人教版七年级数学上册知识点与易错题汇总8
人教版七年级上册数学易错题集及解析

人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。
分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。
分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。
人教版七年级数学上册知识点整理(完整版)

人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。
(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。
2、“0”不仅表示没有,还可以表示某种量的基准。
(三)负数:在正数前面加上符号“﹣”(负)的数。
(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。
若规定前进10米记作+10米,则后退5米记作-5米。
注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。
二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。
(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。
(三)相反数1、概念:只有符号不同的两个数叫做相反数。
2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。
人教版初一上册数学易错点和难点总结

高中数学作为初中数学的延伸,承上启下,在学习过程中往往会遇到一些易错点和困难点。
在人教版初一上册的数学教材中,也有一些常见的易错点和难点,下面将针对这些内容进行总结和回顾,帮助学生更好地理解和掌握这些知识。
一、整数在初一上册的数学教材中,整数是一个重要的内容。
易错点主要集中在整数的加减法、乘除法以及应用题中。
在加减法中,学生往往容易出现负数的运算错误,尤其是对负数的理解和运用不够熟练。
在乘除法中,学生常常出现忽略符号、计算错误的情况。
在应用题中,对于正负数的理解和运用也是一个困难点。
二、分数分数是初中数学中的一个基础知识点,但在实际运用中常常出现错误。
易错点主要包括分数的加减乘除、分数的化简和扩展、分数在应用题中的运用等。
学生往往在运算中出现符号忽略、计算错误,对于分数的化简和扩展也缺乏深入的理解。
三、代数方程在初一上册的数学教材中,代数方程也是一个难点内容。
易错点主要包括一元一次方程的解法、方程的应用题以及方程与图形的联系等。
学生往往对于方程的解法和应用题中的参数化不够熟练,对于方程与图形的联系也缺乏深入的理解。
四、几何几何是初中数学中的一个重要内容,但在初一上册的教材中,也存在一些易错点和难点。
主要包括角的性质、相似三角形、平行线和相交线等内容。
学生往往在运用角的性质和相似三角形的知识时出现错误,对于平行线和相交线的性质也理解不够深入。
初一上册数学教材中存在着一些易错点和难点,但只要学生能够认真总结和回顾这些知识,勤加练习,相信一定能够克服这些困难,更好地掌握数学知识。
希望同学们能够在学习中坚持不懈,勇敢面对困难,不断提高自己的数学水平。
高中数学作为初中数学的延伸,承上启下,是学生学习数学的关键阶段之一。
在学习高中数学的过程中,学生往往会遇到更加复杂的数学内容和问题,因此对初中数学知识的掌握和理解尤为重要。
在人教版初一上册的数学教材中,整数、分数、代数方程和几何是一些常见的易错点和难点。
一、整数在高中数学中,整数的运算不仅仅局限于加减乘除,还涉及到整数的乘方、开方、整数的分数指数和分数根等。
人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。
人教版七年级数学上册易考易错题集

七年级数学上册易考易错题1 让学生回忆本学期所学内容哪些知识在运用时较容易出错并列举例子。
2要求学生能够在所举易错例子中找出错误原因并能写出正确答案3加强学生学会发现问题和解决问题的能力同时培养学生多积累多总结的习惯教学过程一确定有效数字时容易忽略0而出错。
