八年级上学期期末专题复习 专题5:等腰三角形套真题

合集下载

人教版八年级上册《13.3等腰三角形》同步测试题(含答案解析)

人教版八年级上册《13.3等腰三角形》同步测试题(含答案解析)

等腰三角形测试题时间:90分钟总分:100一、选择题(本大题共10小题,共30.0分)1.如图,在▱ABCD中,,,的平分线交BA的延长线于点E,则AE的长为A. 3B.C. 2D.2.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,于H,连接OH,,则的度数是A. B. C. D.3.已知等腰三角形一腰上的高线与另一腰的夹角为,那么这个等腰三角形的顶角等于A. 或B.C.D. 或4.已知等腰三角形的一边长5cm,另一边长8cm,则它的周长是A. 18cmB. 21cmC. 18cm或21cmD. 无法确定5.如图,是由绕点O顺时针旋转后得到的图形,若点D恰好落在AB上,且的度数为,则的度数是A. B. C. D.6.如果一个等腰三角形的一个角为,则这个三角形的顶角为A. B. C. D. 或7.如图,中,,AC的垂直平分线分别交AB、AC于点D和E,则的周长是A. 6B. 8C. 10D. 无法确定8.已知a、b、c是的三条边,且满足,则是A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形9.如图,下列条件不能推出是等腰三角形的是A.B. ,C. ,D. ,10.如图,四边形ABCD是边长为6的正方形,点E在边AB上,,过点E作,分别交BD,CD于G,F两点若M,N分别是DG,CE的中点,则MN的长为A. 3B.C.D. 4二、填空题(本大题共10小题,共30.0分)11.如图,在中,,,,AD平分,交BC于点D,于E,则______ .12.如图,,OC平分,如果射线OA上的点E满足是等腰三角形,那么的度数为______.13.如图,在中,,,,点P从点B开始以的速度向点C移动,当要以AB为腰的等腰三角形时,则运动的时间为______.14.平行四边形ABCD中,的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为______cm.15.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.16.如图,等腰中,,AD是底边上的高,若,,则______cm.17.如果等腰三角形的两边长分别为3和7,那么它的周长为______.18.如图,中,点D在边BC上,若,,则______度19.如图,在中,,AB的垂直平分线MN交AC于D点若BD平分,则______20.如图,在中,,,D是AB的中点,过点D作于点E,则DE的长是______.三、计算题(本大题共4小题,共24.0分)21.如图,中,,D,E,F分别为AB,BC,CA上的点,且,求证: ≌ ;若,求的度数.22.如图,在中,,E在CA延长线上,,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在▱ABCD中,AE平分交DC于点E,,,求EC的长.24.在中,,,F为AB延长线上一点,点E在BC上,且.求证: ≌ ;若,求度数.四、解答题(本大题共2小题,共16.0分)25.如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.26.如图,中,,,于点E,于点D,BE与AD相交于F.求证:;若,求AF的长.答案和解析【答案】1. C2. A3. D4. C5. B6. D7. C8. C9. C10. C11. 312. 或或13. 或6s14. 32或3415. 816. 417. 1718. 2019. 3620.21. 证明:,,.,.又,≌ .解: ≌.所以是等腰三角形.又,中,,,已知.22. 解:,理由为:证明:,,,,,,,,,,则EF与BC的位置关系是垂直.23. 解:在平行四边形ABCD中,则,,又AE平分,即,,即,又,,.故EC的长为3cm.24. 证明:,,在和中,,≌ ;,,,,,≌ ,,.25. 解:,,理由是:延长BD交AC于F.,,在和中≌ ,,,,,,,,;不发生变化.理由:,,,在和中≌ ,,,,,,,;能.和是等边三角形,,,,,,,在和中≌ ,,,即BD与AC所成的角的度数为或26. 解:,,,,,,,在和中,,≌ ,;连接CF,≌ ,,是等腰直角三角形.,,,,,BE是AC的垂直平分线.,.【解析】1. 【分析】此题考查了平行四边形的性质以及等腰三角形的判定与性质能证得是等腰三角形是解此题的关键由平行四边形ABCD中,CE平分,可证得是等腰三角形,继而利用,求得答案.【解答】解:四边形ABCD是平行四边形,,,,,,,;故选C.2. 【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质注意证得是等腰三角形是关键由四边形ABCD是菱形,可得,,又由,,可求得的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得是等腰三角形,继而求得的度数,然后求得的度数.【解答】解:四边形ABCD是菱形,,,,,,,,.故选A.3. 解:当为锐角三角形时可以画图,高与右边腰成夹角,由三角形内角和为可得,顶角为;当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为,由图可以看出等腰三角形的顶角的补角为,三角形的顶角为.故选D.首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.本题考查了等腰三角形的性质及三角形内角和定理,解答此题时考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.4. 解:当腰是5cm时,三角形的三边是:5cm,5cm,8cm,能构成三角形,则等腰三角形的周长;当腰是8cm时,三角形的三边是:5cm,8cm,8cm,能构成三角形,则等腰三角形的周长.因此这个等腰三角形的周长为18或21cm.故选:C.题目给出等腰三角形有两条边长为5cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5. 解:是绕点O顺时针旋转后得到的图形,,,,,,由三角形的外角性质得,.故选B.根据旋转的性质可得,,再求出,,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6. 解:当角是顶角时,顶角;当角是底角时,顶角;故选D.题中没有指明这个角是底角还是顶角,故应该分情况进行分析,从而求解.本题主要考查等腰三角形的性质及三角形内角和定理的综合运用.7. 解:是AC的垂直平分线,,的周长故选C.垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解.本题主要考查垂直平分线性质和等腰三角形的知识点,熟练掌握等腰三角形的性质.8. 解:已知等式变形得:,即,,,即,则为等腰三角形.故选:C.已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到,即可确定出三角形形状.此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.9. 