,以大于
1 C2 D
长为半
径画弧,两弧相交于P 点;
A
(3)作射线OP ,
你想自己画出它来吗?
那就让我们从最初的步骤开始吧!
1、 以点O为圆心, r 为半径作圆O;
以2、圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去,
在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗?
第十二页,共32页。
什么叫做角平分线?
D、作线段AB,使它等于已知线段m
第四页,共32页。
基本作图1、“作一条线段等于已知线段。”
已知:线段a.
求作:线段AB,使AB=a.
作法与示范:
a
(1) 作射线AC ;
(2) 以点A为圆心,
以a的长为半径 画弧,
交射线AC 于点B,
则:AB即所求。
A
第五页,共32页。
BC
练习:
求作一条线段AB,使AB=2a.
O
A
C
O`
C`
A`
证明:
,由作法可知
△C`O`D`≌△COD(SSS),
∴∠C`O`D`=∠COD(全等三角形的对 应角相等),
即∠A`O`B`=∠AOB。
第九页,共32页。
练习
1、已知: ∠AOB。 求作: ∠A’O’B’ ,使∠A’O’B’=2∠AOB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B P A a O Q P N
M O N M B P A
尺规作图
【知识回顾】
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
最基本,最常用的尺规作图,通常称基本作图。
一些复杂的尺规作图都是由基本作图组成的。
2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a . 作法:
(1) 作射线AP ; (2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。
(2)题目二:作已知线段的中点。
已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .
则点O 就是所求作的MN的中点。
(3)题目三:作已知角的角平分线。
已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。
作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ;
(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。
则射线OP 就是∠AOB 的角平分线。
(4)题目四:作一个角等于已知角。
已知:如图,∠AOB 。
③
②
①
P B
B A P
求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。
则∠A ’O ’B ’就是所求作的角。
(5)题目五:经过直线上一点做已知直线的垂线。
已知:如图,P 是直线AB 上一点。
求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。
作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于MN 2
1
的长为半径画弧,两弧交于点Q ;
(3)过D 、Q 作直线CD 。
则直线CD 是求作的直线。
(6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。
求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。
作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
c a
b
m
n
(2)分别以M、N圆心,大于MN
2
1
长度的一半为半径画弧,两弧交于点Q;(3)过P、Q作直线CD。
则直线CD就是所求作的直线。
(5)题目七:已知三边作三角形。
已知:如图,线段a,b,c.
求作:△ABC,使AB = c,AC = b,BC = a.
作法:
(1)作线段AB = c;
(2)以A为圆心,以b为半径作弧,
以B为圆心,以a为半径作弧与
前弧相交于C;
(3)连接AC,BC。
则△ABC就是所求作的三角形。
题目八:已知两边及夹角作三角形。
已知:如图,线段m,n, ∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
作法:
(1)作∠A=∠α;
(2)在AB上截取AB=m ,AC=n;
(3)连接BC。
则△ABC就是所求作的三角形。
题目九:已知两角及夹边作三角形。
已知:如图,∠α,∠β,线段m .
求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.
作法:
(1)作线段AB=m;
(2)在AB的同旁
作∠A=∠α,作∠B=∠β,
∠A与∠B的另一边相交于C。
则△ABC
【考点练习】
1、如图:107国道OA和320国道OB
A
内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作法,保留作图痕迹,写出结论)
2、三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?用尺规作图作出所有可能的加油站地址。
3、过点C作一条线平行于AB。
4、如图,平行四边形纸条ABCD中,E、F分别是边AD、BC的中点。
张老师请同学们将纸条的下半部分平行四边形ABEF沿EF翻折,得到一个V字形图案。
请你在原图中画出翻折后的图形平行四边形A1B1FE;(用尺规作图,不写画法,保留作图痕迹)。
5、如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB画在方格纸上,请用利用格点和直尺(无刻度)作出∠AOB的平分线。
O
B
A
6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB 为直径,O 为圆心(要求用尺规作图,保留作图痕迹)。
7、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.
8、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.
9、如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h
10、如图,有A ,B ,C 三个村庄,现要修建一所希望小学,•使三个村庄到学校
H G F
E B A
的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(•保留作图痕迹).
11、如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
.B
A .
12、如图,A 为∠MON 内一点,试在OM 、ON 边上分别作出一点B 、C ,使△ABC 的周长最小.
13、如图,已知两点P 、Q 在锐角∠AOB 内,分别在OA 、OB 上求点M 、N ,使PM +MN +NQ 最短.
18.如图所示,EFGH 是一矩形的台球台面,有黑白两球分别位于A 、B 两点位置上,试问:怎样撞击黑球A ,使黑球先碰撞台边EF 反弹后再击中白球B ?
N
A
O
M Q P
B O A。