例1 近似数0.40350有几个有效数字?常见错解近似数0.40350 有3个有效数字分别是4,3,5错解分析正确答案二应用乘法分配律时运算符号出错例2 计算(-48)*(1-1/12+3/4)常见错解原式=-48-4+36=-16错解分析正确答案三违背有理数的运算顺序出错例3 计算-4-(-12)÷(-3)常见错解原式=-4+12÷(-3)=8÷(-3)=-8/3错解分析正确答案四对乘方的意义理解不透而出错例4 计算-2^2-50÷(-5)^2-1常见错解原式=4-50÷25-1=4-2-1=1错解分析正确答案五错用运算律而出错例五计算12÷(1/2-1/4+1/6)常见错解原式=12÷1/2-12÷1/4+12÷1/6=24-48+72=48错解分析正确答案六确定单项式的系数和次数出错例六单项式-2a^2b∏/3的系数是__次数是__常见错解-2/3,4次错解分析正确答案七同类项的概念把握不准而出错例七判断下列各项是否是同类项-x^2y与 3yx^2 (2)2^3 与 x^3常见错解(1)不是(2)是错解分析正确答案八去括号法则理解不透而出错例八计算 3x-[x-2(x-y)]常见错解1原式=3x-(x-2x-2y)=3x-x+2x-2y=4x-2y常见错解2原式=3x-(x-2x+y)=3x-(-x+y)=3x+x-y=2x-y 错解分析正确答案九移项没变号而出错例九解方程 2x-3=x+4常见错解 2x-x=4-3X=1错解分析正确答案十去括号没变号而出错例10 解方程2*(x-3)-3*(x+1)=6常见错解 2x-3-3x+3=62x-3x=6-x=6X=-6错解分析正确答案十一去分母时出错例11 解方程(4-x)/3=1-(x-3)/5常见错解1 5*(4-x)=1-3*(x-3)20-5x=1-3x+9-5x+3x=1+9-20-2x=-10X==5常见错解2 5*(4-x)=15-3x-920-5x=15-3x-9-5x+3x=15-9-20-2x=-14X=7错解分析正确答案随堂练习(1)近似数0.302050有几个有效数字?(2)计算(-48)*(1-1/6+3/4)(3)计算-6-(-24)÷(-3)(4)计算-3^2-50÷(-5)^2-1(5)计算2÷(1/2-1/4+1/6)(6)单项式(-3ab^3)/5的系数和次数分别是什么(7)判断下列各组十分是同类项(1)-3a^2b 与 10ba^2 (2) 3^2与 x^2(8)计算3a-[a-2(a-b)]+b(9)解方程 3x-3=x+1(10)解方程 3(x-3)-2(2x-1)=6(11)解方程 (4-x)/3=(x-3)/5-1小结我们这节课有什么收获?。
人教版七年级数学上册学生重点、难点必学常识

人教版七年级数学上册学生重点、难点必学常识1.有理数:1) 任何能写成 p/q (p,q为整数且p≠0) 形式的数都是有理数,整数和分数都属于有理数。
注意:有理数不一定是正数或负数;-a不一定是负数,+a 也不一定是正数;π不是有理数。
正整数、正分数、零、负分数、负整数都属于有理数。
2) 有理数可以分为两类:①零和正有理数;②负有理数。
正有理数包括正整数和正分数;负有理数包括负整数和负分数。
3) 注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
4) 自然数等于正整数;a>0 等价于 a 是正数;a<0 等价于a 是负数;a≥0 等价于 a 是正数或零;a≤0 等价于 a 是负数或零。
2.数轴:数轴是一条直线,规定了原点、正方向和单位长度。
3.相反数:1) 只有符号不同的两个数,其中一个是另一个的相反数;0 的相反数还是 0.2) 注意:a-b+c 的相反数是 -a+b-c;a-b 的相反数是 b-a;a+b 的相反数是 -a-b。
3) 相反数的和为 0 等价于 a+b=0 等价于 a、b 互为相反数。
4) 相反数的商为 -1.5) 相反数的绝对值相等。
4.绝对值:1) 正数的绝对值等于它本身,0 的绝对值是 0,负数的绝对值等于它的相反数。
注意:绝对值的意义是数轴上表示某数的点离开原点的距离。
a>0 时,|a|=a;a≤0 时,|a|=-a。
2) 绝对值可以表示为:|a|=a (a≥0) 或 |a|=-a (a<0)。
3) a/|a|=1 等价于 a>0;a/|a|=-1 等价于 a<0.4) |a| 是重要的非负数,即|a|≥0.5.有理数比大小:1) 正数永远比负数大,负数永远比正数小。
2) 正数大于一切负数。
3) 两个负数比较,绝对值大的反而小。
4) 数轴上的两个数,右边的数总比左边的数大。
(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
七年级数学知识点易错题

七年级数学知识点易错题数学是需要不断练习和积累的科目,随着学习的深入和知识点的增加,很多同学在一些容易出错的知识点上总是会出现错误。
本文总结了七年级数学中一些容易出错的知识点及易错题,帮助同学们更好地掌握这些知识点。
一、比例1.比例的性质如果两个比例中,有一个项相等,那么这两个比例就是成比例的。