解:由可得,则为等腰三角形,故A可以;由且,可得 ≌ ,则可得,即为等腰三角形,故B可以;由,,无法求得或,故C不可以;由,,可得AD为线段BC的垂直平分线,可得,故D可以;故选C.根据等腰三角形的判定逐项判断即可.本题主要考查等腰三角形的判定,掌握等角对等边是解题的关键.10. 解:解法一:如图1,过M作于K,过N作于P,过M作于H,则,,四边形MHPK是矩形,,,,N是EC的中点,,,,,同理得:,四边形ABCD为正方形,,是等腰直角三角形,,,,在中,由勾股定理得:;解法二:如图2,连接FM、EM、CM,四边形ABCD为正方形,,,,,,,,是等腰直角三角形,是DG的中点,,,,≌ ,,过M作于H,由勾股定理得:,,,是等腰直角三角形,,,,,,,,是EC的中点,;故选C.方法三:连EM,延长EM于H,使,连DH,CH,可证 ≌HDM,再证 ≌ ,利用中位线可证.故选:C.解法一:作辅助线,构建矩形MHPK和直角三角形NMH,利用平行线分线段成比例定理或中位线定理得:,,,利用勾股定理可得MN的长;解法二:作辅助线,构建全等三角形,证明 ≌ ,则,利用勾股定理得:,,可得是等腰直角三角形,分别求的长,利用勾股定理的逆定理可得是等腰直角三角形,根据直角三角形斜边中线的性质得MN的长.本题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于基础题,本题的关键是证明是直角三角形.11. 解:延长CE交AB于F,,,平分,,在与中,,≌ ,,,,,,,,,,,,.故答案为:3.延长CE交AB于F,根据垂直的定义得到,根据角平分线的定义得到,推出 ≌ ,根据全等三角形的性质得到,,,求得,由三角形的外角的性质得到,等量代换得到,得到,根据等腰三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,角平分线的定义,等腰三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.12.解:,OC平分,,当E在时,,,;当E在点时,,则;当E在时,,则;故答案为:或或.求出,根据等腰得出三种情况,,,,根据等腰三角形性质和三角形内角和定理求出即可.本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.13. 解:当时,点P与点C重合,如图1所示,过点A作于点D,,,,,即运动的时间6s;当时,,,运动的时间故答案为:或6s.由于等腰三角形的另一腰不确定,故应分与两种情况进行讨论.本题考查的是等腰三角形的判定,在解答此题时要进行分类讨论,不要漏解.14. 解:四边形ABCD是平行四边形,,,,,平分,,,,当时,,平行四边形ABCD的周长是;当时,,平行四边形ABCD的周长是;故答案为:32或34.由平行四边形ABCD推出,由已知得到,推出,分两种情况当时,求出AB的长;当时,求出AB的长,进一步求出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定,三角形的角平分线等知识点,解此题的关键是求出用的数学思想是分类讨论思想.15. 解:连接AD交EF与点,连结AM.是等腰三角形,点D是BC边的中点,,,解得,是线段AB的垂直平分线,..当点M位于点处时,有最小值,最小值6.的周长的最小值为.连接AD交EF与点,连结AM,由线段垂直平分线的性质可知,则,故此当A、M、D在一条直线上时,有最小值,然后依据要三角形三线合一的性质可证明AD为底边上的高线,依据三角形的面积为12可求得AD的长.本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.16. 【分析】本题考查了等腰三角形的性质和勾股定理关键要熟知等腰三角形的三线合一可得先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:,在直角中,由勾股定理得:,所以,.故答案为4.17. 解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为.故答案为:17.求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.18. 解:若,,,又在等腰三角形ADC中,是三角形ADC的外角,,又,,故答案为:20.根据题意可知的度数,然后再利用是三角形ADC的一个外角即可求得答案.本题考查等腰三角形的性质,等腰三角形的两底角相等,以及三角形的内角和为的知识点,此题难度不大.19. 解:,,的垂直平分线MN交AC于D点.,平分,,,设为x,可得:,解得:,故答案为:36根据线段垂直平分线上的点到两端点的距离相等可得,根据等边对等角可得,然后表示出,再根据等腰三角形两底角相等可得,然后根据三角形的内角和定理列出方程求解即可.此题考查了线段垂直平分线的性质以及等腰三角形的性质注意垂直平分线上任意一点,到线段两端点的距离相等.20. 解:过A作于F,连接CD.中,,,.在中,由勾股定理,得,,,,,.故答案为:.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出的面积;连接CD,由于,则、等底同高,它们的面积相等,由此可得到的面积;进而可根据的面积求出DE的长.此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.21. 由已知已知,,,可证 ≌ ;由可得,即是等腰三角形,又由,中,,可求出,即,从而求出的度数.本题考查了等腰三角形的性质和判定、三角形的外角与内角的关系及全等三角形的判定及性质;证得三角形全等是正确解答本题的关键.22. EF与BC垂直,理由为:由三角形ABC为等腰三角形且AD为底边上的高,利用三线合一得到AD为角平分线,再由,利用等边对等角得到一对角相等,利用外角性质得到一对内错角相等,利用内错角相等两直线平行得到EF与AD平行,进而确定出EF与BC垂直.此题考查了等腰三角形的性质,外角性质,以及平行线的判定与性质,熟练掌握等腰三角形的性质是解本题的关键.23. 本题主要考查了平行四边形的性质及角平分线的性质,应熟练掌握在平行四边形中,由于AE平分,所以不难得出,进而由AD及AB的长代入数据求解即可.24. 根据HL证明 ≌ ;因为是等腰直角三角形,所以,得,由中的全等得:,从而得出结论.本题考查了等腰直角三角形的性质和直角三角形全等的性质和判定,知道等腰直角三角形的两个锐角是,除了熟知三角形一般的全等判定方法外,还要掌握直角三角形的全等判定HL:即有一直角边和斜边对应相等的两直角三角形全等.25. 延长BD交AC于F,求出,证出 ≌ ,推出,,根据推出,求出即可;求出,证出 ≌ ,推出,,根据求出,求出即可;求出,证出 ≌ ,推出,根据三角形内角和定理求出即可本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.26. 根据等腰三角形腰长相等性质可得,即可求证 ≌ ,即可解题;连接CF,根据全等三角形的性质得到,得到是等腰直角三角形推出,BE是AC的垂直平分线于是得到结论.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了等腰三角形底边三线合一的性质,本题中求证 ≌ 是解题的关键.。

