石墨烯改变世界的神奇材料
(说明文)石墨说明文中学作文5篇

石墨说明文中学作文5篇石墨(graphite)是一种矿物名,通常产于变质岩中,是煤或碳质岩石受到区域变质作用或岩浆侵入作用形成。
下面是我整理的石墨说明文,欢送大家阅读分享。
石墨说明文1北京时间2021年12月19日零时,顶尖学术期刊英国自然杂志发布了2021年度影响世界的十大科学人物排行榜,中国22岁的青年学者曹原名列榜首。
曹原发现:当两层平行石墨烯旋转成约1.1°的微妙角度时,就会产生神奇的超导效应。
把平行的两层石墨烯旋转成约1.1°的“魔角〞并不容易,需要很屡次试错,但曹原总是很快就能操作成功。
因此,自然杂志称曹原为“石墨烯驾驭者〞。
石墨烯是什么呢它是一种二维晶体,是目前的最薄、强度最高、导电导热性能最强的新型纳米材料,被称为“黑金〞,是一种有“新材料之王〞之称的奇迹材料。
它看似神秘,实际上,石墨烯一层层叠起来就是石墨,1毫米厚的石墨大约包含300万层石墨烯。
铅笔在纸上轻轻划过,留下的痕迹就可能是几层石墨烯。
它本来就存在于自然界,只是难以剥离出单层结构。
石墨烯优异的物理性质使它在很多领域展现出巨大的应用潜力。
尽管石墨烯还没有实现大规模的产业化,但是人们对石墨烯的应用前景十分看好。
目前的研发成果显示,石墨烯已广泛应用于多个领域。
(如由于应用广泛,业内预计未来5至10年全球石墨烯产业规模会超过1000亿美元,更有乐观者认为,石墨烯的市场潜在规模在万亿美元以上。
就目前情况来讲,石墨烯市场化的最大阻碍是需求和价格。
石墨烯的未来产业化之路还很长,需要资金的支持和研发人员的开拓创新。
近年来,我国各级政府对石墨烯的重视程度都在日益提高。
随着国家利好政策的不断出台,市场需求的不断增加,石墨烯的应用领域会越来越广阔。
与西方兴旺国家相比,中国对石墨烯的研究起步较晚,但通过科研人员孜孜不倦的努力,相信在不久的将来,石墨烯材料将以其优异的性能及超高的性价比在各个领域大放光荣。
石墨说明文2充电只需几秒钟史上最薄电灯泡光驱动飞行器关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。
人教版九年级物理上册第十五章综合素质评价附答案 (1)

人教版九年级物理上册第十五章综合素质评价(B)一、选择题(每题3分,共9分)1.生活中的静电,有的可以利用,有的需要防治,下列选项属于利用静电的是() A.复印时,让硒鼓带电吸引墨粉B.地毯中编织了细小的钢丝C.油罐车的尾部通常拖了一条铁链D.高楼顶部装上避雷针2.如图所示为小灯泡与一节干电池连接的几种方式,其中能使小灯泡发光的是()A.①③B.②③④C.②③D.②④3.如图所示,开关闭合时电流表示数为0.3 A,若通过L1的电流为I1,通过L2的电流为I2,则()A.I1=I2=0.3 AB.I1=0 A;I2=0.3 AC.I1=I2=0.15 AD.I1=0.3 A;I2=0 A二、填空题(每空1分,共12分)4.如图甲所示,电流表的读数为________A。
为了选定电流表适合的量程测量,应该先用电流表的大量程“________”一下;某次测量时电流表示数如图乙所示,则测出的电流是________mA。
5.学习了电学知识后,小伟带着问题思考家里面的电现象。
如图是一款迷你台灯扇,小伟发现它的照明和吹风两个功能可以独立实现,台灯扇的灯和电动机在电路中应是________(填“串联”或“并联”)的。
