鲁教版(五四制)2018六年级下册数学期末模拟测试题(一)
鲁教版五四制六年级下册数学期末测试卷

鲁教版五四制六年级下册数学期末测试卷一.选择题1.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是() A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边2.计算(﹣xy2)3,结果正确的是()A. x3y5B.﹣x3y6C.x3y6D.﹣x3y53.下列计算正确的是()A.2a+3b=5ab B.(a2)4=a8C.a3•a2=a6D.2a﹣2=4.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为() A.21×10﹣4千克B. 2.1×10﹣6千克C.2.1×10﹣5千克D.2.1×10﹣4千克5.如图,直解三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为() A.56°B.44°C.34° D.28°(5)(6)(9)6.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于() A.145°B.110°C.70° D.35°7.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70° D.60°8.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.② C.③ D.④A.B.C.D.二.填空题9.计算:= _________ .10.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于___ 度.(10) (12) (14)11.若一个角的余角是它的2倍,这个角的补角为 _________ . 12.如图,AB∥CD,∠1=62°,FG 平分∠EFD,则∠2= _________ . 13.若a m =8,a n =2,则a 2m ﹣3n = _________ .14.为了了解我市某校“校园阅读”的建设情况,检查组随机抽取40名学生,调查他们一周阅读课外书籍的时间,并将结果绘成了频数分布直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计.该校学生一周课外阅读时间不少于4小时的人数占全班人数的百分数等于 _________ . 三.解答题15.计算下列各题:(1))()2(223xy y x -- (2)(4ab 3﹣8a 2b 2)÷4ab+(2a+b )(2a ﹣b )16.先化简,再求值:(x+5)(x ﹣1)+(x ﹣2)2,其中x=﹣2.17.如图,O 为直线AB 上一点,OC 平分∠BOD,OE⊥OC,垂足为O ,∠AOE 与∠DOE 有什么关系,请说明理由.18.下列表格列出了一项实验的统计数据,它表示皮球从一定高度落下时,下落高度y 与弹跳高度x 的关系如下: y 50 80 100 150 x 30 45 55 80求y 与x 之间的函数关系.19.小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校,我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s 与所用时间t 之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟?(2)小明共用多长时间到学校的?(3)小明修车前的速度和修车后的速度分别是多少?(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?20.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.21.某校数学兴趣小组成员高超对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数 2 a 20 16 4 n占调查总人数的百分比4% 16% m 32% b 1请你根据图表提供的信息,解答下列问题:(1)分布表中a= _______ ,b= _______ ;m= ,n= .(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了97分的高超被选上的百分比是多少?(4)如图80分以上为优秀,已知该年级共有学生1200人,请你估计一下这次考试优秀人数是多少?22.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为多少?23.如图所示,已知AD⊥BC于点D,FE⊥BC于点E,交AB于点G,交CA的延长线于点F,且∠1=∠F.问:AD平分∠BAC吗?并说明理由.24.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×_________ 2= _________ ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.。
鲁教版(五四制)六年级下册数学期末冲刺试题(有答案)

鲁教五四新版六年级下册数学期末冲刺试题(有答案)一.选择题(共12小题,满分48分,每小题4分)1.下列计算正确的是()A.(﹣3ab2)2=6a2b4B.﹣6a3b÷3ab=﹣2a2bC.(a2)3﹣(﹣a3)2=0D.(a+1)2=a2+12.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°3.下列计算中,正确的是()A.5a3•3a2=15a6B.2x2•5x2=10x4C.3x2•2x2=6x2D.5y3•3y5=15y154.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.15.下列计算正确的是()A.(a﹣b)(﹣a﹣b)=a2﹣b2B.2a3+3a3=5a6C.6x3y2÷3x=2x2y2D.(﹣2x2)3=﹣6x66.