2023学年人教版数学八年级上册压轴题专题精选汇编(等腰三角形的判定与性质)原卷版

2023学年人教版数学八年级上册压轴题专题精选汇编(等腰三角形的判定与性质)原卷版

2023学年人教版数学八年级上册压轴题专题精选汇编等腰三角形的判定与性质考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________ 题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分20分,每小题2分) 1.(2分)(2021八上·陇县期末)如图,在ABC 中, 3ABC C ∠=∠ , 12∠=∠ , BE AE ⊥ ,5AB = , 3BE = ,则 AC = ( )A .10B .11C .13D .152.(2分)(2021八上·临沭月考)如图,∠AOB =60°,OC 平分∠AOB ,P 为射线OC 上一点,如果射线OA 上的点D ,满足△OPD 是等腰三角形,那么∠ODP 的度数为( )A .30°B .120°C .30°或120°D .30°或75°或120°3.(2分)(2021八上·东莞期中)如图,ABC 中,点 D 在 AC 上,连接BD ,∠ABD=2∠DBC ,∠ADB=2∠C ,∠DBC=∠A ,则图中共有等腰三角形( )A .0个B .1个C .2个D .3个4.(2分)(2021八上·江津期末)如图,在ABC 中, 90C ∠=︒ , 30B ∠=︒ ,以点 A 为圆心,任意长为半径画弧分别交 AB , AC 于点 M 和 N ,再分别以点 M , N 为圆心,大于12MN 的长为半径画弧,两弧交于点 P ,连接 AP 并延长交 BC 于点 D .则下列说法中正确的个数是( ) ①AD 是 BAC ∠ 的平分线;②60ADC ∠=︒ ;③点 D 在 AB 的中垂线上;④:2:5DACABCSS=A .1B .2C .3D .45.(2分)(2020八上·濮阳期末)如图,在ΔABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线平行于BC ,分别交AB 、AC 于点E 、F ,当A ∠大小变化时,线段EF 和BE CF +的大小关系是()A .EF BE CF >+B .EF BE CF <+C .EF BE CF =+D .不能确定6.(2分)(2021八上·滑县期末)如图,点 O 是 ABC 的 ABC ∠ ,ACB ∠ 的平分线的交点, //OD AB 交 BC 于点 D , //OE AC 交 BC 于点 E ,若 ODE 的周长为 9cm ,那么 BC 的长为( )A.8cm B.9cm C.10cm D.11cm7.(2分)(2021八上·柯桥月考)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为()A.3B.4C.6D.78.(2分)(2018八上·天台期中)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90+ 12∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则AEFS=mn.其中正确的结论有()A.1个B.2个C.3个D.4个9.(2分)(2018八上·江苏月考)已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD 延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD =180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.(2分)(2018八上·新乡期末)如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB 外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF -CG=CA ;③DE=DC ;④FH=CD+GH ;⑤CF=2CD+EG .其中正确的有( )A .①②④B .①②③C .①②④⑤D .①②③⑤评卷人 得 分二.填空题(共9小题,满分18分,每小题2分)11.(2分)(2021八上·云梦期末)如图,在ΔABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B ,C 重合),连接AD ,作40ADE ∠=︒,DE 与AC 交于E .在点D 的运动过程中,BDA ∠的度数为 时,ΔADE 的形状是等腰三角形.12.(2分)(2021八上·武汉月考)如图,在△ABC 中,AB =4,AC =6,AD 是∠BAC 的平分线,M 是BC 的中点,ME ∥AD 交AC 于F ,交BA 的延长线于E.则BE = .13.(2分)(2021八上·下城期中)如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交AB 于点F ,若AF =8,BF =7,则CD 的长度为 .14.(2分)(2021八上·长沙月考)如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =7cm ,DE =3cm ,求CE 的长为 cm.15.(2分)(2020八上·兴城期末)如图,ABC 中, 40A C ∠=∠=︒ ,M 、N 分别是 AB 、 AC 边上的点,连接 MN 、 BN ,若 AM AN = , CB CN = ,则 MNB ∠ 的度数是 .16.(2分)(2020八上·天津月考)如图,在 ABC 中, ABC ∠ 与 ACB ∠ 的平分线交于点 O ,过点 O 作 DE BC ,分别交 AB 、 AC 于点 D 、 E .若 ADE 的周长为7, ABC 的周长是12,则 BC 的长度为 .17.(2分)(2020八上·濉溪期末)如图,在△ABC 中,BI ,CI 分别平分∠ABC ,∠ACF ,直线DE 过点I ,且DE ∥BC ,BD =8 cm ,CE =5 cm ,则DE = .18.(2分)(2021八上·咸安期末)如图,在 ABC 中, ABC ∠ 和 ACB ∠ 的平分线相交于点O ,过点O 作 //EF BC 交 AB 于E ,交 AC 于F ,过点O 作 OD AC ⊥ 于D ,有下列结论:①EF BE CF =+ ;②点O 到 ABC 各边的距离相等;③1902BOC A ∠=︒+∠ ;④()12AD AB AC BC =+- .其中正确的结论是 (把你认为正确结论的序号都填上).19.(2分)(2020八上·汉阳期中)如图, BD 为 ABC 的角平分线,且 BD BC = , E 为 BD 延长线上一点, BE BA = ,过 E 作 EF AB ⊥ 于 F ,下列结论:①180BCE BDC ∠+∠=︒ ;②AD AE EC == ;③//AB CE ;④2BA BC BF += . 其中正确的序号是 .20.(2分)如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点G ,过点G 作EF ∥BC 交AB 于E ,交AC 于F ,过点G 作GD ⊥AC 于D ,下列四个结论: ①EF=BE+CF ; ②∠BGC=90°+12∠A ; ③点G 到△ABC 各边的距离相等; ④设GD=m ,AE+AF=n ,则S △AEF =mn . 其中正确的结论是 .评卷人 得 分三.解答题(共8小题,满分60分)21.(5分)(22021八上·东莞期末)已知:如图,AD 是等腰三角形ABC 的底边BC 上的中线,DE ∥AB ,交AC 于点E .求证:△AED 是等腰三角形.22.(5分)(2021八上·沿河期末)已知在ABC 中, AB AC = , D 在 AB 上, E 在 AC 的延长线上, DE 交 BC 于 F ,且 DF EF = ,求证: BD CE = .23.(5分)(2020八上·安丘月考)如图, ABC ∠ 的平分线 BE 与 ACG ∠ 的平分线 CE 相交于点 E ,过点 E 作 //DE BC 交 AC 于 F ,若 8BD = , 3DF = ,求 CF 的长24.(6分)(2021八上·汉阴期末)如图,在ABC 中, AB AC = , AD BC ⊥ 于点D ,点E 在边AB 上, EF AC 交 AD 的延长线于点F.(1)(3分)若 40C ∠=︒ ,求 AEF ∠ 的度数; (2)(3分)求证: AE FE = .25.(9分)(2018八上·长春期末)(1)(3分)如图1,在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)(3分)如图2,当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)(3分)如图3,当∠ACB≠90°,∠ACB=2∠B ,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.26.(10分)(2021八上·崇阳期中)(1)(5分)如图,在四边形ABCD中,∠BAD=α,∠BCD=180°−α,BD平分∠ABC.①如图1,若α=90°,请直接写出AD与CD之间的数量关系_▲_;②在图2中,①中结论是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)(5分)根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD=BC.27.(10分)(2020八上·石阡月考)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)(5分)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)(5分)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.28.(10分)(2021八上·长沙期末)(概念学习)①我们规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”;②从三角形的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中:一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这线段叫做这个三角形的“等角分割线”.(概念理解)(1)如图1,在Rt ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.(1)(5分)如图2,在ABC中,CD为角平分线,∠A=30°,∠B=50°. 求证:CD为ABC的“等角分割线”.(2)(5分)若在ABC中,∠A=45°,CD是ABC的“等角分割线”,请直接写出所有符合题意的∠ACB的度数.。

