2020年八年级数学上册周练检测试题

合集下载

八年级数学上册周周练检测试题一(含答案)

八年级数学上册周周练检测试题一(含答案)

八年级数学(上)周周练(1.1~1.3)(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.下列图案中,是轴对称图形的是( )2.下列四幅图案中,不是轴对称图形的是( )3.下列图案中,是轴对称图形的有( )A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴最多的是( )5.如图是小华在镜子中看到的身后墙上的钟,你认为实际时问最接近8点的是( )6.把一个图形先沿着一条直线进行轴对称变换。

再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图①).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图②)的对应点所具有的性质是( )A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行7.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )A.正三角形B.正方形C.正五边形D.正六边形8.下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧,其中正确的是( )A.①B.①③C.①②③D.①③④9.剪纸是中国的民间艺术,剪纸的方法很多,如图是一种剪纸方法的图示,先将纸折叠,然后再剪,展开即得到图案,则下列的四个图案中,不能用上述方法剪出的是( )10.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+OBCD的度数为( )A.150°B.300°C.210°D.330°二、填空题(每小题2分,共16分)11.长方形有______条对称轴,正方形有_______条对称轴,圆有______条对称轴.12.在缩写符号SOS、CCTV、BBC、WWW、TNT中,成轴对称图形的是___________.13.计算器上显示的0~9这十个数字中,是轴对称图形的是__________.14.如图,把图中某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.第14题第15题第16题15.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时钟表示的时间是___________________(按12小时制填写).16.张军是学校足球队的运动员,他在镜子里看到衣服上的号码如图所示,则他是________号运动员.17.如图,桌面上有A、B两个球,若要将B球射向桌面任意一边,使一次反弹后击中A 球,则图中的8个点中,可以瞄准的点有__________个.第17题第18题18.如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:①AB∥CD;②AB=BC;③A B⊥BC;④AO=OC,其中正确的是____________________(填序号).三、耐心解一解(共64分)19.(10分)在下列图形中找出轴对称图形,并找出它的两组对应点.20.(8分)已知点A和点B关于某条直线对称,请你画出这条直线.21.(8分)如图是方格纸中画出的树形的一半,请你以树干为对称轴画出图形的另一半.22.(12分)如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,可以移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,那么怎样移动才能使所构成的图形具有尽可能多的对称轴?23.(13分)如图,A是锐角∠MON内的一点,试分别在OM、ON上确定点B、C,使△ABC的周长最小.写出你作图的主要步骤,并标明你所确定的点(要求画出草图,保留作图痕迹).24.(13分)某居民小区搞绿化,要在一块矩形空地上铺草坪,现征集设计方案,要使设计的图案由圆或正方形组成(圆和正方形的个数、大小不限),并且使整个矩形场地成轴对称图形,请在矩形中画出你设计的方案.参考答案—、1.C 2.A 3.C 4.A 5.D 6.B 7.D 8.B 9.D 10.B二、11.2 4 无数12.BBC、WWW 13.0、1、3、8 14.如图所示15.下午1:30 16.16 17.2 18.①②④三、19.①、②、③、⑤都是轴对称图形,对应点略20.图略连接AB,作出线段AB 的垂直平分线l,即为它们的对称轴21.如图所示22.不是轴对称图形.将小的等边三角形移动到大的等边三角形内部图略23.分别作点A关于OM、ON的对称点A′、A″,连接A′A″,分别交OM、ON于点B、C,连接AB、AC.则点B、C即为所求.如图所示24.答案不唯一,如图所示。