小伟妈妈做饭时,不小心把胡椒粉洒在粗粒盐上了,小伟拿塑料小勺在毛皮上摩擦了几下,然后把小勺靠近胡椒粉,胡椒粉立刻被吸到勺子上,成功将胡椒粉和粗粒盐分开,这利用了带电体__________________的性质。
用丝绸摩擦过的玻璃棒靠近吸管的一端,吸管被排斥,由此推测吸管的这端带________电。
6.[易错题]很多公共场所都配有手机充电宝,方便人们出行时为手机应急充电。
用充电宝为手机充电时,充电宝相当于________,充电宝充电线的三个插头可为三部不同类型的手机充电,如果三部手机同时充电,那么这三部手机的连接方式是________(填“串联”或“并联”)。
充电时,电流的方向是________(“①既有插头到手机又有手机到插头”或“②只有插头到手机”,填序号)。
石墨烯的奥秘 将石墨一层结构单独拿出就是石墨烯

石墨烯的奥秘什么是石墨烯呢?很简单,石墨烯就是单层的石墨,如果将石墨的一层结构单独拿出来,那就是石墨烯。
———————————————石墨烯就是单层的石墨———————————————在整个宇宙之中,所有的物质都是由不同的元素所构成的,但同一种元素却并非只能构成同一种物质,元素通过不同的结构进行组合就能够形成不同的物质。
以碳元素为例,当一个碳原子周围有四个碳原子,它们以共价键的方式相结合,且周围的四个碳原子与中心的碳原子形成一个正四面体结构的时候,就组成了一种物质,我们叫它钻石。
因为碳原子之间是以很强的共价键结合的,所以钻石的硬度很高,又被称为金刚石。
钻石的硬度很高,但另一个同样由碳原子所组成的物质却十分光滑,它就是石墨。
多正六边形的结构,就组成了一个层,很多层叠在一起就组成了石墨。
在石墨中,同一层的碳原子依靠化学键结合,而层与层之间却没有化学键,它们是依靠原子间的弱碱性电性吸引力结合在一起的,所以同一层碳原子的结合非常牢固,而层与层之间则是可以滑动的,而这种层与层之间的滑动就是石墨光滑特性的根源。
那么什么是石墨烯呢?很简单,石墨烯就是单层的石墨,如果将石墨的一层结构单独拿出来,那就是石墨烯。
石墨烯的发现是在2004年,而在此之前,科学家们一直断定类似于石墨烯的物质是不会存在的,为什么呢?原因很简单,我们身处将石墨一层结构单独拿出就是石墨烯都是三维结构的,像石墨烯这种二维结构的物质不可能存在于三维空间之中。
一张纸是不是二维结构呢?当然不是,纸是三维结构物质,它是立体的,拥有长宽高,只不过高度,也就是厚度很薄而已。
但石墨烯就不同了,它基本上可以说是一种二维结构物质,石墨烯就是单层石墨,它的结构是平面的,厚度为一个原子,那么这一个原子到底有多厚呢?我们知道,纳米这个单位是很小的,一纳米就等于10-9米,而单层石墨的厚度为0.355纳米,很薄很薄,薄得没有办法再薄。
二维结构的物质无法存在于三维空间之中,这是一个常识,但有|封面故事|◎编辑|刘伟鹏固体材料,我们会发现:许多原子排列成规则的、无休止的重复三维结构,只是原子之间没有看不见的结合,它们不是结合在一起,而是固定在一起。
初三物理初中物理苏科版试题答案及解析

初三物理初中物理苏科版试题答案及解析1.按照题目要求作图(1)在图中,画出使轻质杠杆保持平衡的最小的力F的示意图(要求保留作图痕迹)。
(2)用笔画线代替导线,把图中的三孔插座及它的保险丝、电灯及控制电灯的开关接到家庭电路上。
(3)如图所示,是一台电子秤的部分工作原理图,它是以电压表指针的偏转程度来显示所称物为定值电阻。
请在体质量的大小,即电压表示数越大,质量越大。
虚线框内R为滑动变阻器,R虚线框中完成该工作电路图。
要求:当滑动触头P在最上端时,称量质量为零,在最下端时达最大称量。