人教版八年级数学上册专项复习五 等腰三角形复习卷

人教版八年级数学上册专项复习五 等腰三角形复习卷

专项5等腰三角形专练卷一、选择题(每小题只有一个正确选项)1.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B= 50°B.∠A=40°,∠B = 60°C.∠A=40°,∠B=70°D.∠A=40°,∠B= 80°2.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30° C 45° D.60°(第2题图)3.如果等腰三角形的两边长是6cm和3cm,那么它的周长是( )A.9cmB.12cmC.15 cmD.15cm 或12cm4.如图,在△ABC 中,点D 在BC 边上,AB=AD=DC,∠B=80°,则∠C 的度数是( )A.30°B.40° C 45° D.60°(第4题图)5.等腰三角形-腰上的高与另一腰的夹角为40° ,则等腰三角形顶角的 度数是( )A.40°B.50°C.130°D. 50°或130°6.如图,AD ⊥BC,点D 为BC 的中点,以下结论正确的有( )①△ABD ≌△ACD;②AB =AC;③∠B=∠C;④AD 是△ABC 的角平分线.A.1个B.2个C.3个D.4个(第6题图)7.如图,在△ABC 中,AB =AC,BE=CD,BD=CF,则∠EDF=( )A.2∠AB.90°-2∠AC.90°-∠AD.90°-12 ∠A(第7题图)8.已知等腰三角形的两边长a,b满足|2a-3b+5| +(2a +3b-13)2=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或109.如图,在△ABC中,AB=20 cm,AC=12 cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发,以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )A.2.5 sB.3 sC.3.5 sD.4 s(第9题图)10.如图,在△ABC中,AB=AC,点D,E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm(第10题图)二、填空题.11.如图,在△ABC中,∠C=90°,∠B=30°,DE垂直平分AB,若DE=2,则BC= .(第11题图)12.如图,在Rt △ABC中,点D,E为斜边AB.上的两个点,且BD= BC,AE=AC,则∠DCE的大小为(第12题图)13.如图,在△ABC中,AB =AC=11,C BAC= 120°,AD是△ABC的中线,AE是∠BAD的平分线, DF//AB交AE的延长线于点F,则DF的长为(第13题图)14.如图,∠MAN是一钢架,且∠MAN= 18°,为了使钢架更加坚固,需在其内部添加一些钢管BC ,CD,DE ,...添加的钢管长度都与AB相等,则最多能添加这样的钢管根.(第14题图)三、解答题15.如图,在△ABC中,已知∠B=45°,∠ACB =80°,延长BC至点D,使CD=CA,连接AD,求∠BAD的度数.16.在等腰直角三角形AOB中,已知AO⊥OB,点P,D分别在AB,OB上(1)如图1 ,若PO= PD,∠0PD =45°,求证: △BOP是等腰三角形.(2)如图2,若AB=8,点P在AB.上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否会变化?若会变化?说明理由;若不变,请予以证明.图2 17.已知△ABC中,∠A=90°,AB=AC,点D为BC的中点图1图2图3(1)如图1,点E,F分别为线段AB,AC上的点.当BE=AF时,易得△DEF为______三角形(不需要写出证明过程);(2)如图2,若点E,F分别为AB,CA延长线上的点,且BE=AF,其他条件不变,则( 1)中的结论仍然成立,请证明这个结论;(3)如图3,若把一块三角尺的直角顶点放在点D处转动,三角尺的两条直角边与线段AB,AC分别交于点E,F,请判断△DEF的形状,并证明你的结论.答案:1.C2.A3.C4.B5.D6.D7.D8.A9.D10.C11.612. 45°13. 11214. 415.解:∵∠B=45°,∠.ACB=80°,∴∠BAC =55°.∵CD= CA ,∴∠CAD=∠D=12 ∠ACB=40°.∴∠BAD=∠BAC +∠CAD=55° +40°=95°.16.(1) 证明:∵△AOB 为等腰直角三角形,A0∠B0, ∴AO = BO ,∠A=∠B=45°.∵∠OPD= 45°,P0=PD ,∴∠POB=∠PDO=67.5°.∴∠BPD=∠PDO -∠B=22.5°.∴∠BPO=∠BPD+∠OPD=67.5°.∴∠BPO=∠POB.∴ BP=BO.∴∠BOP 是等腰三角形.(2)解:PE 的长度不变,PE =4.证明:过点0作0C∠AB 于点C. ∵△AOB 为等腰直角三角形,∴∠BOC=∠B=∠A=45°.∴0C=AC=BC.∴0C=12 AB=4.∵OP=PD ,∴∠POD=∠PDO.∵∠POC =∠POD -∠BOC,∠DPE=∠PDO -∠B ,∴∠POC=∠DPE.∵∠0CP=∠PED=90°,∴∠OCP∠∠PED.∴ PE= 0C=4.17.(1)等腰直角(2)证明:如图2,连接AD.∵∠BAC =90°,AB =AC, BD= CD,∴∠ABC=∠C=45°,AD⊥BC.∴∠ABC=∠BAD=45°.∴AD = BD.∴∠DBE=135°.∵∠BAC=90°,∴∠FAE=90°.∴∠DAF = 135°.∴∠DBE=∠DAF.∵BE =AF,∴△DBE'≌△DAF.∴DE = DF,∠BDE=∠ADF.∵∠ADF+∠BDF=90°,∴∠BDE+∠BDF=90°.∴∠EDF =90°.∴△DEF为等腰直角三角形.(3)解: △DEF为等腰直角三角形.证明:连接AD.同(2)得DB= DA,∠B=∠DAF=45°,∠ADB =90°.∵∠EDF =90°.∴∠EDA +∠ADF=90°.∵∠BDE+∠EDA=∠ADB=90°,∴∠BDE=∠ADF.∴△BDE≌△ADF.∴DE=DF.∴△DEF为等腰直角三角形.。

【名师点睛】2017-2018学年八年级数学上册 等腰三角形 专题复习50题(含答案)

【名师点睛】2017-2018学年八年级数学上册 等腰三角形 专题复习50题(含答案)