如果两个比例成比例,那么它们的交叉相乘相等。
2.常见比例的应用在同一比例中,各项的比值等于各对应量的比值。
如果两个量成比例,则可以用比例的交叉乘法求出另一个量。
易错题:1.相似三角形中,对应角相等,对应边成比例。
2.已知几何图形中各边的长度或者各角度的大小,可以用相似三角形或等比例关系求出几何图形中未知的边或角度。
二、图形的周长和面积1.图形的周长图形的周长是其所有边长的和,计量单位与边长的计量单位一致。
2.图形的面积在计算面积时,需要知道图形的形状以及边长、高、底边等参数。
易错题:1.计算圆的周长和面积应注意单位。
2.在计算长方形、正方形和三角形面积时,长和宽或底边和高必须使用相同的单位。
3.在计算梯形面积时,顶底边和高必须使用相同的单位。
三、代数式1.代数式的定义代数式是由数字和字母及运算符号组成的式子。
2.常见代数式的展开平方公式: $(a+b)^2 = a^2+2ab+b^2$因式分解: $ab+bc= b(a+c)$易错题:1.在运用代数式时要注意运算顺序,特别是加减乘除的计算优先级。
2.对代数式进行运算时,需要根据式子中字母的取值范围来判断结果的符号。
四、方程1.方程式的基本概念方程是用变量和常数等表示真实事物的式子。
方程中至少有一个变量。
2.方程的应用方程在生活和科学研究中应用广泛,可以帮助我们解决各种实际问题。
易错题:1.在解方程的过程中,需要确定变量的取值范围,判断所求解的结果是否合法。
2.在解一元一次方程时,需要注意分母不能为零。
五、数据分析1.平均数与中位数平均数:把一组数据的各项数据求和后再除以数据个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上)易错题及解析(6)(认真分析,找出易错原因)34如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.考点:角平分线的定义.专题:计算题.分析:本题是有公共定点的两个直角三角形问题,通过图形可知∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,同时∠AOC+∠BOC+∠BOD+∠BOC=180°,可以通过角平分线性质求解.解答:解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故答案为135.点评:本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.35如图,O是角的顶点,请用三种不同的方法表示这个角考点:角的概念.分析:根据角的表示方法可知:三种不同的方法为∠A0B,∠1,∠O.解答:解:∠A0B,∠1,∠O.点评:主要考查了角的表示方法.主要有:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.36 我县初三数学模拟考试定在2011年5月5日早上8:30开始,此时时钟的时针与分针的夹角为度.考点:钟面角.专题:计算题.分析:钟表表盘上有12个大格,每一个大格的夹角为30度,再利用钟表表盘的特征解答.解答:解:8:30,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8:30分针与时针的夹角是2.5×30°=75°.故答案为75.点评:本题考查了钟面角的计算,考查的知识点:钟表上12个数字,每相邻两个数字之间的夹角为30°.37 (2005•荆门)钟表上12时15分钟时,时针与分针的夹角为()A.90°B.82.5°C.67.5°D.60°考点:钟面角.专题:计算题.分析:钟表里,每一大格所对的圆心角是30°,每一小格所对的圆心角是6°,根据这个关系,画图计算.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角90°-7.5°=82.5°.故选B.38如图,O 是直线AD 上一点,射线OC 、OE 分别是∠AOB ,∠BOD 的平分线,若∠AOC=30°,则∠BOE= .考点:角的计算;角平分线的定义.专题:计算题.分析:利用角平分线的定义,两角互补和是180°,很容易求出所求角的度数.解答:解:由题意知:∠AOB=2∠AOC=60°∵∠AOB+∠BOD=180°∴∠BOD=120°∴∠BOE=21∠BOD=60°. 故答案为60°.39如图,已知∠AOE=140°,∠COD=30°,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,求∠AOB 的度数.考点:角平分线的定义;角的计算.分析:根据角平分线的定义求得∠COB+∠DOC=70°;然后由已知条件和图示求得∠AOB=∠BOC=40°.解答:解:∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线,∴∠COB+∠DOC=21∠AOE=21×140°=70°; 又∵∠COD=30°,∴∠AOB=∠BOC=40°.点评:本题考查了角平分线的定义、角的计算.此题属于基础题,只要找准角与角间的和差关系,即可求得正确答案. 40如图,已知∠AOB=16°,∠AOE=100°,OB 平分∠AOC ,OD 平分∠COE 。