【答案】(1)(2)(3)【解析】(1)如图所示(2)零线直接连接灯泡的螺旋套,火线进入开关,再进入灯泡顶端的螺旋套.地线直接解三孔插座的上孔,零线直接接三孔插座的左孔,火线首先接保险丝,然后再进入右孔.如图所示串联,电压表测量R两端的电压(3)如图,R与R【考点】力的示意图;杠杆中最小力的问题.;家庭电路图连接;电磁继电器的组成、原理和特点;滑动变阻器的使用;欧姆定律的应用.。
点评:(1)注意找最小的力,应该找最长的力臂.(2)家庭电路中,不但考虑用电器的正常使用,更要考虑使用的安全性.三孔插座的接线原则:左零右火,中间接地.(3)此题中,R起到了保护电路的作用,R相当于滑动变阻器,电压表测量R两端的电压,明确了这些就可顺利解决此题.2.在物理学习过程中,经常需要进行估测.以下估测较为符合实际的是()A.手托一枚鸡蛋用的力大约是1NB.快速写出汉字“二”用时约为1sC.对人体的安全电压不高于36VD.人爬上一层楼做的功约为1500J【答案】C、D【解析】解:A、一只鸡蛋的质量大约50g,受到的重力约0.5N,所以托起一只鸡蛋的力大约0.5N.此选项不符合实际;B、快速写出汉字“二”用时不到0.5s.此选项不符合实际;C、对人体的安全电压不高于36V,意思是等于或低于36V.此选项符合实际;D、一层楼的高度大约3m,人的体重在500N左右,所以人爬上一层楼做的功约为W=Gh=500N×3m=1500J.此选项符合实际.故选C、D3.塑料尺是同学们常用的学习工具,利用它可以做很多实验.(1)如图所示,用塑料尺测得物体A是cm.(2)用塑料尺先后快拨和慢拨木梳的齿,这是为了研究声音的与频率有关.(3)用与毛皮摩擦过的塑料尺靠近不带电的泡沫小球时,小球会被(选填“吸引”或“排斥”).(4)塑料尺不容易被拉长,是因为分子间存在.(5)如果让塑料尺从某一高度自由落下,则塑料尺的运动越来越快,这是因为力能(选填“改变”或“维持”)物体的运动状态.【答案】(1)3.5;(2)音调;(3)吸引;(4)引力;(5)改变【解析】(1)此刻度尺的分度值为1cm,起始端从零开始,要估读到分度值的下一位.因此该物体的长度为3.5cm.(2)用塑料尺先后快拨和慢拨木梳的齿,改变了木梳的齿的振动频率,改变了声音的音调.因此是研究声音的音调和振动频率之间的关系;(3)用与毛皮摩擦过的塑料尺带有静电,带电体都有吸引轻小物体的性质,故小球会被吸引;(4)塑料尺不容易被拉长,是因为分子间存在引力;(5)如果让塑料尺从某一高度自由落下,在重力的作用下,塑料尺的运动越来越快,这是因为力能改变物体的运动状态.4.分析以下实验:①比较电流做功的多少采用比较电灯发光的亮度;②研究电磁铁磁性的强弱比较能吸引铁屑的多少;③测滑动摩擦力的大小从匀速拉动的弹簧秤上读得;④在探究焦耳定律电流产生热量的多少时比较温度计示数变化的快慢。
神奇的材料

神奇的材料神奇的材料在现代科技的进步与发展之中,我们常常会惊叹于各种新材料的诞生与应用。
不同于传统的材料,新材料拥有着许多神奇的属性与特点,使得它们被广泛应用于各种领域。
首先,我们不得不提到石墨烯——一种由碳原子构成的二维材料。
石墨烯的发现让科学家们眼前一亮,因为它具有许多令人难以置信的特性。
首先,石墨烯的导电性极佳,甚至超越了传统金属。
其次,石墨烯的强度非常高,远超过钢铁,而且同时具有柔韧性。
此外,石墨烯还具有优异的热导性和光学特性。
基于这些特性,科学家们预测石墨烯将会在电子学、工程、生物医学等领域有着广泛的应用,极有可能改变我们的生活方式。