2019-2020年八年级数学上学期周练试题苏科版

2019-2020年八年级数学上学期周练试题苏科版

2019-2020年八年级数学上学期周练试题苏科版一、选择题(每题2分,共16分)1、下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 2、如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则BE等于()A.2 B. C. D.3、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=()A.25 B.31 C.32 D.404、如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10第2题图第3题图第4题图5、已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.25 B.7 C.15 D.56、如图,每个小正方形的边长为1,若A,B,C是小正方形的顶点,则∠ABC的度数为 ( ) A.90° B.60° C.45° D.30°BA6cm3cm1cm第6题图第7题图第8题图7.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC 能作出()A.2个B.3个C.4个D.6个8、如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二、填空题(每空3分,共24分)9、一个直角三角形的两条直角边长分别为6cm、8cm,则斜边上的中线为 cm10、直角三角形两边长为3和5,则第三边的平方为11、一座垂直于两岸的桥长12米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头9米,则小船实际行驶了米.12、若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为 cm2.13、如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.14、如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于第13题图第14题图第15题图第16题图15、如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需__________cm.16、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.三、解答题(17-21每题6分,22-24每题10分)17、如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC 于点Q.试判断△APQ的形状,并证明你的结论.18、如图所示的一块地,AD=3m,CD=4m,∠ADC=90°,AB=13m,BC=12m,求这块地的面积.19、一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?20、小东拿着一根长竹竿进一个宽为3米的门,他先横着拿,进不去,又竖起来拿,结果竿比门高1米,当他把竿斜着时,两端刚好顶着门的对角,问:竿长多少米?21、如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC=10,点E是CD的中点,求AE的长.DCBAEFA B22、(4+6)折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM, 求 :(1)求CF 的长 (2)求EC 的长23.(5+5)如图,在Rt △ABC 中,∠ACB=90°,E 为AC 上一点,且AE=BC , 过点A 作AD ⊥CA ,垂足为A ,且AD=AC ,AB 、DE 交于点F. (1)判断线段AB 与DE 的数量关系和位置关系,并说明理由;(2)连接BD 、BE ,若设BC=a ,AC=b ,AB=c ,请利用四边形ADBE 的面积证明勾股定理.24.(4+6)如图,在Rt △ABC 中,∠ACB=90°,BC=30cm ,AC=40cm ,点D 在线段AB 上从点B 出发,以2cm/s 的速度向终点A运动,设点D 的运动时间为t0.(1)AB= cm ,AB 边上的高为 cm ;(2)点D 在运动过程中,当△BCD 为等腰三角形时,求t 的值.。

八年级(上)数学周练试卷

八年级(上)数学周练试卷

八年级(上)数学周练试卷20200923一、单选题(每题3分,共24分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难八方支援,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是( )A .B .C .D .2.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC =(第2题图) (第3题图) (第4题图) (第5题图) (第6题图)3.如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使BC=CD ,再作出 BF 的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图),可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得 DE 的长就是 AB 的长,判定△ABC ≌△EDC ,最恰当的理由是 ( )A .SASB .SSAC .SSSD .ASA4.如图,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( )A .25°B .27°C .30°D .45°5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于点D ,如果AC=3cm ,那么AE+DE等于( )A .2cmB .3cmC .4cmD .5cm6.如图,△ABC 中AB 的垂直平分线交AC 于D ,若AC=5cm ,BC=4cm ,那么△DBC 的周长是( )A .6 cmB .7 cmC .8 cmD .9 cm7.如图,AB //CD ,且AB =CD ,AC 交DB 于点O ,过点O 的直线EF 分别交AB 、CD 与点E 、F ,则图中全等的三角形有( )A .6对B .5对C .4对D .3对(第7题图) (第8题图)(第7题图)(第8题图)(第12题图)(第13题图)(第14题图)8.如图,在△ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG 的中线;④∠EAM=∠ABC.其中正确结论的个数是()A.4B. 3C. 2D. 1二、填空题(每题3分,共30分)9.线段的对称轴有条.10.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有个.11.在镜中看到的一串数字是“”,则这串数字是.12.如图,△ABC≌△DCB,∠D=70°,∠ACB=45°,则∠ABD=.(第15题图)(第16题图)(第17题图)(第18题图)13.如图,△ABC≌△DEF,BC=5cm,BF=7cm,则EC长为.14.如图,已知AB=AC,AD=AE,∠BAC=∠DAE,∠1=21°,∠2=30°,∠3=.15.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5cm,则△PMN的周长为______________.16.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.17.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为9,则DE的长为.18.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为.三.解答题(共8小题,共66分)19.(6分)如图,已知AB=AE,AC=AD,∠BAD=∠EAC.求证:∠B=∠E.20.(9分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(3分)(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短.(3分)(3)求△A′B′C′的面积.(3分)21. (8分)如图,点A、E、B、D 在同一条直线上,在△ABC 和△DEF 中,BC = EF,AC∥DF,CB∥FE.(1)求证:△ABC≌△DEF .(3分)(2)连接A F、DC.线段A F、DC 的关系是,请说明理由.(2+3分)22.(8分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE =BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.23.(9分)如图,已知∠AOB.(1)利用直尺和圆规在图①中画图:在OA、OB上分别截取OC、OD,并且使OC=OD,连接CD,过点O作OP⊥CD,垂足为P;(3分)(2)根据(1)的作图,试说明∠AOP=∠BOP;(3分)(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB的平分线(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹).(3分)24.(6分)如图,已知A,E,F,C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB//CD.求证:EG=FG.25.(8分)如图,已知AD//BC, ∠1=∠2,∠3=∠4,点E 在DC 上,求证:AD+BC=AB26.(12分)(1)问题背景:如图1:在四边形ABC 中,AB =AD ,∠BAD =120∘,∠B =∠ADC =90∘.E ,F 分别是BC ,CD 上的点。