()1求∠DOC 的度数。
()2若以点O 为观测中心,OA为正东方向,射线OD在什么方向上?射线OE 在什么方向上?41用如图所示的曲尺形框框(有三个方向),可以套住下表中的三个数,设被框住的三个数中最小的数为a .(1)用含a 的式子表示这三个数的和;(2)若这三个数的和是48,求a 的值.考点:列代数式;代数式求值.专题:应用题.分析:(1)注意三种不同的框圈住的三个数之间的大小关系,要分三种情况进行分析;(2)根据三种不同的结果列方程求解,求得的数必须是整数,否则应舍去.解答:解:(1)设被第一个框框住的三个数中最小的数为a ,则a+a+1+a+7=3a+8;设被第二个框框住的三个数中最小的数为a ,则a+a+7+a+8=3a+15;设被第三个框框住的三个数中最小的数为a ,则a+a+1+a+8=3a+9.(2)设被第一个框框住的三个数的和是48,则3a+8=48,解得a=340,显然和题意不合. 设被第二个框框住的三个数的和是48,则3a+15=48,解得a=11,符合题意.设被第三个框框住的三个数的和是48,则3a+9=48,解得a=13,符合题意.∴a 的值为11或13.点评:能够正确找到圈住的三个数之间的关系.解决问题的关键是读懂题意,找到所求的量的等量关系.从所给材料中分析数据得出规律是应该具备的基本数学能力.42 已知∠AOB=160°,∠COE=80°,OF 平分∠AOE .(1)如图1,若∠COF=14°,则∠BOE= ;若∠COF=n°,则∠BOE= ,∠BOE 与∠COF 的数量关系为 ;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,(1)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由;(3)在(2)的条件下,如图3,在∠BOE 的内部是否存在一条射线OD ,使得∠BOD 为直角,且∠DOF=3∠DOE ?若存在,请求出∠COF 的度数;若不存在,请说明理由.专题:计算题.分析:(1)由OF 平分∠AOE 得到∠AOE=2∠EOF ,利用∠AOE=∠AOB-∠BOE ,得2∠EOF=∠AOB-∠BOE ,则2(∠COE-∠COF )=∠AOB-∠BOE ,把∠AOB=160°,∠COE=80°代入•即可得到∠BOE=2∠COF ,这样可分别计算出∠COF=14°或n°时,∠BOE 的度数;(2)与(1)的推理一样.(3)设∠AOF=∠EOF=2x ,由∠DOF=3∠DOE ,得∠DOE=x ,而∠BOD 为直角,2x+2x+x+90°=160°,解出x=14°,则∠BOE=90°+x=104°,于是∠COF=21×104°=52°(满足∠COF+∠FOE=∠COE=80°). 解答:解:(1)∵∠AOE=∠AOB-∠BOE ,而OF 平分∠AOE ,∴∠AOE=2∠EOF ,∴2∠EOF=∠AOB-∠BOE ,∴2(∠COE-∠COF )=∠AOB-∠BOE ,而∠AOB=160°,∠COE=80°,∴160°-2∠COF=160°-∠BOE ,∴∠BOE=2∠COF ,当∠COF=14°时,∠BOE=28°;当∠COF=n°时,∠BOE=2n°,故答案为28°;2n°;∠BOE=2∠COF .(2)∠BOE=2∠COF 仍然成立.理由如下:解答:解:(1)(8844.43-5200)÷100×(-0.6)≈-22℃,-22+(-5)=-27℃;(2)[-5-(-17)]÷0.6×100=2000(米),5200+2000=7200(米).答:峰顶的温度为-27℃,A 处的海拔高度为7200米.点评:本题考查了有理数的混合运算在实际中的应用.注意认真审题,抓住关键词列出算式.44 如图,动点A 从原点出发向数轴负方向运动,同时,动点B 也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A 、B 的速度比是1:4 (速度单位:1个单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(2)若A 、B 两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒种,原点恰好处在两个动点的正中间?