另一个令人惊叹的材料是超导体。
超导体是指在低温下电阻为零的材料。
科学家们早在20世纪初就发现了超导现象,但当时的超导体只能在极低的温度下才能发挥作用。
然而,随着研究的不断深入,一些高温超导体被发现,远离绝对零度的温度也能够实现超导现象。
高温超导体的发现引起了广大科学家的浓厚兴趣,也为实现能量的高效传输提供了可能。
除了石墨烯和超导体,还有一个有趣的材料是形状记忆合金。
形状记忆合金是一种可以记忆并自动恢复其形状的金属合金。
例如,当形状记忆合金被弯曲或变形时,只需要通过加热或电流作用,它就能够恢复到原来的形状。
这种特性使得形状记忆合金被广泛应用于各种领域,如医学、航天、机械等。
例如,在医学领域,形状记忆合金可以用于制作支架,帮助修复骨折或血管狭窄等。
此外,还有一些材料虽然不太知名,但同样具有神奇的特性。
比如,金属有机框架(MOF)是由金属离子和有机配体构成的多孔材料。
由于其结构特殊,MOF可以具有超大的比表面积,并且可以根据不同的分子尺寸进行选择性吸附。
这使得MOF在气体存储、分离、催化等领域有着广泛的应用潜力。
总的来说,神奇的材料不仅代表着科技的进步,更展示了人类对于自然世界的深入探究与理解。
这些材料的发现与应用使得科学与技术不断进步,为我们带来了更便捷、更高效的生活方式。
人类目前最强功能材料-石墨烯

实验证明
从铅笔石墨中提取的石墨烯,竟然比钻石还坚硬,强 度比世界上最好的钢铁还要高上百倍,这项科学发现 刊登于近期的《科学》杂志,作者是两位哥伦比亚大 学的研究生,来自中国的韦小丁和韩裔李琩钴。
Changgu Lee, et al. Graphene Measurement of th Elastic Properties and Intrinsic Strength of Monolayer Science 321, 385 (2008);
三、石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每 100纳米距离上可承受的最大压力居然达到了大约2.9微 牛。 据科学家们测算,这一结果相当于要施加55牛顿的 压力才能使1米长的石墨烯断裂。如果物理学家们能制 取出厚度相当于普通食品塑料包装袋的(厚度约100纳 米)石墨烯,那么需要施加差不多两万牛的压力才能将 其扯断。换句话说,如果用石墨烯制成包装袋,那么它 将能承受大约两吨重的物品。 打个比方说单层石墨烯的强度,就像把大象的重量 加到一支铅笔上,才能够用这支铅笔刺穿仅像保鲜膜一 样厚度的单层石墨烯。
三、石墨烯特性 : 电子运输 在发现石墨烯以前,大多数(如果不是所有的话)物理学 家认为,热力学涨落不允许任何二维晶体在有限温度下存在。 所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界 都认为完美的二维结构无法在非绝对零度稳定存在,但是单层 石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级 别上的微观扭曲。 石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导 =2e²/h,6e²/h,10e²/h.... 为量子电导的奇数倍, 且可以在室温下观测到。这个行为已被科学家解释为“电子在 石墨烯里遵守相对论量子力学,没有静质量”。
石墨烯

石墨烯 基本概念
石墨烯 神奇特性
石墨烯 新闻时讯
石墨烯 制备方法
石墨烯 研究进展
G
制造天梯 的材料?