八年级上册周周练试卷数学

八年级上册周周练试卷数学

一、选择题(每题3分,共30分)1. 若a < b,那么以下哪个选项一定正确?A. a² < b²B. a³ < b³C. -a > -bD. a + b > 02. 下列哪个数既是正数又是整数?A. -3B. 0C. 1/2D. 2.53. 如果x² = 4,那么x的值是:A. 2B. -2C. ±2D. ±44. 在直角坐标系中,点A(2,3)关于原点的对称点是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)5. 下列哪个函数是反比例函数?A. y = 2x + 3B. y = x²C. y = 1/xD. y = 3x6. 下列哪个方程有唯一解?A. 2x + 5 = 0B. 2x + 5 = 2x + 5C. 2x + 5 = 2x + 10D. 2x + 5 = 2x + 07. 在一次函数y = kx + b中,若k > 0,那么函数图象:A. 一定经过第一、二、四象限B. 一定经过第一、二、三象限C. 一定经过第一、二、四象限D. 一定经过第一、三、四象限8. 下列哪个图形的面积可以用公式S = πr²计算?A. 正方形B. 长方形C. 圆D. 三角形9. 若一个三角形的三边长分别为3cm、4cm、5cm,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形10. 下列哪个数是无限不循环小数?A. 0.333...B. 0.25C. 0.1010010001...D. 0.123456789...二、填空题(每题3分,共30分)11. 若a = 5,b = -3,那么a - b = ________。

12. 若x² = 49,那么x = ________。

13. 一次函数y = 2x - 3中,当x = 0时,y = ________。

八年级数学上学期周周练(二)

八年级数学上学期周周练(二)

A BCEF D (第7题) ADCE 八年级数学周周练试卷(二)班级 姓名 一.选择题:1、下列图形中,轴对称图形有 ( )A .1个 B.2个 C.3个 D.4个2、下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同? ( )A B C D3、有下列图形:(1)两个点;(2)一条线段;(3)一个角;(4)一个长方形;(5)两条相交直线;(6)两条平行线。

其中轴对称图形共有 ( ) A 、3个 B 、4个 C 、5个 D 、6个4、到三角形的三条边距离相等的点是 ( ) A.三条角平分线的交点 B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点 5、△ABC 中,AB=AC ,∠A=44°。