为了了解我县初一4300名学生在疫情期间“数学空课”的学习情况,全县组织了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.4300名考生是总体C.每位学生的数学成绩是个体D.100名学生是样本容量7.将一副直角三角板(∠A=∠FDE=90°,∠F=45°,∠C=60°,点D在边AB上)按图中所示位置摆放,两条斜边为EF,BC,且EF∥BC,则∠ADF等于()A.70°B.75°C.80°D.85°8.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是()A.全面调查;26B.全面调查;24C.抽样调查;26D.抽样调查;249.如图,在下列给出的条件中,可以判定AB∥CD的有()①∠1=∠2;②∠1=∠3;③∠2=∠4;④∠DAB+∠ABC=180°;⑤∠BAD+∠ADC=180°.A.①②③B.①②④C.①④⑤D.②③⑤10.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±611.若(a m b n)2=a8b6,那么m2﹣2n的值是()A.10B.52C.20D.3212.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°二.填空题(共6小题,满分24分,每小题4分)13.(8a3b﹣4a2b2)÷2ab=.14.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.15.如图①是长方形纸带,∠DE F=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是.16.如图,将一张长方形纸片如图所示折叠后,再展开.如果∠1=66°,那么∠2=.17.欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是°.18.已知:2x+3y+3=0,计算:4x•8y的值=.三.解答题(共7小题,满分78分)19.计算:(1)(2x)3(﹣5xy2);(2)4(x+1)2﹣(2x+5)(2x﹣5).20.计算:(1)(x﹣3)2﹣2(1﹣3x);(2)(x+3)(2x﹣1)+(x+2)(x﹣2).21.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?22.如图,已知∠A=∠EDF,∠C=∠F.求证:BC∥EF.23.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.24.按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知).∴∠ADC=.(垂直的定义)∴∠1+=90°.∵∠1+∠2=90°(已知).∴=∠2().∴DE∥BC().25.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:A、原式=9a2b4,故A错误.B、原式=﹣2a2,故B错误.C、原式=a6﹣a6=0,故C正确.D、原式=a2+2a+1,故D错误.故选:C.2.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.3.A、5a3•3a2=15a5,故选项错误;B、2x2•5x2=10x4,故选项正确;C、3x2•2x2=6x4,故选项错误;D、5y3•3y5=15y8,故选项错误.故选:B.4.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.5.解:(a﹣b)(﹣a﹣b)=b2﹣a2,故选项A错误;2a3+3a3=5a3,故选项B错误;6x3y2÷3x=2x2y2,故选项C正确;(﹣2x2)3=﹣8x6,故选项D错误;故选:C.6.解:A.这100名考生的数学成绩是总体的一个样本,故本选项不合题意;B.4300名考生的数学成绩是总体,故本选项不合题意;C.每位学生的数学成绩是个体,故本选项符合题意;D.100是样本容量,故本选项不合题意.故选:C.7.解:如图所示,CB与FD交点为G,∵EF∥BC,∴∠F=∠BGD=45°,又∵∠ADG是△BDG的外角,∠B=30°,∴∠ADG=∠B+∠BGD=30°+45°=75°,故选:B.8.解:本次调查方式为抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D.9.解:①∠1=∠2不能判定AB∥CD,不符合题意;②∵∠1=∠3,∴AB∥CD,符合题意;③∵∠2=∠4,∴AB∥CD,符合题意;④∠DAB+∠ABC=180°;不能判定AB∥CD,不符合题意;⑤∵∠BAD+∠ADC=180°,∴AB∥CD,符合题意.故选:D.10.解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.11.解:∵(a m b n)2=a2m b2n,∴a2m b2n=a8b6.∴2m=8,2n=6.∴m=4,n=3.∴m2﹣2n=16﹣6=10.故选:A.12.解:∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:(8a3b﹣4a2b2)÷2ab=8a3b÷2ab﹣4a2b2÷2ab=4a2﹣2ab.故答案为:4a2﹣2ab.14.解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200×(1﹣40%﹣35%)=1200×25%=300(人),故答案为:300.15.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.16.解:由折叠的性质可知,∠1=∠3,∵∠1=66°,∴∠3=66°,∵长方形的两条长边平行,∴∠2+∠1+∠3=180°,∴∠2=48°,故答案为:48°.17.解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°.故答案为:23.18.解:∵2x+3y+3=0,∴2x+3y=﹣3,4x•8y=22x•23y=2(2x+3y)=2﹣3=.故答案为:.三.解答题(共7小题,满分78分)19.