大学物理磁感应强度作业
大学物理练习题 磁感应强度 毕奥—萨伐尔定律

2 2 μ 0I 。 πl
B2 = 0
l
I
l
b
B2
I
I
B1
2 2 μ 0I 2 2 μ 0I , B2 = 。 πl πl
c
d
(A) B = 3 3μ 0 NI (2πa ) 。 ( C) B = 0 。
5. 一匝数为 N 的正三角形线圈边长为 a,通有电流为 I,则中心处的磁感应强度为 (B) B = 3μ 0 NI (2πa ) 。 (D) B = 9 μ 0 NI (2πa ) 。
v
v
2
b
c
y
-a
· z
O
a ·
x
9. 如图所示,xy 平面内有两相距为 L 的无限长直载流导线, 电流的大小相等,方向相同且平行于 x 轴,距坐标原点均为 v a, z 轴上有一点 P 距两电流均为 2a, 则 P 点的磁感应强度 B (A) 大小为 3μ 0 I (4πa ) ,方向沿 z 轴正向。 (B) 大小为 μ 0 I (4πa ) ,方向沿 z 轴正向。 (C) 大小为 3μ 0 I (4πa ) ,方向沿 y 轴正向。 (D) 大小为 3μ 0 I (4πa ) ,方向沿 y 轴负向。 二、填空题 1. 电流元 Idl 在磁场中某处沿直角坐标系的 x 轴方向放置时不 受力,把电流元转到 y 轴正方向时受到的力沿 z 轴反方向,该处 磁感应强度指向 方向。 2. 一长直载流导线,沿空间直角坐标 Oy 轴放置,电流沿 y 轴正 磁感应强度的大小为 ,方向为 。
B B B B B
4. 边长 l 为的正方形线圈,分别用图示的两种方式通以电流 I(其中 ab,cd 与正方形共面), 在这两种情况下,线圈在其中产生的磁感应强度大小分别为: (A) B1 = 0 , B2 = 0 。 a (B) B1 = 0 , B 2 = ( C) B 1 = (D) B 1 =
大学物理B作业2-磁学(含答案)

b
a cc
I
I⊙
____________________________________(对环路c).
11. 一带电粒子平行磁感线射入匀强磁场,则它作________________运动.一带电粒子垂直磁 感线射入匀强磁场,则它作________________运动.一带电粒子与磁感线成任意交角射入匀强磁场, 则它作______________运动。
I
(D) 线圈中感应电流方向不确定。
[
]
7. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是: [
]
(A) 线圈绕自身直径轴转动,轴与磁场方向平行。
(B) 线圈绕自身直径轴转动,轴与磁场方向垂直。
(C) 线圈平面垂直于磁场并沿垂直磁场方向平移。
(D) 线圈平面平行于磁场并沿垂直磁场方向平移。
i
小为B =________________,方向_________________________.
14. 已知磁感应强度 B 2.0Wb/m2 的均匀磁场,方向沿x轴 正方向,如图所示.试求:
(1) 通过图中abcd面的磁通量;(2) 通过图中befc面的磁通 量;(3) 通过图中aefd面的磁通量.
B
n
2. 距一根载有电流为3×104 A的电线1 m处的磁感强度的大小为:
(A) 3×10-5 T.
(B) 6×10-3 T.
(C) 1.9×10-2T.
(D) 0.6 T.