CD ⊥AB 于点D ,则∠DCB= ( ) A .44° B.68° C.46° D.22°6、如图,在△AB C 中,点D 、E 、F 分别在边BC 、AB 、AC 上,且BD=BE ,CD=CF , ∠A=70°,那么∠FDE 等于 ( ) A .40° B .45° C .55° D .35°7、如图,在△ABC 中,AB=AC ,AD=AE ,∠BAD=30°,∠EDC 是 ( ) A .10° B .12.5° C .15° D .20°8、如图所示的两位数中,是轴对称图形的有 ( )A.1个 B.2个 C.3个 D.4个9、下列图形中一定是轴对称图形的是 ( ) A 、梯形 B 、直角三角形 C 、角 D 、平行四边形10、下列说法不正确的是 ( ) A.两个关于某直线对称的图形一定全等 B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称 二.填空题11、若等腰三角形的周长是20 cm ,其中一边长为8 cm , 那么它的另外两边长是____________.12、如图所示的两个三角形关于某条直线对称,∠1=110°, ∠2=46°,则x = . 13、数的运算中有一些有趣的对称式,如12×231=132×21,请你仿照这个等式填空:__________×462=__________×__________. 14、如图,△ABC 中,DE 垂直平分AC ,与AC 交于E ,与BC 交于D ,∠C=150, ∠BAD=600,则△ABC 是__________三角形.15、 如图,△ABC 中,∠C=900,DE 是AB 的垂直平分线,且∠BAD :∠CAD=2:1,则∠B =_______.(14) (15) (16) 16、如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为__________________.17、如图,B 、D 、F 在AN 上,C 、E 在AM 上,且AB=BC=CD ,EC=ED=EF ,∠A=20°,则∠FEM度数是__________DCEAB BM18、等腰三角形的一个外角等于110°,则与它不相邻的两个内角的度数分别为三:解答题19、如图,△ABC 中,∠C=900⑴在BC 上找一点D ,使点D 到AB 的距离等于到AC 的距离;⑵连结AD ,画一个三角形与△ABC 关于直线AD 对称.(题(1)要求用尺规作图,保留作图痕迹) 20、“西气东输”是造福子孙后代的创世工程,现有两条高速公路l 1、l 2和两个城镇A 、B (如图),准备建一个燃气控制中心站P ,使中心站到两条公路距离相等,并且到两个城镇等距离,请你作出中心站的位置。