它是已发现强度最高的材料,比钻石还 坚硬,是最好的钢铁强度的100多倍。
八大预言
太空梯
千年虫
太空卫士
通讯卫星
太空核动力
预防地震
大脑备份
人体冷冻术
《天堂的喷泉》讲述了两 千年前,在赤道附近的岛 国塔普罗巴尼发生了一场 血腥的宫廷政变,暴君卡 利达萨借机上台。此人并 不满足于人间的欢乐,他 要在高山之巅建造天国, 向天神挑战,由是诞生了 “天堂的喷泉”。 “天梯”作为一个科学概念,最早是于1895年、、、
1999 年,Rodney S. Ruoff 等将HOPG 上刻 蚀出的石墨柱在硅衬底 上涂抹,得到了厚度小 于10 nm 的石墨片层
Philip Kim 在HOPG 的表面上刻蚀出石墨柱 之后,用精密操作手将其转移到 AFM 的悬 臂上固定好,然后以悬臂上安装的石墨柱为 针 尖 , 在 SiO2 /Si 衬 底 上 进 行 接 触 模 式 ( Contact Mode) 下的操作。
2008年01月09日 深圳特区报
不得了的石墨烯
美华裔科学家将让网速快万倍 将石墨烯铺展在一个硅波导 管的顶部,建造出了这款能打开 或关闭光束的光调制器(调制器是 控制数据传输速度的关键),把电 子信号转化成光学信号传输数字 信息。
2011年05月24日 温州都市报
不得了的石墨烯
英将石墨烯聚光能力提高20倍
石墨烯 神奇特性
石墨烯 新闻时讯
石墨烯 矫正型 石墨烯 制备方法 公关沟通 研究进展
石墨烯的制备方法
• HOPG微机械剥离法
石墨烯到底有哪些作用

谈到近年来的新型材料,让人感兴趣的不多,但石墨烯肯定不在此列,其火爆程度令人咋舌。
为何石墨烯如此火爆,难道它真有传说中的那么神奇吗?今天我们就一起来探讨石墨烯的作用到底有哪些方面。
1、石墨烯生物器件。
由于石墨烯的可修改化学功能、大接触面积、原子尺寸厚度、分子闸极结构等等特色,应用于细菌侦测与诊断器件,石墨烯是个很优良的选择。
科学家希望能够发展出一种快速与便宜的快速电子DNA定序科技。
它们认为石墨烯是一种具有这潜能的材料。
基本而言,他们想要用石墨烯制成一个尺寸大约为DNA宽度的纳米洞,让DNA分子游过这纳米洞。
由于DNA的四个碱基(A、C、G、T)会对于石墨烯的电导率有不同的影响,只要测量DNA分子通过时产生的微小电压差异,就可以知道到底是哪一个碱基正在游过纳米洞。
这样,就可以达成目的。
2、单分子气体侦测。
石墨烯独特的二维结构使它在传感器领域具有光明的应用前景。
巨大的表面积使它对周围的环境非常敏感。
即使是一个气体分子吸附或释放都可以检测到。
这类检测可以分为直接检测和间接检测。
通过穿透式电子显微镜可以直接观测到单原子的吸附和释放过程。
通过测量霍尔效应方法可以间接检测单原子的吸附和释放过程。
当一个气体分子被吸附于石墨烯表面时,吸附位置会发生电阻的局域变化。
当然,这种效应也会发生于别种物质,但石墨烯具有高电导率和低噪声的优良品质,能够侦测这微小的电阻变化。
3、作为导热材料或者热界面材料。
2011年, 美国佐治亚理工学院(Georgia Institute of Technology)学者首先报道了垂直排列官能化多层石墨烯三维立体结构在热界面材料中的应用及其超高等效热导率和超低界面热阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非凡的导电性能、超强的强度、极佳的透光特性——
石墨烯改变世界的神奇材料?(走进科技新时代⑥)
本报记者喻思娈
《人民日报》(2013年07月19日20 版)
左图为由石墨烯和碳纳米管制成的超轻材料。
右图为石墨烯在柔性电子上
的应用。
资料图片
石墨烯的结构示意图
2010年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,两位最早发现并揭示石墨烯独特性质的科学家获得当年诺贝尔物理学奖。