考点:一元一次方程的应用.专题:行程问题.分析:(1)设动点A 的速度是x 单位长度/秒,那么动点B 的速度是4x 单位长度/秒,然后根据3秒后,两点相距15个单位长度即可列出方程解决问题;(2)设x 秒时,原点恰好处在两个动点的正中间,那么A 运动的长度为x ,B 运动的长度为4x ,然后根据(1)的结果和已知条件即可列出方程解题.解答:解:(1)设动点A 的速度是x 单位长度/秒,根据题意得3(x+4x )=15∴15x=15解得:x=1,则4x=4.答:动点A 的速度是1单位长度/秒,动点B 的速度是4单位长度/秒;标出A ,B 点如图,;(2)设x 秒时,原点恰好处在两个动点的正中间,根据题意得:3+x=12-4x∴5x=9∴x=59 答:59秒时,原点恰好处在两个动点的正中间.45 已知圆柱形瓶A(底面半径2.5厘米,高18厘米)内装满水,圆柱形瓶B(底面半径3cm,高10cm)内没有水,现将A瓶中的水倒入B瓶中,问能否完全装下?若装不下,那么A瓶内还有水多高?若未能装满,那么B瓶内水面离杯口的距离是多少?2.5*2.5*3.14*18=353.25(立方厘米)3*3*3.14*10=282.6(立方厘米)353.25大于282.6 所以装不下(353.25-282.6)/(2.5*2.5*3.14)=3.6(厘米)分析:(1)方案一根据表格数据知道买一件A商品需付款90(1-30%),一件B商品需付款100(1-15%),由此即可求出买A商品30件,B商品90件所需要的付款,由于买A商品30件,B商品90件,已经超过120件,所以按方案二付款应该返利20%,由此也可求出付款数;(2)若购买总数没有超过100时,很明显应该按方案一购买;若购买总数超过100时,利用两种购买方式进行比较可以得到结论.解答:解:(1)方案一付款:30×90×(1-30%)+90×100×(1-15%)=9540元;方案二付款:(30×90+90×100)×(1-20%)=9360元,∵9540>9360,9540-9360=180元,∴选用方案二更划算,能便宜180元;(2)依题意得:x+2x+1=100,解得:x=33,当总件数不足100,即x<33时,只能选择方案一的优惠方式;当总件数达到或超过100,即x≥33时,方案一需付款:90(1-30%)x+100(1-15%)(2x+1)=233x+85,方案二需付款:[90x+100(2x+1)](1-20%)=232x+80,因为(233x+85)-(232x+80)=x+5>0.所以选方案二优惠更大.47 已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN= cm;(2)猜想线段MN与线段AB长度的关系,即MN= AB,并说明理由.考点:两点间的距离.专题:计算题.分析:(1)因为点C恰好为线段AB上一点,(2)分三种情况当C在线段AB上时,当C在线段AB的延长线上时,当C在线段BA的延长线上时,进行推论说明.48 某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是15千米/时.(人上下车的时间不记)49 某人型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠;小美第一次购物用了94.5元,第二次购物用了282.8元.(1)小美第一次购物的原价为多少元?(2)小美第二次购物的原价为多少元?考点:一元一次方程的应用.专题:应用题;分类讨论.分析:(1)根据题意及购物在小于100元,大于等于100且小于300元,大于等于300三种情况考虑小美的购物价格.(2)首先设小美第二次购物的原价为x元,再比较282.8元与300×9折的大小,判定出小美第二次购物第三种购物的情况.套用(x-300)×0.8+300×0.9=282.8,解得x的值即为所求.解答:解:(1)因为100×0.9=90<94.5<100,所以小美第一次购物分两种情况:情况1:小美第一次购物没有优惠,故原价为94.5元;(1分)情况2:小美第一次购物原价超过100元,则第一次购物原价为:94.5÷0.9=105(元)(3分)答:小美第一次购物原价为94.5元或105元(4分)(2)设小美第二次购物的原价为x元∵300×0.9=270<282.8∴小美第二次购物超过300元(5分)则(x-300)×0.8+300×0.9=282.8(7分)解得:x=316(9分)答:小美第二次购物的原价为316元.