八年级数学上册周周练及答案全册

八年级数学上册周周练及答案全册

八年级数学上册周周练及答案全册一、简介八年级数学上册周周练及答案全册是为八年级学生编写的一套数学学习辅助材料。

本文档旨在为学生提供全册周周练习题及其答案,帮助学生巩固和提升数学知识和解题能力。

二、周周练习题第一周练习题1.求下列式子的值:a)$4 + 7 \\times 2 =$b)$\\frac{3}{4} \\times 2 + \\frac{2}{5} =$c)$\\frac{1}{3} + \\frac{1}{4} - \\frac{1}{6} =$2.简化下列代数表达式:a)x+2x+3x=b)2(x+x)−3x=c)$(2a + 3b) \\cdot 4 =$3.解下列方程:a)2x+5=15b)$\\frac{x}{4} = 6$c)3x+2=5x−3第二周练习题1.计算下列式子的值:a)$\\frac{3}{5} \\times \\frac{4}{9} +\\frac{2}{3} \\times \\frac{1}{2} =$b)$(\\frac{1}{2})^3 \\times (\\frac{1}{2})^{-2}=$c)$\\sqrt{16} + \\sqrt{25} =$2.求下列代数式的值:a)3x−2,当x=4时b)2x2+x−1,当x=−3时c)x3−3x2+2x,当x=1时3.解下列方程组:\\end{cases}$b)$\\begin{cases} 3x - 2y = 1 \\\\ x + y = 4\\end{cases}$c)$\\begin{cases} 2x - y = 3 \\\\ 3x + 4y = 8\\end{cases}$第三周练习题1.计算下列式子的值:a)$(\\frac{5}{8})^2 \\div (\\frac{7}{10})^3 =$b)$\\frac{3}{5} \\div (\\frac{2}{3} +\\frac{1}{4}) =$c)$\\sqrt{36} - \\sqrt{49} =$2.求下列代数式的值:a)2x2−3xx+5,当x=2,x=3时b)$\\frac{(a-b)^2}{a^2 - ab + b^2}$,当x=3,x=1时c)3x3+2x2−x,当x=−1时3.解下列方程组:\\end{cases}$b)$\\begin{cases} 2x - 3y = 1 \\\\ 4x + y = 5\\end{cases}$c)$\\begin{cases} x + 2y = -3 \\\\ 3x + 4y = 2\\end{cases}$三、答案第一周练习题答案1.求下列式子的值:a)$4 + 7 \\times 2 = 4 + 14 = 18$b)$\\frac{3}{4} \\times 2 + \\frac{2}{5} =\\frac{6}{4} + \\frac{2}{5} = \\frac{12}{8} +\\frac{2}{5} = \\frac{15}{10} + \\frac{4}{10} =\\frac{19}{10} = 1.9$c)$\\frac{1}{3} + \\frac{1}{4} - \\frac{1}{6} =\\frac{2}{6} + \\frac{3}{12} - \\frac{2}{12} =\\frac{4}{12} + \\frac{3}{12} - \\frac{2}{12} =\\frac{5}{12}$2.简化下列代数表达式:a)x+2x+3x=6xb)2(x+x)−3x=2x+2x−3x=2x−xc)$(2a + 3b) \\cdot 4 = 8a + 12b$3.解下列方程:a)2x+5=15解得x=5b)$\\frac{x}{4} = 6$解得x=24c)3x+2=5x−3解得 $x = \\frac{5}{2}$第二周练习题答案1.计算下列式子的值:a)$\\frac{3}{5} \\times \\frac{4}{9} +\\frac{2}{3} \\times \\frac{1}{2} = \\frac{12}{45} +\\frac{2}{6} = \\frac{12}{45} + \\frac{15}{45} =\\frac{27}{45} = \\frac{3}{5}$b)$(\\frac{1}{2})^3 \\times (\\frac{1}{2})^{-2}= \\frac{1}{8} \\times \\frac{1}{(\\frac{1}{2})^2} =\\frac{1}{8} \\times 4 = \\frac{4}{8} = \\frac{1}{2}$c)$\\sqrt{16} + \\sqrt{25} = 4 + 5 = 9$2.求下列代数式的值:a)3x−2,当x=4时解得 $3 \\times 4 - 2 = 12 - 2 = 10$b)2x2+x−1,当x=−3时解得 $2 \\times (-3)^2 + (-3) - 1 = 2 \\times 9 -3 - 1 = 18 - 3 - 1 = 14$c)x3−3x2+2x,当x=1时解得 $1^3 - 3 \\times 1^2 + 2 \\times 1 = 1 - 3 + 2 = 0$3.解下列方程组:a)$\\begin{cases} 2x + 3y = 7 \\\\ 4x - 5y = -2\\end{cases}$解得 $x = \\frac{19}{17}$, $y = \\frac{1}{17}$b)$\\begin{cases} 3x - 2y = 1 \\\\ x + y = 4\\end{cases}$解得 $x = \\frac{9}{5}$, $y = \\frac{11}{5}$c)$\\begin{cases} 2x - y = 3 \\\\ 3x + 4y = 8\\end{cases}$解得 $x = \\frac{20}{17}$, $y =\\frac{31}{17}$第三周练习题答案1.计算下列式子的值:a)$(\\frac{5}{8})^2 \\div (\\frac{7}{10})^3 =\\frac{25}{64} \\div \\frac{343}{1000} =\\frac{25}{64} \\times \\frac{1000}{343} =\\frac{25000}{21952}$b)$\\frac{3}{5} \\div (\\frac{2}{3} +\\frac{1}{4}) = \\frac{3}{5} \\div \\frac{8}{12} =\\frac{3}{5} \\times \\frac{12}{8} = \\frac{9}{10}$c)$\\sqrt{36} - \\sqrt{49} = 6 - 7 = -1$2.求下列代数式的值:a)2x2−3xx+5,当x=2,x=3时解得2(2)2−3(2)(3)+5=8−18+5=−5b)$\\frac{(a-b)^2}{a^2 - ab + b^2}$,当x=3,x=1时解得 $\\frac{(3-1)^2}{3^2 - 3(3)(1) + (1)^2} = \\frac{2^2}{9 - 9 + 1} = \\frac{4}{1} = 4$c)3x3+2x2−x,当x=−1时解得3(−1)3+2(−1)2−(−1)=−3+2+1= 03.解下列方程组:a)$\\begin{cases} 3x + 2y = 4 \\\\ 5x - 3y = 7\\end{cases}$解得 $x = \\frac{23}{19}$, $y = \\frac{2}{19}$b)$\\begin{cases} 2x - 3y = 1 \\\\ 4x + y = 5\\end{cases}$解得 $x = \\frac{17}{11}$, $y = \\frac{9}{11}$c)$\\begin{cases} x + 2y = -3 \\\\ 3x + 4y = 2\\end{cases}$解得 $x = -\\frac{14}{5}$, $y = \\frac{11}{5}$四、总结本文档提供了八年级数学上册周周练习题及其答案,涵盖了多个知识点和题型,并且给出了详细的解题步骤和答案,帮助学生巩固和提升数学知识和解题能力。