解:(1)(2x)3(﹣5xy2)=8x3•(﹣5xy2)=﹣40x4y2;(2)4(x+1)2﹣(2x+5)(2x﹣5)=4(x2+2x+1)﹣(4x2﹣25)=4x2+8x+4﹣4x2+25=8x+29.20.解:(1)原式=x2﹣6x+9﹣2+6x=x2+7.(2)原式=2x2+5x﹣3+x2﹣4=3x2+5x﹣7.21.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.22.证明:∵∠A=∠EDF(已知),∴AC∥DF(同位角相等,两直线平行),∴∠C=∠CGF(两直线平行,内错角相等).又∵∠C=∠F(已知),∴∠CGF=∠F(等量代换),∴BC∥EF(内错角相等,两直线平行).23.解:(1)6x2y(﹣2xy+y3)÷xy2,=(﹣12x3y2+6x2y4)÷xy2=﹣12x2+6xy2,当x=2,y=﹣1时,原式=﹣12×22+6×2×(﹣1)2=﹣36;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y)=x2﹣4y2+x2﹣4xy+4y2﹣3x2+xy=﹣x2﹣3xy,当x=﹣2,y=时,原式=﹣(﹣2)2﹣3×(﹣2)×=﹣4+3=﹣1.24.解:证明:∵CD⊥AB(已知),∴∠ADC=90°(垂直的定义),∴∠1+∠CDE=90°,∵∠1+∠2=90°(已知),∴∠CDE=∠2(同角的余角相等),∴DE∥BC(内错角相等,两直线平行),故答案为:90°;∠CDE;∠CDE,同角的余角相等;内错角相等,两直线平行.25.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.。
六年级数学下册第八章数据的收集与整理达标检测卷鲁教版五四制

第八章达标检测卷一、选择题(每题3分,共30分)1.下列调查适合采用抽样调查的是( )A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.在反映某种股票的涨跌情况时,应选择( )A.条形统计图B.折线统计图C.扇形统计图D.以上都可以3.为了了解某中学学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是( )A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校七、八、九年级中各随机抽取10%的学生4.某公司的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是( )A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x <32这个范围的百分比为( )A .80%B .70%C .40%D .20%6.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生有( )A .500名B .600名C .700名D .800名7.一个数量为60的样本中数据的最大值是187,最小值是140,取组距为6,则可以分成( )A .7组B .756组C .8组D .10组8.某校测量了九(1)班学生的身高(精确到1 cm),按10 cm 为一段进行分组,得到如图所示的频数直方图,则下列说法正确的是( )A .该班学生数量最多的身高段有7名学生B .该班身高低于160.5 cm 的学生有15名C .该班身高最高段的学生有20名D .该班身高最高段的学生有7名9.为了了解2020年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1 000名学生的数学成绩,下列说法正确的是( )A .2020年昆明市九年级学生是总体B .每一名九年级学生是个体C .1 000名九年级学生是总体的一个样本D .样本数量是1 00010.某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况,如图①②是根据调查结果制作的统计图的一部分,根据统计图分析下列结论:①月人均用水量为3 t的有50人;②其中用淘米水浇花的占15%;③选用“洗衣用水冲马桶”这种节水措施的家庭最多.其中正确的是( )A.①②B.②③C.①③D.①②③二、填空题(每题3分,共24分)11.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,妈妈取了一点品尝,这应该属于____________(填“普查”或“抽样调查”).12.对某校九年级的480名学生的身高情况进行考察,从中抽取100名学生的身高,则这个问题中的样本为____________________________________.13.某教育网站正在就“中小学生对老师上课拖堂现象的态度”进行在线调查,你认为调查结果________(填“具有”或“不具有”)代表性.14.某次测验后,60~70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为________.15.对某中学同龄的70名女生的身高进行测量后,得到一组数据,其中最大值为169 cm,最小值为145 cm,对这组数据进行整理后,确定它的组距为2.3 cm,则组数为________.16.如图是某农场里三种蔬菜种植面积的扇形统计图,若西红柿种植面积为4.2公顷,则这三种蔬菜种植总面积是________公顷,表示黄瓜的扇形圆心角为________.17.已知样本数量为100,在频数直方图中(如图),各小长方形的高之比为AE∶BF∶CG=2∶4∶3,且从左至右第四小组的频数为10,则第三小组的百分比为________,第三小组的频数为________.18.期中考试中,全班48名同学的数学成绩最高分为118分,最低分为63分,为反映同学们的数学成绩分布情况,计划分为8组制作频数直方图,如果第一组的起点数据是62.5,则第一组的终点数据是________.三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.某农户在山下种了44棵红枣树,收获时先随意采摘5棵红枣树上的红枣,称得每棵树上红枣的质量(单位:kg)分别为35,35,34,39,37.