2017-2018学年八年级数学上册等腰三角形专题复习50题一、选择题:1.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或202.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°3.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25 B.25或32 C.32 D.194.如图,地面上有三个洞口A.B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A.B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点5.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为()A.45°B.135°C.45°或67.5°D.45°或135°6.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或77.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°8.在直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )A.1个B.2个C.3个D.4个9.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°10.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个11.以下说法中,正确的命题是()(1)等腰三角形的一边长为4 cm,一边长为9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)12.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=f(-1,2),g(-4,5)=g(-4,-5),则g[f(2,-3)]=()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)二、填空题:13.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.14.如图,点M是Rt△ABC的斜边AB的中点,连接CM,作线段CM的垂直平分线,分别交边CB和CA的延长线于点D、E.若∠C=90°,AB=20,tanB=0.4,则DE= .15.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=______°.16.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC= 度,若△ADE的周长为19cm,则BC= cm.17.如图,AB⊥BC于B,AD⊥DC于D,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数是.18.如图,在等边△ABC中,点D、E分别在边BC,AB上,且BD=AE,AD与CE交于点F.则∠DFC= 度.19.在△ABC中,AB、AC的垂直平分线分别交BC于点D、E.若BC=10,DE=4,则AD+AE= .20.如图,在第1个△ABC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,1得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是.三、解答题:21.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.22.如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD,试猜想线段CE、BD之间的数量关系,并说明理由.23.如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.如图,已知△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF 是正三角形.25.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.26.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.27.如图,在等边△ABC中,DE分别是AB,AC上的点,且AD=CE.(1)求证:BE=CD;(2)求∠1+∠2的度数.28.如图所示,已知在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.29.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.30.如图,已知D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.31.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,CH⊥AD 于H点.(1)求证:AD=CE;(2)求证:CF=2FH.32.已知:如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.33.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.求证:(1)AD=AG;(2)AD与AG的位置关系如何?并证明你的结论.34.如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过点A的直线作垂线,垂足分别为点E、F.(1)如图(1),过A的直线与斜边BC不相交时,求证:①△ABE≌△CAF;②EF=BE+CF (2)如图(2),过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求EF的长.35.如图1,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).(1)当t为何值时,△PBQ是直角三角形?(2)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.36.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点F,交AB于点E.求证:BF=FC.37.如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.38.如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD的数量关系,并证明你的结论.39.如图,已知ΔABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.40.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.41.如图,已知等边三角形ABC中,D为AC边的中点,E为BC延长线上一点,CE=CD,DM⊥BC于M,求证:M是BE的中点.42.已知,如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为43.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的度数;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.44.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.45.如图,点O是等边△ABC内一点,∠AOB=1100,∠BOC=α.将△BOC绕点C按顺时针方向旋转600得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=1500时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?46.如图,在△ABC中,AB=AC,∠BAC=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE于E,DE 与AB交于点F,试探究线段BE与FD的数量关系,并证明.47.已知等腰Rt△ABC中,AC=BC=a,∠C=900,AD平分∠BAC,E在AC上,CD=CE.求证:△CDE的周长为定值.48.如图,点C是线段AB上一点,△ACM与△BCN都是等边三角形.(1)如图①,AN与BM是否相等?证明你的结论;(2)如图②,AN与CM交于点E,BM与CN交于点F,试探究△ECF的形状,并证明你的结论.(3)如图①,设AN、BM交点为D,连接CE,求证:DC平分∠ADB.49.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.50.如图,△ABC中,AB=AC=5,∠BAC=1000,点D在线段BC上运动(不与点B、C重合),连接AD,作∠1=∠C,DE交线段AC于点E.(1)若∠BAD=200,求∠EDC的度数;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.参考答案1.C2.B3.C4.A5.A6.解:分别作点P关于OA.OB的对称点C、D,连接CD,分别交OA.OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.7.D8.B9.D10.D11.A12.A.13.答案为:1014.答案为:12.5;15.答案为:87°;16.解:①∵DM、EN分别垂直平分AB和AC,∴AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC(等边对等角),∵∠BAC=∠DAE+∠BAD+∠CAE,∴∠BAC=∠DAE+∠B+∠C;又∵∠BAC+∠B+∠C=180°,∠DAE=50°,∴∠BAC=115°;②∵△ADE的周长为19cm,∴AD+AE+DE=19cm,由①知,AD=BD,AE=EC,∴BD+DE+EC=19,即BC=19cm.故答案为:115,19.17.略18.答案为:60.19.解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,∴如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故答案为:6或14.20.答案为:(0.5)n﹣1×75°.21.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.22.解:CE=BD,理由:∵△ACB和△ADE均为等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠DAB=∠EAC.在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴CE=BD.23.(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,,∴△EAC≌△DAB,即可得出BD=CE.(2)解:由(1)△EAC≌△DAB,可得∠ECA=∠DBA,又∵∠DBA+∠DBC=60°,在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,则∠BFC=180°﹣∠ACB﹣(∠ECA+∠DBC)=180°﹣60°﹣60°=60°.24.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.25.证明:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.26.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE==2.5.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AB=BC,在△ACD和△CBE中∴△ACD≌△CBE(SAS),∴BE=CD;(2)解:∵△ACD≌△CBE,∴∠1=∠ACD,∴∠1+∠2=∠ACD+∠2=∠ACB=60°.28.解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C==77°×=38.5°.29.证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.30.∵AC=BC=BD,AD=AE,DE=CE∴∠A=∠B∠ADE=∠AED=∠BDC=∠BCD,∠EDC=∠ECD∵∠A+∠B+∠ECD+∠BCD=180°,∠ADE+∠EDC+∠BDC=180°∴∠A+∠B=∠ADE∴在三角形ADE中,∠A+2∠A+2∠A=180°∴∠B=∠A=36°31.略32.证明:△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD=DE(等边三角形的边相等),∠ABC=∠EBD=60°(等边三角形的角是60°).∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD (等式的性质),在△ABE和△CBD中,,∴△ABE≌△CBD(SAS)∴AE=DC(全等三角形的对应边相等).∵AD﹣DE=AE(线段的和差)∴AD﹣BD=DC(等量代换).33.(1)证明:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD2、AG⊥AD证明:∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90∴AG⊥AD34.(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB与△CFA中∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB与△CFA中∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA﹣EA=EB﹣FC=10﹣3=7.35.略36.证明:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°﹣30°=90°,∵∠C=30°,∴AF=CF,∵BF=AF,∴BF=FC.37.解;△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°.在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE.由三角形弯角的性质得∠AFE=∠BAF+∠ABF,∠AFE=∠CBE+∠ABF=60°.38.解:CD=2BE,理由为:延长BE交CA延长线于F,∵CD平分∠ACB,∴∠FCE=∠BCE,在△CEF和△CEB中,,∴△CEF≌△CEB(ASA),∴FE=BE,∵∠DAC=∠CEF=90°,∴∠ACD+∠F=∠ABF+∠F=90°,∴∠ACD=∠ABF,在△ACD和△ABF中,,∴△ACD≌△ABF(ASA),∴CD=BF,∴CD=2BE.39.证明:∵∠ACB=90°,CD⊥AB∴∠CBF+∠CFB=∠DBE+∠DEB=90°∵BF平分∠ABC∴∠CBF=∠DBE∵∠CBF+∠CFB=∠DBE+∠DEB∴∠CFB=∠DEB∵∠FEC=∠DEB∴∠CFB=∠FEC∴CE=CF40.证明:在CD上取一点E使DE=BD,连接AE.∵BD=DE,且∠AED为△AEC的外角,∠B=2∠C,∴∠B=∠AED=∠C+∠EAC=2∠C,∴∠EAC=∠C,∴AE=EC;则CD=DE+EC=AB+BD.41.证明:如图,连接BD,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵ CD=CE,∴∠CDE=∠E=30°.∵ BD是AC边上的中线,∴ BD平分∠ABC,即∠DBC=30°,∴∠DBE=∠E.∴ DB=DE.又∵ DM⊥BE,∴ DM是BE边上的中线,即M是BE的中点.42.证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.43.44.略45.(1)∵△BCO≌△ACD∴OC=CD又∵∠OCD=60°所以△OCD是等边三角形(2)∵△OCD是等边三角形∴∠DOC=∠CDO=60°∵∠AOB+∠α+∠COD+∠AOD=360°且∠AOB=110°,∠α=150°∴∠COD=40°又∵∠ADC=∠α=150°∴∠ADO=∠ADC-∠CDO=150°-60°=90°∴△ADO是直角三角形(3)∠AOD=360°-∠AOB-∠α-∠COD=360°-110°-∠α-60°=190°-∠α∠ADO=∠ADC-∠CDO=∠α-60°∠OAD=180°-∠AOD-∠ADO=180°-(∠α-60°)-(190°-∠α)=50°若∠ADO=∠AOD,即∠α-60°=190°-∠α,则∠α=125°若∠ADO=∠OAD,则∠α=110°若∠OAD=∠AOD,则∠α=140°经验证,三个答案均可.46.解:BE=FD.理由:BE与DH的延长线交于G点,如图,∵DH∥AC,∴∠BDH=∠C=45°,∴△HBD为等腰直角三角形∴HB=HD,而∠EBF=22.5°,∵∠EDB=∠C=22.5°,∴DE平分∠BDG,而DE⊥BG,∴BE=GE,即BE=BG,∵∠DFH+∠FDH=∠G+∠FDH=90°,∴∠DFH=∠G,∵∠GBH=90°﹣∠G,∠FDH=90°﹣∠G,∴∠GBH=∠FDH在△BGH和△DFH中,,∴△BGH≌△DFH(AAS),∴BG=DF,∴BE=FD.47.略48.(1)∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠MCN=60°,∠ACN=∠MCB,在△ACN和△MCB中:AC=MC,∠ACN=∠MCB,NC=BC∴△ACN≌△MCB(SAS).∴AN=BM.(2)∵△ACN≌△MCB,∴∠CAE=∠CMB.在△ACE和△MCF中:∠CAE=∠CMF,AC=MC,∠ACE=∠FCM∴△ACE≌△MCF(ASA).∴CE=CF.∴△CEF的形状是等边三角形.49.解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.50.略第21 页共21 页。