2019-2020年八年级数学上学期周练试题1(新版)新人教版

2019-2020年八年级数学上学期周练试题1(新版)新人教版

2019-2020年八年级数学上学期周练试题1(新版)新人教版一.选择题(每题3分)1.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°3.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CD交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.44.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;⑤S△ABD:S△ACD=AB:AC.其中正确的有() A.5个B.4个C.3个D.2个5. 如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙6.如图,是一个4×4的正方形网格,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于()A.585°B.540°C.270°D.315°二.填空题(每题3分)7. 如图1,把△ABC绕C点顺时针旋转35°,得到△A’B’C, A’B’交AC于点D,若∠A’DC=90°,则∠A= °.8.如图2,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形。

B'AA'BD图19.如图3,已知AB=DC,AD=BC,E,F是DB上两点,且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=_______度。

八年级上数学周周练试卷

八年级上数学周周练试卷

一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 如果a < b,那么下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. a - 2 > b - 2D. a + 2 < b + 23. 下列方程中,解为x = 2的是()A. 2x - 1 = 3B. 2x + 1 = 3C. 2x - 1 = 1D. 2x + 1 = 14. 在直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形6. 如果a、b、c是等差数列中的连续三项,且a + b + c = 15,那么a的值是()A. 5B. 4C. 3D. 27. 下列函数中,自变量x的取值范围正确的是()A. y = 2x + 1,x ∈ RB. y = √(x - 1),x ≥ 1C. y = x² - 2x + 1,x ∈ RD. y = 1/x,x ≠ 08. 在等腰三角形ABC中,AB = AC,且∠BAC = 40°,那么∠ABC的度数是()A. 40°B. 50°C. 70°D. 80°9. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, ...B. 2, 4, 8, 16, ...C. 1, 3, 9, 27, ...D. 3, 6, 12, 24, ...10. 下列图形中,周长与面积比最大的图形是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形二、填空题(每题3分,共30分)1. 已知方程 2x - 5 = 3,解得 x = __________。