(10分)点评:本题考查一元一次方程的应用,解决本题主要是根据小美的购物钱数确定出符合三种情况中的那一种,进而求出原价.50 阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到:因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字.考点:尾数特征;有理数的乘方.专题:规律型.分析:(1)此题不难发现:2n的个位数字是2,4,8,6四个一循环,所以99÷4=24…3,则299的个位数字是8;9n的个位数字是9,1两个一循环,所以99÷2=49…1,则999的个位数字是9.(2)分别找出22010和32010和92010的个位数字,然后个位数字相加所得个位数字就是22010+32010+92010的个位数字.(3)分别找出92010和22010和32010的个位数字,然后个位数字相减所得个位数字就是92010-22010-32010的个位数字,注意不够借位再减.解答:解:(1)由21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,不难发现2的正整数幂的个位数字以2、4、8、6为一个周期循环出现,由此可以得到:因为299=24×24+3,所以299的个位数字与23的个位数字相同,应为8.不难发现9的正整数幂的个位数字以9、1为一个周期循环出现,由此可以得到:因为999=92×49+1,所以999的个位数字与91的个位数字相同,应为9.(2)因为22010=24×502+2,所以22010的个位数字与22的个位数字相同,应为4;因为32010=34×502+2,所以32010的个位数字与32的个位数字相同,应为9;因为92010=92×1005,所以92009的个位数字与92的个位数字相同,应为1.∴4+9+1=14.∴22010+32010+92010的个位数字为4;(3)92010-22010-32010的个位数字为21-4-9=-8.点评:此题主要是考查乘方的尾数特征,解题关键是发现个位数字的循环规律平面内两两相交的6条直线,其交点个数最少为个,最多为个.考点:直线、射线、线段.专题:规律型.分析:由题意可得6条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出答案.解答:解:根据题意可得:6条直线相交于一点时交点最少,此时交点为1个;任意两直线相交都产生一个交点时交点最多,点评:本题考查直线的交点问题,难度不大,注意掌握直线相交于一点时交点最少,任意三条直线不过同一点交点最多.51小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规.当等臂圆规的两脚摆放在一条直线上时,若张角请运用上述知识解决问题:如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…(3)当n≥3时,设∠A n-1A n C n-1的度数为a,∠A n+1A n C n-1的角平分线A n N与A n C n构成的角的度数为β,那么a与β之间的等量关系是α-β=45°,请说明理由.(提示:可以借助下面的局部示意图)考点:角的计算;等腰三角形的性质.专题:规律型.分析:利用角的和差关系计算,注意52 如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=18cm,求线段MN 的长.考点:比较线段的长短.专题:计算题.分析:根据AC :CD :DB=1:2:3,可设三条线段的长分53 用一张正方形的纸制作成一个无盖的长方体盒子,设这个正方形的边长为a ,这个无盖的长方体盒子高为h .(只考虑如图所示,在正方形的四个角上各减去一个大小相同的正方形的情况.)(1)若a=6cm ,h=2cm ,求这个无盖长方体盒子的容积;(2)用含a 和h 的代数式表示这个无盖长方体盒子的容积;(3)某学习小组合作探究发现:当h=61a 时,折成的长方体盒子容积最大.试用这一结论计算当a=18cm 时这个无盖长方体盒子的最大容积.考点:列代数式;代数式求值.分析:(1)根据a=6cm ,h=2cm ,即可得出容积(6-4)2×2,得出答案即可;(2)因为剪去的小正方形边长为hcm ,那么无盖的长方体底面也为一个正方形,其边长为(a-2h ),即可列出方程解题.(3)根据(2)中所求得出当a=18 cm 时,h= 61a =3,得出最值即可. 解答:解:(1)容积(6-4)2×2=8 cm 3;(2)容积为h (a-2h )2 cm 3;54 已知甲乙两个商店练习本的标价都是每本1元。