人教版数学八年级上册《轴对称与等腰三角形》期末复习专题试卷及答案

人教版数学八年级上册《轴对称与等腰三角形》期末复习专题试卷及答案

八年级数学期末复习专题轴对称与等腰三角形姓名:_______________班级:_______________得分:_______________一选择题:1.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B. C. D.2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:013.平面内点A(-1,2)和点B(-1,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=-14.如图,△ABC与△关于直线MN对称,P为MN上任一点,下列结论中错误的是( )(A)△是等腰三角形. (B)MN垂直平分.(C)△ABC与△面积相等.(D)直线AB、的交点不一定在MN上.5.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().6.若等腰三角形一个外角等于100,则与它不相邻的两个内角的度数分别为…()A.40,40B.80°,20C.50°,50°D.80°,20°或 50°,50°7.如图是轴对称图形,它的对称轴有()A.2条 B.3条 C.4条 D.5条8.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A.24B.30C.32D.349.如图,把一长方形纸片ABCD沿EG折叠后,点A、B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是()A.40°B.50°C.65°D.80°10.如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A. 2种B. 4种C. 5种D. 7种11.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,则AC长为( )A.2 B.3 C.4 D.以上都不对12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处13.∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )A.20°B. 40°C.50°D. 60°14.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm15.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )A.30° B.35° C.40° D.50°16.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )A.2个 B.3个 C.4个 D.5个17.平面上有A、B两点,以线段AB为一边作等腰直角三角形,能作()A.3个B.4个C.6个 D.无数个18.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定19.如图,已知∠AOB=60º,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM的长为()A.3B.4C.5D. 620.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.)n﹣1•65°C.()n﹣1•75°D.()n•85°二填空题:21.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.22.已知等腰三角形一腰上的中线将它周长分成18cm和9cm 两部分,则这个等腰三角形的底边长是cm.23.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.24.课间,顽皮的小刚拿着老师的等腰直角三角板放在黑板上画好了的平面直角坐标系内(如图),已知直角顶点H的坐标为(0,1),另一个顶点G的坐标为(4,4),则点K的坐标为25.如图,所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为.26.如图,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.27.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.28.如图所示,线段AB=8cm,射线AN⊥AB于点A,点C是射线上一动点,分别以AC、BC为直角边作等腰直角三角形,得△ACD与△BCE中,连接DE交射线AN于点M,则CM的长为.29.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,……均为等边三角形,若OA1=2,则△A5B5A6的边长为.30.如图,△ABC中,∠ACB=60°,△ABC′,△BCA′,△CAB′都是△ABC形外的等边三角形,点D在边AC 上,且DC=BC.连接DB,DB′,DC′.有下列结论:①CDB是等边三角形;②△C′BD≌△B′DC;③S△AC′D≠S△DB′A④S +S△ABC′=S△ACB′+S△A′BC其中,正确的结论有(请写序号,少选、错选均不得分)△ABC三作图题:31.作图题:(不写作法,但必须保留作图痕迹,如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。

人教版初中数学八年级上册《等腰三角形》复习试题(配套练习附答案)