2. 若 a + b = 5,a - b = 1,则a² - b² = __________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.如图,在生活中,我们经常会看见如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的()A.稳定性B.灵活性C.对称性D.全等性3.(3分)如图,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()A.90° B.95° C.75° D.55°4.如果一个三角形三边垂直平分线的交点在三角形外部,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定5.四边形的内角和与外角和的和是()A.360° B.180° C.540° D.720°6.七边形有()条对角线.A.11 B.12 C.13 D.147.(3分)等腰三角形的一边为3,另一边为7.则此三角形的周长为()A.13 B.17 C.13或17 D.无法确定8.下列四组图形中,BE是△ABC的高线的图是()A.B.C.D.9.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70° B.80° C.90° D.100°10.(3分)已知a、b、c为三角形的三边,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.0 B.2a C.2(b﹣c)D.2(a+c)11.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.矩形C.正八边形D.正六边形12.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°二、填空题13.(3分)我们常见的晾衣服的伸缩晾衣架,是利用了四边形的.14.已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=,∠C=.15.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.16.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=度.三、解答题17.如图,CD是Rt△ABC斜边上的高.(1)求证:∠ACD=∠B;(2)若AC=3,BC=4,AB=5,则求CD的长.18.(2011春•曲阜市期中)如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.19.(2011春•西藏期末)已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP 和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;2014-2015学年广西南宁市文华学校八年级(上)周练数学试卷(3)参考答案与试题解析一、选择题1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm考点:三角形三边关系.分析:此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.解答:解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.点评:本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.2.如图,在生活中,我们经常会看见如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的()A.稳定性B.灵活性C.对称性D.全等性考点:三角形的稳定性.分析:三角形的特性之一就是具有稳定性.解答:解:这是利用了三角形的稳定性.故选A.点评:主要考查了三角形的性质中的稳定性.3.(3分)如图,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()A.90° B.95° C.75° D.55°考点:三角形内角和定理;三角形的外角性质.分析:由角平分线的定义可求得∠BAD,在△ABD中利用外角性质可求得∠ADC.解答:解:∵AD平分∠BAC,∴∠BAD=∠BAC=40°,∴∠ADC=∠B+∠BAD=35°+40°=75°,故选C.点评:本题主要考查三角形外角的性质,掌握三角形的外角等于不相邻两个内角的和是解题的关键.4.如果一个三角形三边垂直平分线的交点在三角形外部,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.)依题意画出直角三角形,锐角三角形以及钝角三角形的垂直平分线的交点即可求解.解答:解:一个三角形三边垂直平分线的交点是这个三角形外接圆的圆心,如果在外部,则这个三角形是钝角三角形.故选C点评:本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.),难度一般.考生关键是画出图形即可求解.5.四边形的内角和与外角和的和是()A.360° B.180° C.540° D.720°考点:多边形内角与外角.分析:根据多边形的内角和公式和外角和定理即可求出答案.解答:解:四边形的内角和与外角和的和是360°+360°=720°.故选D.点评:本题主要考查了四边形的内角和是360度和多边形的外角和是360度这两个性质.6.七边形有()条对角线.A.11 B.12 C.13 D.14考点:多边形的对角线.分析:根据n边形共有条对角线.解答:解:当n=7时,=14.故选D.点评:熟悉多边形对角线条数的公式:n边形共有条对角线.7.(3分)等腰三角形的一边为3,另一边为7.则此三角形的周长为()A.13 B.17 C.13或17 D.无法确定考点:等腰三角形的性质;三角形三边关系.分析:本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解答:解:当腰长为3时,则三角形的三边长为:3、3、7;∵3+3<7,∴不能构成三角形;因此这个等腰三角形的腰长为7,则其周长=7+7+3=17.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.下列四组图形中,BE是△ABC的高线的图是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点B作直线AC的垂线段,即画AC边上的高BE,所以画法正确的是A.故选A.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.9.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70° B.80° C.90° D.100°考点:平行线的性质;三角形内角和定理;三角形的外角性质.专题:计算题.