(1)本题是利用什么调查方式得到的数据?(2)本题的总体、样本、样本数量分别是什么?20.杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市这天共收到厨余垃圾约200 t,请计算其中混杂着的玻璃类垃圾的质量.21.如图①②所示的两幅统计图反映了某市甲、乙两校学生参加课外活动的情况,请你通过图中信息回答下面的问题.(1)通过对图①的分析,写出一条你认为正确的结论;(2)通过对图②的分析,写出一条你认为正确的结论;(3)2015年甲、乙两校参加科技活动的学生共有多少人?22.下表为王伯伯家四种果树种植面积的统计表,根据下表解答下列问题.果树名面积/m2果树名面积/m2梨树300000 杏树150000苹果树600000 桃树150000(1)计算各种果树面积占总面积的百分比;(2)计算各种果树对应的扇形的圆心角度数;(3)制作扇形统计图.23.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九(1)班每天阅读时间在0.5 h以内的学生占全班人数的8%,根据统计图解答下列问题:(1)九(1)班有________名学生.(2)补全频数直方图.(3)除九(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165名,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1 h的学生有多少名.24.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成如图所示的不完整的统计图表,请根据图表中的信息解答下列问题:(1)求样本数量及表格中a,b,c的值,并补全统计图.(2)若该校共有初中生2 300人,请估计该校“不重视阅读数学教科书”的初中生人数.(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?答案一、1.D 2.B 3.D 4.D 5.A 6.B7.C 8.D 9.D 10.D二、11.抽样调查12.抽取的100名学生的身高13.不具有14.915.11 点拨:(169-145)÷2.3≈10.43,采用进一法确定组数.16.7.5;108°17.30%;3018.69.5 点拨:因为118-63=55,所以55÷8=6.875.所以组距是7.所以第一组的终点数据是62.5+7=69.5.三、19.解:(1)抽样调查.(2)总体为44棵红枣树上的红枣的质量,样本为从中抽取的5棵红枣树上的红枣质量,样本数量为5.20.解:(1)m%=1-22.39%-0.9%-7.55%-0.15%=69.01%,∴m=69.01.(2)200×0.9%=1.8(t),即其中混杂着的玻璃类垃圾的质量约为1.8 t.21.解:(1)甲、乙两校参加课外活动的学生人数都随着年份的增加而增加.(答案不唯一)(2)2015年乙校参加科技活动的学生人数最多.(答案不唯一)(3)2 000×38%+1 105×60%=1 423(人).22.解:(1)总面积为300000+600000+150000+150000=1200000(m2).梨树:3000001200000×100%=25%苹果树:6000001200000×100%=50%杏树:1500001200000×100%=12.5%桃树:1500001200000×100%=12.5% (2)梨树:360°×25%=90°苹果树:360°×50%=180°杏树:360°×12.5%=45°桃树:360°×12.5%=45°(3)如图.23.解:(1)50(2)九(1)班学生每天阅读时间在0.5~1 h的有50-4-18-8=20(名),补全频数直方图如图所示.(3)因为除九(1)班外,九年级其他班级每天阅读时间在1~1.5 h的学生有165名,所以1~1.5 h在扇形统计图中所占的百分比为165÷(600-50)×100%=30%,故0.5~1 h在扇形统计图中所占的百分比为1-30%-10%-12%=48%,补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h的学生有(600-50)×(30%+10%)+18+8=246(名).24.解:(1)由统计表可知,样本数量为57÷0.38=150.所以a=150×0.3=45.又由统计表可知c=1-0.3-0.38-0.06=0.26,所以b=150×0.26=39.补全统计图如图所示.(2)2 300×0.26=598(人),所以估计该校“不重视阅读数学教科书”的初中生有598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教科书在数学学习过程中的作用;②考虑到样本要具有随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.点拨:(3)答案不唯一,合理即可.。
鲁教版(五四制) 六年级下册数学 第八章 数据的收集与整理 单元测试试题

鲁教版六年级下册数学数据的收集与整理单元测试题(含答案)一、选择题(共14小题;共70分)1. 以下问题,不适合用普查的是A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘老师,对应聘人员面试D. 了解全市中小学生每天的零花钱2. 要调查你校学生学业负担是否过重,选用下列哪种方法最恰当A. 查阅文献资料B. 对学生问卷调查C. 上网查询D. 对校领导问卷调查3. 用下列方式获取的数据中,可信度较低的是A. 社会上传闻B. 从报纸上摘录的C. 看电视新闻得到的D. 小组实地考察或测量得到的4. 小军为了解同学们的课余生活,设计了如下的调查问卷(不完整):他准备在“①看课外书,②体育活动,③看电视,④踢足球,⑤看小说”中选取三个作为该问题的备选答案,选取合理的是A. ①②③B. ①④⑤C. ②③④D. ②④⑤5. 每年4月23日是“世界读书日”,为了了解某校八年级名学生对“世界读书日”的知晓情况,从中随机抽取了名学生进行调查.在这次调查中,样本是A. 名学生B. 