人教版初中数学八年级上册《等腰三角形》复习试题(配套练习附答案)
6.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=___.
【答案】44°
【解析】
【分析】
根据等腰三角形两底角相等求出∠BAC,再根据两直线平行,内错角相等解答.
详解】∵AB=AC,∠ABC=68°,
∴∠BAC=180°﹣2×68°=44°,
∵AB∥CD,
∴∠ACD=∠BAC=44°.
(1)写出y与x之间的函数表达式;
(2)画出此函数的图像.
22.如图,在平面直角坐标系xOy中,直线y=-- x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.
23.如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,﹣10).
13.已知y+1与2﹣x成正比,且当x=﹣1时,y=5,则y与x的函数关系是____________.
14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7=_____.
15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是_____.
16.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为______.
故选C
考点:等腰三角形三线合一
2.如图,在△ABC中,AB=AD=DC,∠B=70°ห้องสมุดไป่ตู้则∠C的度数为( )
A.35°B.40°C.45°D.50°
【答案】A
【解析】
∵AB=AD, ∴∠ADB=∠B=70°.
∵AD=DC,

初二数学-等腰三角形10道典型题剖析

初二数学-等腰三角形10道典型题剖析

思路分析:由BD平分∠ABC,
A
易知∠1=∠2, 则设∠1=∠2
=x,由AB=AC可得
1
∠C=∠1+∠2=2x,在△DBC中
2
由三角形内角和定理可列出x B
D C
的方程,求出x.
解:设1 x,
BD平分ABC,
A
1 2 x, AB AC,
1 2
B
D C
C ABC 1 2 2x.
在DBC中,
提示: 本题为文字命题,解题时应分为以下 三个步骤: (1)根据题意作图; (2)写出已知, (3)进行求证.
已知:在ABC中,AB AC, D为底边BC
的中点,DE AB于点E, DF AC于点F.
求证:DE DF.
A
思路分析:由等腰三角形的性质易得
E
F
B C,又BD DC,DE AB, DF AC,
∴∠FBC+∠C+∠FBC=3∠C,
∴∠FBC=∠C, ∴BF=FC, ∴AC-AB=2BE.
例8.如图,△ABD、 △AEC都是等边三角 形,求证: △AFG是等边三角形.
思路分析:利用等边三角 形的性质可推出,边、角 的等量关系,从而易证三 角形全等,进而说明
△AFG是等边三角形.
证明:∵△ABD 和△AED是正三角形, ∴AB=AD,AC=AE,∠BAD=∠CAE=60°, ∴ ∠CAD=∠BAD+∠CAB=60°+∠CAB, ∠BAE=∠CAE+∠CAB=60°+∠CAB, ∴ ∠CAD=∠BAE, △ADC≌△BAE, ∴ ∠ADF=∠GBA.
70°、40°或55°、55°
引申: 已知等腰三角形的一个角是110°, 求其余两角.