石墨烯从此进入大众视野,成为材料家族中光芒四射的新星。
石墨烯不是一种天然存在的材料。
人们常见的石墨是由可以机械剥离的石墨片组成。
由于石墨片层与层之间作用力较弱,当石墨被剥离至单层,仅有一个碳原子的厚度时,这层石墨片就是石墨烯。
它是由碳原子紧密排列而成的蜂窝状结构的二维材料,看上去近似一张六边形网格构成的平面。
在材料大家族中,石墨烯只是个晚辈。
2004年,海姆和诺沃肖洛夫领导的研究小组,将石墨片黏在两片特殊的胶带之间,撕开胶带,石墨片就被减薄,一分为二。
如此反复操作,薄片越来越薄,最终在显微镜下发现了石墨烯。
人们发现,它的厚度只有纳米,一片1毫米厚的石墨片由近300万层石墨烯堆垛而成。
石墨烯的发现及其独特性质刺激了全球研究者的神经,更有人将其称之为“改变21世纪的材料”。
性能超强
石墨烯具有非凡的导电性能、超出钢铁数十倍的强度和极佳的透光特性
石墨烯具有完美的二维平面结构,它蕴含的丰富而新奇物理现象的奥秘就来源于此。
石墨烯拥有完美的对称正六边形结构,非常稳定,而且各个碳原子之间的连接很柔韧,即使受到外力冲击,也可以通过弯曲变形来维持稳定。
这一独特结构使石墨烯几乎集合了世界上众多材料的最优质品质。
据测试,它是迄今为止自然界中最强的二维材料,强度通常为普通钢材料的数十倍。
有人曾测算,一块1平方米
的石墨烯吊床足以承受一只4公斤重的猫,而该吊床的重量仅为毫克,比猫的腮须还轻,肉眼根本看不到。
最让科学界瞩目的,是它超强的导电性能。
中国科学院半导体研究所研究员谭平恒介绍,石墨烯具有独特的线性电子能带结构,其传导电子是无质量的狄拉克费米子。
电子在石墨烯中运动几乎没有阻力,迁移速度极快,是世上已知的电阻率最小的材料。
因为这一特点,石墨烯被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。
石墨烯还有优异的室温导热性和透光性。
它的导热性能优于碳纳米管和金刚石,且几乎完全透明,只吸收%的光。
透明、良好的导电特性,使它极适合制造透明触控屏幕、光板、甚至是太阳能电池。
应用广阔
在电子、航天军工、新能源等领域有广泛的应用潜力,有望引发现代电子科技新革命石墨烯“出道”虽短,但其高强度、高导电性、极轻薄等优势,使产业界迅速嗅到了其在电子、航天军工、生物、新能源、半导体等领域可能的应用潜力。
目前的电子器件工业中,硅是主流的材料,而石墨烯的特性使其有望在很多方面代替硅。
中国科学院物理研究所研究员、中国科学院院士高鸿钧表示,石墨烯在未来电子器件上具有诱人的应用前景,被看作是石墨烯研究最可能突破、实现产业化的领域,成为国际上的研究热点和竞争焦点。
韩国三星公司是石墨烯研究的最大投资者之一。
2010年,韩国三星公司和成均馆大学的研究人员在一个63厘米宽的柔性透明玻璃纤维聚酯板上,成功制备出电视机大小的纯石墨烯,并用该石墨烯制造了柔性触摸屏。
这是石墨烯在柔性电子应用上的首次成功尝试。
高鸿钧说,三星公司的成果展示了石墨烯在未来柔性电子上广泛应用的可能性,很大程度上影响了当年诺贝尔物理学奖的归属。
在能源领域,石墨烯有望在超级电容器和锂离子电池发展上一展抱负。
超级电容器是一个高效存储和传递能量的体系,而石墨烯拥有大的比表面积、规范的多孔结构、高电导率和热稳定性,使其成为最有潜力的电极材料。
据悉,美国科学家在今年上半年研发出一种以石墨烯技术为基础的“超级电容器”,其充电速率远高于普通电池,一部iPhone手机充满电仅需5秒钟。
而用石墨烯制备的锂离子电池,在增加电极储能的同时,可以减少锂离子的扩散距离,提高锂电池的充放电效率和稳定性。
石墨烯在食品加工等生物领域也有用武之地。