所抽取的名学生对“世界读书日”的知晓情况C. 名学生D. 每一名学生对“世界读书日”的知晓情况6. 小红同学将自己 5 月份的各项消费情况制作成扇形统计图(如图),从图中可看出A. 各项消费金额占消费总金额的百分比B. 各项消费的金额C. 消费的总金额D. 各项消费金额的增减变化情况7. 为调查某校名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有A. 名B. 名C. 名D. 名8. 某校对全体学生开展心理健康知识测试,七、八、九三个年级共有名学生,各年级的合格人数如表所示,则下列说法正确的是A. 七年级的合格率最高B. 八年级的学生人数为名C. 八年级的合格率高于全校的合格率D. 九年级的合格人数最少9. 已知甲学校的男生占全校人数的,乙学校的女生占该校总人数的,则下列结论正确的是A. 甲校的男生与乙校的女生人数一样多B. 甲校的女生与乙校的男生人数一样多C. 甲校的男生比乙校的女生多D. 不能确定10. 某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是A. ② ③ ① ④B. ③ ④ ① ②C. ① ② ④ ③D. ② ④ ③ ①11. 今年我市有万名学生参加中考,为了了解这些考生的数学成绩,从中抽取名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这万名考生的数学中考成绩的全体是总体;②每个考生是个体;③ 名考生是总体的一个样本;④样本容量是.其中说法正确的有A. 个B. 个C. 个D. 个12. 某校为开展第二课堂,组织调查了本校名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是A. ,B. ,C. ,D. ,13. 小明统计了他家今年月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过的频率为A. B. C. D.14. 如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是A. 甲户比乙户大B. 乙户比甲户大C. 甲、乙两户一样大D. 无法确定哪一户大二、填空题(共8小题;共40分)15. 在股市交易上,为了让股民清楚、直观看出某种股票的涨跌情况,那么使用的统计图是统计图.16. 如图是七年级二班参加课外兴趣小组人数的扇形统计图.根据统计图填空:()兴趣小组最受欢迎.()参加写作兴趣小组的同学占总人数的百分比是.()如果参加外语兴趣小组的人数是人,那么该班有人.17. 空气质量指数,简称AQI,如果AQI在空气质量类别为优,在空气质量类别为良,在空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为.18. 交警统计了某个时段在一个路口来往车辆的车速(单位:千米/时)情况,绘制成统计图如图所示.该时段内来往车辆的平均速度是千米/时.19. 如图是名同学每周课外阅读时间的频数直方图(每组不含前一个边界值,含后一个边界值).由图可知,课外阅读时间不少于小时的人数是人.20. 某中学开展以“我最喜欢的职业”为主题的调查活动,根据数据绘制的不完整统计图如图所示,图中工人部分所对应的圆心角为.21. 如图是某足球队全年比赛情况的统计图:根据图中信息,该队全年胜了场.22. 某校为庆祝中国共产党建党周年,组织全校名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析(得分为整数,满分为分),得到如下统计表:根据统计表提供的信息,回答下列问题:(1),,;(2)若竞赛成绩分(含分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有人.三、解答题(共4小题;共40分)23. 图 1 表示的是某综合商场今年 1 5 月的商品各月销售总额的情况,图 2 表示商场服装部各月销售额占商场当月销售总额的百分比情况,观察图 1 、图 2,解答下列问题:(1)来自商场财务部的数据报告表明,商场 1 5 月的商品销售总额一共是万元,请你根据这一信息将图 1 中的统计图补充完整;(2)商场服装部 5 月份的销售额是多少万元?(3)小刚观察图 2 后认为,5 月份商场服装部的销售额比 4 月份减少了,你同意他的看法吗?请说明理由.24. 从全校名学生中随机选取一部分学生进行调查,调查情况:A 、上网时间小时;B、小时上网时间小时;C、小时上网时间小时;D、上网时间小时.统计结果制成了如图统计图:(1)参加调查的学生有人.(2)请将条形统计图补全.(3)请估计全校上网不超过小时的学生人数.25. 为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如图两个不完整的统计图,请结合图中提供的信息,解答下列各题.(1)直接写出的值,,并把频数分布直方图补充完整.(2)求扇形的圆心角度数.(3)如果全校有名学生参加这次活动,分以上(含分)为优秀,那么估计获得优秀奖的学生有多少人?26. 月日,为民中学七年级五班名同学参加植树活动.他们每人植树的棵数都在棵以上,植树棵数的频数表如表(未完成).七年级五班名同学植树棵数的频数表(1)填写表中未完成部分.(2)绘制相应的频数直方图.(3)如果将植树棵(含棵)以上的同学评为“劳动小能手”,那么“劳动小能手”占参加植树人数的百分之几?答案第一部分1. D2. B3. A4. A 【解析】看课外书包含看小说,体育活动包含踢足球,④⑤的选项重复,故选取合理的是①②③.5. B6. A 【解析】解析根据扇形统计图可知:学习用品消费金额占消费总金额的25%,车费消费金额占消费总金额的15%,午餐消费金额占消费总金额的40%,其它消费金额占消费总金额的20%,即由扇形统计图只能看出各消费金额占消费总金额的百分比.故选A.答案 A7. D8. D9. D10. D【解析】由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录④整理借阅图书记录并绘制频数分布表③绘制扇形图来表示各个种类所占的百分比①从扇形图中分析出最受学生欢迎的种类.11. C12. B13. D 【解析】不超过的通话次数为次,通话总次数为次,通话时间不超过的频率为.14. B 【解析】由条形统计图可知,甲户居民全年总支出为(元),教育支出占总支出的百分比为,乙户居民教育支出占总支出的百分比为,则乙户居民比甲户居民教育支出占总支出的百分比大.