八年级等腰三角形练习题及答案汇总

八年级等腰三角形练习题及答案汇总

等腰三角形典型例题一.选择题(共2小题)1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D 到AB的距离为()A.5cm B.3cm C.2cm D.不能确定2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD 交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是()(第2题)(第1题)A.0B.1C.2D.3二.填空题(共1小题)3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于_________ .(第3题)(第4题)三.解答题(共15小题)4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC是什么三角形?并说明理由.7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C 作CE与BD垂直且交BD延长线于E,求证:BD=2CE.11.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH= _________ .点P到AB边的距离PE= _________ .12.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE _________ DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE _________ DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D 在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD 的数量关系,并说明理由.14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数.15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.17.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.等腰三角形典型例题练习参考答案与试题解析一.选择题(共2小题)1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D 到AB的距离为()A.5cm B.3cm C.2cm D.不能确定考点:角平分线的性质.分析:由已知条件进行思考,结合利用角平分线的性质可得点D到AB 的距离等于D到AC的距离即CD的长,问题可解.解答:解:∵∠C=90°,AD平分∠BAC交BC于D∴D到AB的距离即为CD长CD=5﹣3=2故选C.2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD 交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是()A.0B.1C.2D.3考点:平行线分线段成比例;全等三角形的判定与性质;等边三角形的性质.分析:由△AC D和△BCE是等边三角形,根据SAS易证得△ACE≌△DCB,即可得①正确;由△ACE≌△DCB,可得∠EAC=∠NDC,又由∠ACD=∠MCN=60°,利用ASA,可证得△ACM≌△DCN,即可得②正确;又可证得△CMN是等边三角形,即可证得③正确.解答:解:∵△ACD和△BCE是等边三角形,∴∠ACD=∠BCE=60°,AC=DC,EC=BC,∴∠ACD+∠DCE=∠DCE+∠ECB,即∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,故①正确;∴∠EAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠DCE=60°,∴∠ACD=∠MCN=60°,∵AC=DC,∴△ACM≌△DCN(ASA),∴CM=CN,故②正确;又∠MCN=180°﹣∠MCA﹣∠NCB=180°﹣60°﹣60°=60°,∴△CMN是等边三角形,∴∠NMC=∠ACD=60°,∴MN∥AB,故③正确.故选D.二.填空题(共1小题)3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于1:3 .考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF 是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.解答:解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故答案为:1:3.三.解答题(共15小题)4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.考点:全等三角形的判定与性质;角平分线的定义.分析:过D作DM⊥AB,于M,DN⊥AC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出∠AED=∠CFD,根据全等三角形的判定AAS推出△EMD≌△FND即可.解答:证明:过D作DM⊥AB,于M,DN⊥AC于N,即∠EMD=∠FND=90°,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN(角平分线性质),∠DME=∠DNF=90°,∵∠EAF+∠EDF=180°,∴∠MED+∠AFD=360°﹣180°=180°,∵∠AFD+∠NFD=180°,∴∠MED=∠NFD,在△EMD和△FND中,∴△EMD≌△FND,∴DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.考点:等腰三角形的判定与性质;平行线的性质.分析:根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解答:解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+EC.6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC是什么三角形?并说明理由.考点:等腰三角形的判定;全等三角形的判定与性质.分析:用(HL)证明△EBD≌△FCD,从而得出∠EBD=∠FCD,即可证明△ABC是等腰三角形.解答:△ABC是等腰三角形.证明:连接AD,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,且DE=DF,∵D是△ABC的BC边上的中点,∴BD=DC,∴Rt△EBD≌Rt△FCD(HL),∴∠EBD=∠FCD,∴△ABC是等腰三角形.7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?考点:等边三角形的性质;等腰三角形的判定.分析:(1)由题意可推出∠ACB=60°,∠E=∠CDE,然后根据三角形外角的性质可知:∠ACB=∠E+∠CDE,即可推出∠E的度数;(2)根据等边三角形的性质可知,BD不但为AC边上的高,也是∠ABC的角平分线,即得:∠DBC=30°,然后再结合(1)中求得的结论,即可推出△DBE是等腰三角形.解答:解:(1)∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴,(2)∵△ABC是等边三角形,BD⊥AC,∴∠ABC=60°,∴,∵∠E=30°,∴∠DBC=∠E,∴△DBE是等腰三角形.8.如图,在△AB C中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.考点:含30度角的直角三角形.分析:由△ABC中,∠ACB=90°,∠A=30°可以推出AB=2BC,同理可得BC=2BD,则结论即可证明.解答:解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=60°.又∵CD⊥AB,∴∠DCB=30°,∴BC=2BD.∴AB=2BC=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.考点:全等三角形的判定与性质;等腰三角形的性质.分析:过D点作DG∥AE交BC于G点,由平行线的性质得∠1=∠2,∠4=∠3,再根据等腰三角形的性质可得∠B=∠2,则∠B=∠1,于是有DB=DG,根据全等三角形的判定易得△DFG≌△EFC,即可得到结论.解答:证明:过D点作DG∥AE交BC于G点,如图,∴∠1=∠2,∠4=∠3,∵AB=AC,∴∠B=∠2,∴∠B=∠1,∴DB=DG,而BD=CE,∴DG=CE,在△DFG和△EFC中,∴△DFG≌△EFC,∴DF=EF.10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C 作CE与BD垂直且交BD延长线于E,求证:BD=2CE.考点:全等三角形的判定与性质.分析:延长CE,BA交于一点F,由已知条件可证得△BFE全≌△BEC,所以FE=EC,即CF=2CE,再通过证明△ADB≌△FAC可得FC=BD,所以BD=2CE.解答:证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.11.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH= 7 .点P到AB边的距离PE= 4或10 .考点:等腰三角形的性质;三角形的面积.分析:(1)连接AP.先根据三角形的面积公式分别表示出S△ABP,S△ACP,S△ABC,再由S△ABP=S△ACP+S△ABC即可得出PE=PF+PH;(2)先根据直角三角形的性质得出AC=2CH,再由△ABC的面积为49,求出CH=7,由于CH>PF,则可分两种情况进行讨论:①P为底边BC上一点,运用结论PE+PF=CH;②P为BC延长线上的点时,运用结论PE=PF+CH.解答:解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH,∵S△ABP=S△ACP+S△ABC,∴AB•PE=AC•PF+AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵S△ABC=AB•CH,AB=AC,∴×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+P F=CH,∴PE=CH﹣PF=7﹣3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.12.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE = DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE = DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.解答:解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=113.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD 的数量关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据全等三角形的性质和判定和线段垂直平分线性质求出AB=AC=CD,推出∠CDA=∠CAD=∠CPM,求出∠MPF=∠CDM,∠PMF=∠BMA=∠CMD,在△DCM和△PMF中根据三角形的内角和定理求出即可.解答:解:∠F=∠MCD,理由是:∵AF平分∠BAC,BC⊥AF,∴∠CAE=∠BAE,∠AEC=∠AEB=90°,在△ACE和△ABE中∵,∴△ACE≌△ABE(ASA)∴AB=AC,∵∠CAE=∠CDE∴AM是BC的垂直平分线,∴CM=BM,CE=BE,∴∠CMA=∠BMA,∵AE=ED,CE⊥AD,∴AC=CD,∴∠CAD=∠CDA,∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD,∴∠MPC=∠CDA,∴∠MPF=∠CDM,∴∠MPF=∠CDM(等角的补角相等),∵∠DCM+∠CMD+∠CDM=180°,∠F+∠MPF+∠PMF=180°,又∵∠PMF=∠BMA=∠CMD,∴∠MCD=∠F.14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数.考点:等边三角形的性质;全等三角形的判定与性质.分析:(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD,从而证得结论;(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.解答:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA.在△ABE和△CAD中,∴△ABE≌△CAD∴AD=BE.(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.考点:全等三角形的判定与性质.分析:根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.解答:证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形.分析:可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,当然相等了,由此可以证明△AEO≌△BFO;延长BF交AE于D,交OA于C,可证明∠BDA=∠AOB=90°,则AE⊥BF.解答:解:AE与BF相等且垂直,理由:在△AEO与△BFO中,∵Rt△OAB与Rt△OEF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°﹣∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF.延长BF交AE于D,交OA于C,则∠ACD=∠BCO,由(1)知∠OAE=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.17.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.考点:等腰三角形的性质.分析:(1)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(2)类似(1)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三角形ABD的面积﹣三角形ACD的面积.解答:解:(1)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.考点:等腰三角形的性质;三角形的面积.分析:猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB=AB•PD,S△PAC=AC•PE,S△CAB=AB•CF,S△PAC=AC•PE,AB•PD=AB•CF+AC•PE,即可求证.解答:解:我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:连接AP,则S△PAC+S△CAB=S△PAB,∵S△PAB=AB•PD,S△PAC=AC•PE,S△CAB=AB•CF,又∵AB=AC,∴S△PAC=AB•PE,∴AB•PD=AB•CF+AB•PE,即AB(PE+CF)=AB•PD,∴PD=PE+CF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期期末专题复习专题5:等腰三角形
一、单选题
1. △ABC中,AB=AC,∠A=∠C,则△ABC是()
A . 等腰三角形
B . 等边三角形
C . 不等边三角形
D . 不能确定
2. 已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()
A . 直角三角形
B . 钝角三角形
C . 等腰直角三角形
D . 等边三角形
3. 如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB,AC于F,E,以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④CE=MD/2,其中一定正确的有()
A . 1个
B . 2个
C . 3个
D . 4个
4. 如图,在△ABC 中,∠BAC=72°,∠C=36°,∠BAC 的平分线AD 交BC 于D,则图中有等腰三角形()
A . 0 个
B . 1 个
C . 2 个
D . 3 个
5. 如图,在中,,,
,与的关系是________.
6. 如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=________度.
7. 如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为________cm.
8. 如图,等边△ABC边长为10,P在AB上,Q在BC延长线,CQ=PA,过点P作PE⊥AC点E,过点P作PF∥BQ,交AC边于点F,连接PQ交AC于点D,则DE的长为________.
9. 如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”,
(1)如图△ABC中,AB=AC= ,BC=2,求证:△ABC是“美丽三角形”;
(2)在Rt△ABC中,∠C=90°,AC=2 ,若△ABC是“美丽三角形”,求BC的长.
10. 图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.
(1)如图1,求证:AD=CE.
(2)如图2,设CE与AD交于点F,连接BF.
①求证:∠CFA=60°.
②求证:CF+BF=AF.
11. 如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.。

相关文档
最新文档