(已知真空的磁导率0 =4×10-7 T·m/A)
[
]
uuv v n
3. 关于磁场安培环路定理 ÑL B1 dl 0 Ii ,下列说法正确的是: i 1
9. 5.00×10-5 T ;
大学物理作业答案 (9)

磁感应强度9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm ,求P 点的磁感应强度。
解:P 点在OA 延长线上,所以OA 上的电流在P 的磁感应强度为零。
作OB 的垂线PQ ,︒=∠30OPQ ,OB 上电流在P 点的磁感应强度大小0021(sin sin )(sin sin30)4cos3024I I B d PQμμπββππ=-=+︒︒247m Wb/1073.1)211(2302.0420104--⨯=+⨯⨯⨯⨯=ππ,方向垂直于纸面向外。
9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心O 点的磁感应强度(图中 ϕ 为已知量)。
解: 圆环电流在圆心处的磁场 RIB 20μ=∴圆弧ABC 在O 处的磁场 )22(201πϕπμ-=R I B 方向垂直纸面向里 又直线电流的磁场 021(sin sin )4IB aμθθπ=-,∴直线AB 在O 处的磁场 0002[sin sin()]2sin 4222224cos2I I I tg B a R R μμμϕϕϕϕϕπππ=--=⋅= 方向垂直纸面向里弧心O 处的磁场 012(22)42I B tg B B R μϕπϕπ=+=-+ 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。
如图9-3所示,求环中心的磁感应强度。
解:设铁环被A 、B 两点分成两圆弧的弧长分别为l 1、l 2,电阻分别为R 1、R 2,电流分别为I 1、I 2。
由图知 R 1与R 2并联,∴l l R R I I 121221== 即 l I l I 2211=∴I 1在O 点的磁感应强度Rl I R lR I B 21101101422πμπμ=⋅=方向垂直于纸面向外 ∴I 2在O 点的磁感应强度Rl I R l RI B 22202202422πμπμ=⋅=方向垂直于纸面向内图9-1即 B 1、B 2大小相等,方向相反。
西南交通大学2016大物作业09

©西南交大物理系_2016_02《大学物理AI 》作业No. 09 磁感应强度班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.穿过一个封闭面的磁感应强度的通量与面内包围的电流有关。
解:穿过一个封闭面的磁感应强度的通量为0。
[ F ] 2.载流闭合线圈在磁场中只能转动,不会平动。
解:载流线圈在均匀磁场中只能转动,不会平动。
但在非均匀磁场中,除了转动,还会平动。
[T] 3. 做圆周运动的电荷的磁场可以等效为一个载流圆线圈的磁场。
解:做圆周运动的电荷可以等效为一个圆电流,所以其产生的磁场可以等效为圆线圈产生的磁场。
[ F ] 4.无限长载流螺线管内磁感应强度的大小由导线中电流的大小决定。
解:无限长载流螺线管内磁感应强度的大小为:nI B 0μ=,除了与电流的大小有关,还与单位上的匝数有关。
[ T ] 5.在外磁场中,载流线圈受到的磁力矩总是使其磁矩转向外场方向。
解:根据B P M m⨯=,可知上述叙述正确。
二、选择题:1.载流的圆形线圈(半径a 1)与正方形线圈(边长a 2)通有相同电流I 。
若两个线圈的中心O 1 、O 2处的磁感应强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 [D](A) 11:(B) 12:π (C)42:π(D)82:π解:圆电流在其中心产生的磁感应强度1012a I B μ=正方形线圈在其中心产生的磁感应强度2020222)135cos 45(cos 244a I a IB πμπμ=-⨯⨯=磁感强度的大小相等,8:2:22221201021ππμμ=⇒=⇒=a a a I a IB B所以选D 。
2.在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ.(B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ. (E) 仅在象限Ⅱ,Ⅳ. [ E ] 解:根据电流流向与磁场方向成右手螺旋,可以判定答案为E 。
大学物理稳恒磁场理论及习题

结果:
1.
F
v,
B组
成
的
平
面.
2. F 大小正比于v, q0,sin.
q0沿磁场方向运动, F 0.
q0 垂直磁场方 向运动, F Fmax .
NIZQ 第4页
大学物理学 恒定磁场
在垂直磁场方向改变速率v,改变点电荷 电量q0 .
结论: 场中同一点, Fmax/q0v有确定值. 场中不同点, Fmax/q0v量值不同.
大学物理学 恒定磁场
从毕-萨定律导出运动电荷的磁场
S: 电流元横截面积
n: 单位体积带电粒子数
q: 每个粒子带电量
v: 沿电流方向匀速运动
电流元 Idl产生的磁场:
大学物理学 恒定磁场
一.磁场 磁感应强度
• 磁性起源于电荷的运动 磁铁的磁性: 磁性: 能吸引铁、钴、镍等物质的性质.
磁极: 磁性最强的区域, 分磁北.
磁力: 磁极间存在相互作用, 同号相斥,
异号相吸.