第二部分15. 折线16. 电脑,,17.18.19.【解析】【分析】将课外阅读时间在小时和小时的人数相加即可得.【解析】解:由频数分布直方图知课外阅读时间在小时的有人、小时的有人,所以课外阅读时间不少于小时的人数是人,故答案为:.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.20.【解析】被调查的总人数为(人),图中工人部分所对应的圆心角为.21.【解析】全年比赛场次,胜场:(场).22. (1),,,(2)【解析】(1)由数段的频数是、频率是,可得总数;,.(2)(人).第三部分23. (1)(万元).补全商场各月销售总额统计图.(2)商场服装部5 月份的销售额是(万元).(3)不同意.理由如下:商场服装部4 月份的销售额是(万元).,不同意他的看法.24. (1)【解析】参加调查的学生有(人).(2)(3)根据题意得:(人),答:全校上网不超过小时的学生人数是人.25. (1)“频数分布直方图”如图所示:【解析】被调查的总人数为(人),D等级人数所占百分比,即,C等级人数为(人).(2)扇形的圆心角度数为.(3)估计获得优秀奖的学生有(人).26. (1)七年级五班名同学植树棵数的频数表(2)如图:(3)。
2020-2021学年鲁教版(五四制)六年级下册数学期末练习试题(有答案)

2020-2021学年鲁教五四新版六年级下册数学期末练习试题一.选择题(共14小题,满分56分,每小题4分)1.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.2.为了了解我县初一4300名学生在疫情期间“数学空课”的学习情况,全县组织了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.4300名考生是总体C.每位学生的数学成绩是个体D.100名学生是样本容量3.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为()A.22×10﹣10B.2.2×10﹣10C.2.2×10﹣9D.2.2×10﹣84.下列计算正确的是()A.﹣3a2•2a3=﹣6a6B.a﹣5÷a5=C.(a+b)2=a2﹣2ab+b2D.(﹣3a)3=﹣9a35.如图,下面哪个条件能判断DE∥BC的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°6.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8B.﹣8C.0D.8或﹣87.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°8.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.51 1.52 2.53 3.54烤制时间/分406080100120140160180设鸭的质量为x千克,烤制时间为t,估计当x=2.8千克时,t的值为()A.128B.132C.136D.1409.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°10.如图,点C把线段MN分成两部分,其比为MC:CN=5:4,点P是MN的中点,PC =2cm,则MN的长为()A.30cm B.36cm C.40cm D.48cm11.如图是一所楼房的平面图,下列式子中不能表示它的面积的是()A.a2+5a+15B.(a+5)(a+3)﹣3aC.a(a+5)+15D.a(a+3)+a212.如图,在我省某高速公路上,一辆轿车和一辆货车沿相同的路线从M地到N地,所经过的路程y(千米)与时间x(小时)的函数关系图象如图所示,轿车比货车早到()A.1小时B.2小时C.3小时D.4小时13.某一时刻,时钟上显示的时间是9点30分,则此时时针与分针的夹角是()A.75°B.90°C.105°D.120°14.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补二.填空题(共8小题,满分32分,每小题4分)15.过多边形的某一个顶点的所有对角线可以把多边形分成5个三角形,则这个多边形是边形.16.若x2+2(m﹣3)x+9是完全平方式,则m的值等于.17.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.18.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是度.19.已知a﹣b=4,则a2﹣b2﹣8a的值为.20.31.46°=度分秒.21.若代数式3a m b2n与﹣2b n﹣1a2的和是单项式,则m+n=.22.(π﹣4)0+(﹣)﹣1=.三.解答题(共6小题,满分62分)23.化简:(1)(a+b)2+(a﹣b)(a+b)﹣2ab;(2)(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.24.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.25.为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m=,n=;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是度.(3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.27.如图,线段AB=8,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)在线段AC上有一点E,CE=BC,求AE的长.28.如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2.求证:DE∥BC.