科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损,人们可以利用这一特点做绷带、食品包装等。
产业瓶颈
如何大规模制备高质量、大尺寸、低成本的石墨烯是产业化亟待解决的问题
尽管科学界的石墨烯研究迅速推进,也吸引了投资和关注,但研究者对其产业化仍持谨慎态度。
谭平恒说,有关石墨烯的众多应用研究目前多数还处于实验室阶段,它的神奇性能能否完全在应用上显现,还需科学家进一步分析和测试。
产业界多数企业还处于尝试性探索阶段。
一个重要瓶颈是,产业化所需的高质量、大尺寸、低成本的石墨烯制备方式并不成熟。
诺奖获得者海姆和诺沃肖洛夫得到石墨烯的方式,被称之为微机械剥离法,这一方式至今仍是实验室获取石墨烯进行基础研究的重要手段。
谭平恒说,该方法得到的石墨烯质量高,
但尺寸较小,且极费人工、成本很高。
在石墨烯研究初期,微机械剥离制备的1平方微米石墨烯的价格甚至达到一欧元左右。
其它方法,如化学气相沉积法,虽然可以制备出大面积的石墨烯,但质量仍有待提高,且工艺较为复杂;溶剂剥离法可以实现石墨烯的大批量制备,但含有较多的缺陷。
2009年,高鸿钧团队在金属钌单晶表面获得高质量大面积的单晶石墨烯材料,取得了制备法的重大突破。
但高鸿钧认为,石墨烯并不能取代硅,在某些方面,或许可以取代硅的部分功能。
他说,硅材料发展已有数十年历史,应用成熟,不是一个新材料在短时间内可以替代或超越的。
谭平恒说,上世纪90年代,碳纳米管凭借其优异的光电性能,成为碳纳米材料家族的明星,正是因为其规模化工业应用的困难,一直没能达到人们的期望。
在石墨烯的某些应用中,需要将其转移到合适的衬底上,而与衬底的相互作用可能会造成石墨烯性能的部分改变。
“石墨烯要实现产业化应用,不仅要解决如何制备出高质量和大面积的材料,还需要解决石墨烯在器件集成方面的一些关键问题。
”谭平恒说,当前两者均没有得到很好的解决。
新闻链接
国外产业化介入较早
我国应用相对薄弱
中国科学院物理研究所研究员、中国科学院院士高鸿钧介绍,对石墨烯的研究,我国起步虽相对较晚,研究跟进却很快。
据统计,我国在国际权威期刊上发表的与石墨烯相关论文已经居世界第一。
“但我们存在两个不足。
首先,虽然研究群体大、成果多,但突出性、原创性成果较少,我们采用他人成熟的方法,始终处于落后位置,重大创新十分有限,因此要在材料制备方法上寻求突破;此外,主要集中在基础研究,产业应用相对薄弱。
”高鸿钧说,欧洲、美国、韩国等国企业介入比较早,成果应用转化也走在世界前列。
据介绍,欧盟委员会今年初宣布,“神奇的材料石墨烯”研究被列入“未来新兴技术旗舰项目”,未来10年内将分别获得10亿欧元的经费。
该旗舰项目的使命,是让石墨烯从实验室走向社会,促进经济增长并创造新就业,吸引了包括海姆和诺沃肖洛夫在内的三位诺贝尔奖获得者,以石墨烯的制备为核心,重点关注在信息通讯技术和交通等领域的应用。
韩国三星公司的研究人员已经制造出由多层石墨烯等材料组成的透明可弯曲显示屏。
2012至2018年间,韩国原知识经济部预计将向石墨烯领域提供亿美元的资助,其中亿美元用于石墨烯技术研发,亿美元用于石墨烯商业化应用研究。
数据显示,2013年全球对手机触摸屏的需求量大概在亿片,产值超过130亿美元。
到2015年,平板电脑对大尺寸触摸屏的需求也将达到亿片。
这都为石墨烯的应用提供了诱人前景。
2011年,美国IBM已经研制出了世界首款由石墨烯圆片制成的集成电路,把石墨烯计算机芯片推进了一大步。
高鸿均表示,我国在重视石墨烯基础研究的同时,还需要加强石墨烯的应用基础和产业化研究。
简单重复国外的应用研究,未来可能在专利方面受制于人。
他建议,石墨烯的应用和基础研究应该齐头并进,不可偏废。
在进一步加深对其物理特性深入研究以获得突出原创性成果的同时,也要加强石墨烯产业化探索方面的研究。