问题: 磁现象产生的原因是什么?
司南勺
北宋沈括发明 “指南针(罗盘
1.在任何磁场中每一条磁感线都
是环绕电流的无头无尾的闭合线, 条形磁铁周围的磁感线 即没有起点也没有终点,而且这些
闭合线都和闭合电路互相套连.
2.在任何磁场中,每一条闭合的磁
感线的方向与该闭合磁感线所包围
的电流流向服从右手螺旋法则.
直线电流的磁感线
NIZQ 第6页
大学物理学 恒定磁场
二.毕澳-萨伐尔定律
r a
sin
B
l
dB
2 1
0I
4π
a
sin 2
sin 2
a2
sin d
大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。
1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。
试求圆筒内部的磁感应强度。
解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ可得 ab i ab B 0μ=σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。
今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。
解:)(22r R IJ -=π10121r J B ⨯=μ 20221r J B ⨯-=μJa O O J r r J B B 021********21)(21μμμ=⨯=-⨯=+=r R Ia)(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。
解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1为⎰⎰⋅==S B S B d d 1 Φr rL RI Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。
大学物理(西南交大)作业参考答案6

NO.6 电流、磁场与磁力 (参考答案)班级: 学号: 姓名: 成绩:一 选择题1.在无限长的载流I 的直导线附近,有一球形闭合面S ,当S 面以速度V向长直导线靠近时,穿过S 面的磁通量Φ和面上各点的磁感应强度大小B 的变化是: (A )Φ增大,B 也增大; (B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大;[ D ]2.如图示的两个载有相等电流I 的圆形线圈,一个处于水平位置,一个处于竖直位置,半径均为R ,并同圆心,圆心O 处的磁感应强度大小为:(A )0; (B )R I20μ; (C )RI220μ; (D )R I 0μ。
[ C ]3.载流的圆形线圈(半径a 1)与正方形线圈(边长a 2)通有相同电流I ,若两个线圈的中心O 1、O 2处的磁感应强度大小相同,则a 1︰a 2为:(A )1︰1 ; (B )π2︰1 ; (C )π2︰4 ; (D )π2︰8 ;[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度 B 沿图中闭合路径L 的积分∮L l d B ⋅等于:(A )μ0I ; (B )μ0I / 3 ; (C )μ0I / 4 ; (D )2μ0I / 3 。
[ D ]5.真空中电流元I 1d 1l与I 2d 2l 之间的相互作用是这样的: (A )I 1d 1l与I 2d 2l 直接进行相互作用,且服从牛顿第三定律;(B )由I 1d 1l 产生的磁场与I 2d 2l产生的磁场之间进行相互作用,且服从牛顿第三定律; (C )由I 1d 1l产生的磁场与I 2d 2l产生的磁场之间进行相互作用,但不服从牛顿第三定律; (D )由I 1d 1l 产生的磁场与I 2d 2l 进行作用,或由I 2d 2l 产生的磁场与I 1d 1l进行相互作用,但不服从牛顿第三定律。
电磁感应习题(有答案)

大学物理6丫头5《大学物理AI 》作业 No.11 电磁感应班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将: (A)加速铜板中磁场的增加 (B)减缓铜板中磁场的增加(C)对磁场不起作用 (D)使铜板中磁场反向[ B ] 解:根据愣次定律,感应电流的磁场总是力图阻碍原磁场的变化。
故选B2.一无限长直导体薄板宽度为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图。
整个系统放在磁感应强度为B的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向Y 轴正方向移动,则伏特计指示的电压值为(A) 0 (B)vBl 21(C) vBl (D) vBl 2[ A ]解:在伏特计与导体平板运动过程中,dc ab εε=,整个回路0=∑ε,0=i ,所以伏特计指示0=V 。
故选A3.两根无限长平行直导线载有大小相等方向相反的电流I ,I 以tId d 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A)线圈中无感应电流。
(B)线圈中感应电流为顺时针方向。
(C)线圈中感应电流为逆时针方向。
(D)线圈中感应电流方向不确定。