参考答案与试题解析一.选择题(共14小题,满分56分,每小题4分)1.解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选:B.2.解:A.这100名考生的数学成绩是总体的一个样本,故本选项不合题意;B.4300名考生的数学成绩是总体,故本选项不合题意;C.每位学生的数学成绩是个体,故本选项符合题意;D.100是样本容量,故本选项不合题意.故选:C.3.解:0.000000022=2.2×10﹣8.故选:D.4.解:A、﹣3a2•2a3=﹣6a5,故此选项错误;B、a﹣5÷a5=,正确;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(﹣3a)3=﹣27a3,故此选项错误;故选:B.5.解:当∠1=∠2时,EF∥AC;当∠4=∠C时,EF∥AC;当∠1+∠3=180°时,DE∥BC;当∠3+∠C=180°时,EF∥AC;故选:C.6.解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.7.解:∵BM为∠ABC的平分线,∴∠CBM=∠ABC=×60°=30°,∵BN为∠CBE的平分线,∴∠CBN=∠EBC=×(60°+90°)=75°,∴∠MBN=∠CBN﹣∠CBM=75°﹣30°=45°.故选:B.8.解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得所以t=40x+20.当x=2.8千克时,t=40×2.8+20=132.故选:B.9.解:射线OA表示的方向是南偏东65°,故选:C.10.解:∵MC:CN=5:4,∴设MC=5xcm,CN=4xcm,∴MN=MC+CN=5x+4x=9x(cm),∵点P是MN的中点,∴PN=MN=xcm,∴PC=PN﹣CN,即x﹣4x=2,解得x=4(cm),所以,MN=9×4=36(cm),故选:B.11.解:A.是三个图形面积的和,正确,不符合题意;B.是补成一个大长方形,用大长方形的面积减去补的长方形的面积,正确,不符合题意;C.是上面大长方形的面积加上下面小长方形的面积,正确,不符合题意;D.不是楼房的面积,错误,符合题意.故选:D.12.解:根据图象提供信息,可知M为CB中点,且MK∥BF,∴CF=2CK=3.∴OF=OC+CF=4.∴EF=OE﹣OF=1.即轿车比货车早到1小时,故选:A.13.解:时针与分针相距3+=(份),时钟面上的时针与分针的夹角是30°×=105°,故选:C.14.解:如图知∠A和∠B的关系是相等或互补.故选:D.二.填空题(共8小题,满分32分,每小题4分)15.解:设多边形有n条边,则n﹣2=5,解得n=7.故这个多边形是七边形.故答案为:七.16.解:∵x2+2(m﹣3)x+9是完全平方式,∴m﹣3=±3,解得:m=6或0.故答案为:6或0.17.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.18.解:由题意可得,图中表示“中国”的扇形的圆心角是:360°×43%=154.8°,故答案为:154.8.19.解:∵a﹣b=4,∴a2﹣b2﹣8a=(a+b)(a﹣b)﹣8a=4(a+b)﹣8a=4b﹣4a=﹣4(a﹣b)=﹣4×4=﹣16,故答案为:﹣16.20.解:0.46°=(0.46×60)′=27.6′,0.6′=(0.6×60)″=36″,所以31.46°=31°27′36″,故答案为:31,27,36.21.解:∵代数式3a m b2n与﹣2b n﹣1a2的和是单项式,∴3a m b2n与﹣2b n﹣1a2是同类项,∴m=2,2n=n﹣1,解得m=2,n=﹣1,∴m+n=2﹣1=1.故答案为:1.22.解:(π﹣4)0+(﹣)﹣1=1+=1﹣3=﹣2,故答案为:﹣2.三.解答题(共6小题,满分62分)23.解:(1)原式=(a2+2ab+b2)+(a2﹣b2)﹣2ab =a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.24.解:(1)6x2y(﹣2xy+y3)÷xy2,=(﹣12x3y2+6x2y4)÷xy2=﹣12x2+6xy2,当x=2,y=﹣1时,原式=﹣12×22+6×2×(﹣1)2=﹣36;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y)=x2﹣4y2+x2﹣4xy+4y2﹣3x2+xy=﹣x2﹣3xy,当x=﹣2,y=时,原式=﹣(﹣2)2﹣3×(﹣2)×=﹣4+3=﹣1.25.解:(1)由题意可得,m=5÷10%=50,n%=15÷50×100%=30%,故答案为:50,30;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是:360°×=72°,故答案为:72;(3)喜爱B的有:50×40%=20(人)补全的条形统计图如右图所示;(4)6000×30%=1800,答:该校6000名学生中有1800名学生最喜欢《中国诗词大会》节目.26.解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.27.解:(1)∵AB=8,C是AB的中点,∴AC=BC=4,∵D是BC的中点,∴CD=DB=BC=2,∴AD=AC+CD=4+2=6.(2)∵CE=BC,BC=4,∴CE=,∴AE=AC﹣CE=4﹣=.28.证明:∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠2=∠BCD,又∠1=∠2,∴∠1=∠BCD,∴DE∥BC.。
2020-2021学年鲁教版(五四制)六年级下册数学期末练习试题(有答案)