分析:此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.解答:解:方法1:∵AB∥CD,∠C=115°,∴∠EFB=∠C=115°.又∠EFB=∠A+∠E,∠A=25°,∴∠E=∠EFB﹣∠A=115°﹣25°=90°;方法2:∵AB∥CD,∠C=115°,∴∠CFB=180°﹣115°=65°.∴∠AFE=∠CFB=65°.在△AEF中,∠E=180°﹣∠A﹣∠AEF=180°﹣25°﹣65°=90°.故选C.点评:此题有多种解法,可以利用三角形外角的性质结合平行线的性质,也可以利用三角形内角和定理结合平行线的性质得到∠E的值为90°,本题综合考查了平行线的性质、三角形内角和及外角性质.10.(3分)已知a、b、c为三角形的三边,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.0 B.2a C.2(b﹣c)D.2(a+c)考点:三角形三边关系;绝对值;整式的加减.分析:根据三角形的三边关系即可得到a+b>c,a+c>b,根据绝对值的性质即可去掉绝对值符号,从而化简.解答:解:根据题意得:a+b>c,a+c>b.则a+b﹣c>0,b﹣a﹣c<0,则原式=a+b﹣c﹣(a+c﹣b)=a+b﹣c﹣a﹣c+b=2b﹣2c=2(b﹣c).故选C.点评:本题考查了三角形的三边关系以及绝对值的性质,正确根据三边关系判断绝对值符号内的式子的符号是关键.11.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.矩形C.正八边形D.正六边形考点:平面镶嵌(密铺).分析:本题考查一种正多边形的镶嵌应符合一个内角度数能整除360°.解答:解:A、正三角形的每个内角是60°,能整除360°,能密铺;B、矩形的每个内角是90°,4个能密铺;C、正八边形的每个内角为:180°﹣360°÷8=135°,不能整除360°,不能密铺;D、正六边形的每个内角是120°,能整除360°,能密铺.故选C.点评:本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.12.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°考点:三角形的外角性质.分析:利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.点评:此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.二、填空题13.(3分)我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性.考点:多边形.分析:根据四边形的灵活性,可得答案.解答:解:我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,故答案为:灵活性.点评:本题考查了多边形,利用了四边形的灵活性.14.已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=90°,∠C=50°.考点:三角形内角和定理.分析:根据三角形内角和定理求出∠B+∠C=140°,和∠B﹣∠C=40°组成方程组,求出方程组的解即可.解答:解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.点评:本题考查了三角形内角和定理,解二元一次方程组的应用,注意:三角形的内角和等于180°.15.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=74度.考点:三角形内角和定理.分析:利用三角形的内角和外角之间的关系计算.解答:解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.点评:主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.16.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=165度.考点:多边形内角与外角;三角形内角和定理;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和或者根据四边形的内角和等于360°得出.解答:解:本题有多种解法.解法一:∠α为下边小三角形外角,∠α=30°+135°=165°;解法二:利用四边形内角和,∠α等于它的对顶角,故∠α=360°﹣90°﹣60°﹣45°=165°.点评:本题通过三角板拼装来求角的度数,考查学生灵活运用知识能力.三、解答题17.如图,CD是Rt△ABC斜边上的高.(1)求证:∠ACD=∠B;(2)若AC=3,BC=4,AB=5,则求CD的长.考点:直角三角形的性质;三角形的面积.分析:(1)根据垂直的定义和条件可求得∠A+∠ACD=∠A+∠B,可证得结论;(2)利用面积相等可求得CD.解答:(1)证明:∵CD是Rt△ABC斜边上的高,∴∠ACB=∠ADC=90°,∴∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B;(2)解:∵AC=3,BC=4,AB=5,∴AB•CD=AC•BC,∴CD===2.4.点评:本题主要考查直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.18.(2011春•曲阜市期中)如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.19.(2011春•西藏期末)已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP 和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠C+∠B;(2)仔细观察,在图2中“8字形”的个数:6个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;考点:三角形内角和定理;对顶角、邻补角.分析:(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数.解答:解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等),∴∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,由①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B,又∠D=40°,∠B=36°,∴2∠P=40°+36°=76°,∴∠P=38°.故答案是:(1)∠A+∠D=∠C+∠B;(2)6.点评:本题主要考查了三角形内角和定理,角平分线的定义及阅读理解与知识的迁移能力.(1)中根据三角形内角和定理得出“8字形”中的角的规律;(2)是考查学生的观察理解能力,需从复杂的图形中辨认出“8字形”;(3)直接运用“8字形”中的角的规律解题.。

相关文档
最新文档