[ B ]解:0d d >t I ,在回路产生的垂直于纸面向外的磁场⊗增强,根据愣次定律,回路中产生的电流为顺时针,用以反抗原来磁通量的变化。
故选B4.在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当aIroabcVdYBZlI直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra a R Ir +-πμ(B)a ra R Ir +ln20πμ (C)aRIr 220μ (D)rRIa 220μ[ C ]解:直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=ε 感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为 ∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daRIr R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈故选C5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理》作业 磁感应强度班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一磁场的磁感应强度为k c j b i a B++=(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:(A) Wb 2a R π(B) Wb 2b R π (C)Wb 2c R π(D)Wb 2abc R π[ C ]解:如图所示,半径为R 的半球面1S 和半径为R 的圆平面2S 组成一个封闭曲面S 。
由磁场的高斯定律0d =⋅⎰⎰s B知:c S k s k c j b i a s B s B s s s 2221d )(d d -=⋅++-=⋅-=⋅=Φ⎰⎰⎰c R 2π-=故选C2.边长l 为的正方形线圈,分别用图示的两种方式通以电流I (其中ab ,cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为:(A) 0,021==B B (B) lIB B πμ02122,0== (C) 0,22201==B l IB πμ(D) lIB l I B πμπμ020122,22==[ C ]解:根据直电流产生的磁场的公式有:lIl I l Iu B πμπμθθπ00120122)2222(2)sin (sin 244=+=-⨯⨯= 对于第二种情况,电流I 流入b 后分流,两支路电流相等,在中心处产生的磁感应强度大小相等,方向相反,所以:02=B故选C3.下列哪一幅曲线能确切描述载流圆线圈在其轴线上任意点所产生的B随x 的变化关系?dd(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O )[ C ]解:由圆电流轴线上任一点磁感应强度公式:232220)(2x R IR B +=μ可知,0=x 时,0≠B ,可排除(A ),(B ),(E)三个答案,且B 也不是常量,排除(D )。
故选C 也可以由公式: 0|d d ,0|d d 0220<=xB xB,知0=x 处B 有极限值。
4.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1,O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21:a a 为:(A) 1:1 (B)1:2π(C)4:2π (D)8:2π[ D ]解:圆电流在其中心产生的磁感应强度1012a I B μ=正方形线圈在其中心产生的磁感应强度2020222)135cos 45(cos 244a Ia IB πμπμ=-⨯⨯=由题意21B B =,即 2010222a Ia I πμμ=8221π=a a故选DBBBB B5.有一无限长通有电流的偏平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘b 处的P 点(如图)的磁感应强度B的大小为:(A))(20b a I+πμ (B)b ba a I +ln 20πμ (C)bba b I +ln 20πμ (D))21(20b a I +πμ]解:建立如图ox 坐标轴,在坐标x 处取宽度为x d 的窄条电流x aII d d =,它在p 点产生的磁感应强度为:⊗-+⋅=-+= 方向)(d 2)(2d d 00x b a xa I xb a IB πμπμ P 点的磁感应强度大小为:bb a a I x b a xa I B B a +=-+==⎰⎰ln 2)(d 2d 000πμπμ二、填空题:1.在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示,在此情况下,线框内的磁通量 2ln 20πμIa=Φ 。
解:在线圈内距长直导线x 处取矩形面积元x a s d d = 通过该面元的磁通量为: x a xIs B d 2d d 0πμ==Φ 通过线框的总磁通量大小为:x x Ia bbd 2d 20⎰⎰=Φ=Φπμ2ln 20πμIa=2.在匀磁强场B 中,取一半径R 为的圆,圆的法线n 与B 成︒60角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量:xx=⋅=⎰⎰S B s md φ221R B π-。
解:任意取面S 和圆平面S 1组成封闭取面。
由磁场的高斯定理:0d d d 1=⋅+⋅=⋅⎰⎰⎰⎰⎰⎰s ss B s B s B得到任意曲面S 的磁通量: ⎰⎰⎰⎰⋅-=⋅=Φ1d d s sm s B s B222160cos R B R B ππ-=︒-=3.一半径为a 的无限长直载流导线,沿轴向均匀的流有电流I ,若做一个半径为a R 5=、高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a (如图),则B在圆柱侧面S 上的积分:=⋅⎰⎰S B sd 0 。
解:圆柱侧面S 和上下底面组成封闭曲面,直电流的磁力线不穿过上下底面,即0d d ==下底上底⎰⎰⎰⎰⋅⋅S B S B由磁场的高斯定理: 0d d d d =⋅+⋅⋅⋅⎰⎰⎰⎰⎰⎰⎰⎰S B S B S B S B s下底上底+=可得0d =⋅⎰⎰S B s4.一长直载流导线,沿空间直角坐标oy 轴放置,电流沿y 轴正向。
在原点o 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感应强度的大小为 20d 4alI ⋅πμ ,方向为 平行z 轴负向 。
解:由图可知:30d 4d rrl I B⨯⋅=πμ沿(-z )方向, 式中a r =,l I d 与r 垂直,所以20d 4d a lI B ⋅=πμ 。
5.一质点带有电荷C 100.819-⨯=q ,以速度15s m 103.0-⋅⨯= v 在半径为m 106.00-8⨯=R 的圆周上,作匀速圆周运动,该带电质点在轨道中心所产生的磁感应强度B= )T (1067.66-⨯ ,该带电质点轨道运动的磁矩P m =)m A (1020.7221⋅⨯- 。
)m H 104(170--⋅⨯=πμ解:点电荷作圆周运动周期v R T π2=,对应的电流强度为RqvT q I π2==,在轨道中心产生的磁感应强度为:)T (1067.6)106(4103108104426285197200----⨯=⨯⨯⨯⨯⨯⨯⨯===πππμμR qv R IB 点电荷作轨道运动的磁矩为:)m A (1020.7106103108212122185192⋅⨯=⨯⨯⨯⨯⨯⨯===---qvR I R P m π三、计算题:1.已知一均匀磁场,其磁感应强度2m wb 0.2-⋅=B ,方向沿x 轴方向,如图所示,试求:(1)通过图中a b o c 面的磁通量; (2)通过图中b e d o 面的磁通量; (3)通过图中a c d e 面的磁通量;解:在均匀磁场中,磁通量θcos BS =Φ(1)(Wb)24.03.04.02cos -=⨯⨯-==πabO c abO c BS Φ (2)02cos==Φπbedo bedo BS(3)(Wb)24.0cos ===abO c acde acde BS BS Φθ2.电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥一萨伐尔定律求板外的任意一点的磁感应强度。
解:建立如图所示坐标系,j沿z 轴方向,平板在yz 平面内,取宽度为y d 的长直电流:y j I d d =,它在P 点产生的磁感应强度大小为:ry j r I B πμπμ2d 2d d 00==方向如图所示。
将Bd 分解为x B d 和y B d ,由对称性可知0d ==⎰x x B B ,θπμθcos 2d cos d d 0ryj B B y == 又21222122)(cos ,)(y x x rx y x r +==+=θ,代入上式并积分,则:板外的任意一点的磁感应强度 j x y y jx B B y 022021d 2d μπμ=+==⎰⎰∞∞-3.带电刚性细杆AB ,电荷线密度为λ,绕垂直于直线的轴O 以ω角速度匀速转动(O 点在细杆AB 延长线上),求:(1) O 点的磁感应强度o B;(2) 磁矩m P;(3) 若b a >>,求o B及m P 。
解:(1)如图示在AB 上距O 点r 处取线元r d ,其上带电量r q d d λ=q d 旋转对应的电流强度为rq I d 2d 2d πλωπω==它在O 点产生的磁感应强度大小为:rrr IB d 42d d 00⋅==πλωμμ O 点的磁感应强度大小为:ab a r r B B b a a o +===⎰⎰+ln 4d 4d 00πωλμπωλμ 0>λ时的方向为⊗(2)圆形电流I d 的磁矩为r r I r P m d 21d d 22λωπ== 总磁矩大小为:OO])[(6d 21d 332a b a r r P P ba am m -+===⎰⎰+λωλω0>λ时的方向与ω相同,即⊗(3) 若a >>b ,则)31()(,ln33aba b a a b a b a +≈+≈+,则有 aq a b B o πωμπωλμ4400=⋅=,其中b q λ=q a b a bP m 22213ωλω=⋅=o B及m P 的方向同前(1)(2)。