2020-2021学年鲁教五四新版六年级下册数学期末练习试题一.选择题(共10小题,满分30分,每小题3分)1.在下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下面计算正确的是()A.x5+x5=x10B.(x3)3=x6C.(﹣3x2y3)2=9x4y6D.(﹣bc)4÷(﹣bc)2=﹣b2c23.下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率B.乘坐飞机的旅客是否携带了违禁物品C.国家宝藏”专栏电视节目的收视率D.“现代”汽车每百公里的耗油量4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg):x0246810y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量为5kg时,弹簧长度增加了1.25cmD.所挂物体质量为9kg时,弹簧长度增加到11.25cm7.计算(﹣)2018×(1.5)2019的结果是()A.﹣B.C.D.﹣8.市某视力健康管理中心对全市初中生的视力情况进行了一次抽样调查,如图是利用调查所得数据绘制的频数直方图,则这组数据的组数与组距分别是()A.4和0.20B.4和0.30C.5和0.20D.5和0.309.下列说法中错误的是()A.(3.14﹣π)0=1B.若x2+=9,则x+=±3C.a﹣n(a≠0)是a n的倒数D.若a m=2,a n=3,则a m+n=610.小新骑车去学校,骑了一会后车子出了故障,修了一会,然后继续骑车去学校.如果用横坐标表示时间t,纵坐标表示路程s,下列各图能较好地反映s与t之间函数关系的是()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)11.已知∠α=53°27′,则它的余角等于.12.用科学记数法表示:﹣0.00000202=.13.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是cm.14.90°﹣32°51′18″=.15.若(3m﹣2)0=1有意义,则m的取值范围是.16.为统计某学生在睡觉、学习、体育锻炼、吃饭及其他事宜等五个方面在一一天中所占的时间百分比,应选用统计图当中的图.17.如图,不添加辅助线,请写出一个能判定AB∥CD的条件.18.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一变量关系中,因变量是.19.如图是一,二两组同学将本组最近5次数学平均成绩.分别绘制成的折线统计图.由统计图可知组进步更大.(选填“一“或“二”)20.某剧院观众席的座位按下列方法设置:排数(x)1234…座位数(y)25283134…(1)写出座位数y与排数x(x≥1的正整数)之间的关系式;(2)第11排的座位数达到个;(3)按照上表所示的规律,某一排可能有75个座位吗?.(填可能或不可能)三.解答题(共9小题,满分60分)21.计算(1)(﹣x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)22.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.23.如图,AB,CD为两条射线,AB∥CD,连接AC.(1)尺规作图:在CD上找一点E,使得AE平分∠BAC,交CD于点E.(不写作法,保留作图痕迹).(2)在题(1)所作的图形中,若∠C=120°,求∠CEA的度数.24.如图,点A、O、E在同一直线上,∠AOB=50°,∠EOD=28°42',OD平分∠COE.(1)∠AOB的余角是多少度?(2)求∠COB的度数.25.如图,AD∥BE,∠ACB=90°,∠CBE=40°,求∠CAD的度数.26.周口某中学积极开展“晨阳体育”活动,共开设了跳绳、体操、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图不完整的条形统计图和扇形统计图(部分信息未给出).(1)求本次调查学生的人数;(2)求喜爱体操、跑步的人数,并补全条形统计图;(3)求喜爱篮球、跑步的人数占调查人数的百分比.27.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:03467101135202259336404471氮肥施用量/kg土豆产量/t15.1821.3625.7232.2934.0339.4543.1543.4640.8330.75(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101kg/hm2(hm2是单位“公顷”的符号)时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由.(4)粗略说一说氮肥的施用量对土豆产量的影响.28.若△ABC中∠A=60°,∠B的度数为x,∠C的度数为y,试写出y与x之间的函数关系式,并画出图象.29.如图,∠1=∠2,∠3=∠D,∠4=∠5,设BC,AE的交点为G,求证:AE∥BF.请在括号内填推理的依据或数学式.证明:∵∠1=∠2,∴AB∥DF(内错角相等.两直线平行).∴∠3=∠BCF().∵∠3=∠D,∴∠D=.∴(),∴∠5=().∵∠4=∠5,∴.∴AE∥BF.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、∠1与∠2不是对顶角;B、∠1与∠2是对顶角;C、∠1与∠2不是对顶角;D、∠1与∠2不是对顶角;故选:B.2.解:A.x5+x5=2x5,所以A选项错误;B.(x3)3=x9,所以B选项错误;C.(﹣3x2y3)2=9x4y6,所以C选项正确;D.(﹣bc)4÷(﹣bc)2=b2c2,所以D选项错误.故选:C.3.解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;C、对国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;故选:B.4.解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.5.解:A、(2x+y)(y﹣2x),能用平方差公式进行计算,故本选项符合题意;B、(x+2)(2+x),不能用平方差公式进行计算,故本选项不符合题意;C、(﹣a+b)(a﹣b),不能用平方差公式进行计算,故本选项不符合题意;D、(x﹣2)(x+1)不能用平方差公式进行计算,故本选项不符合题意;故选:A.6.解:A.x与y都是变量,且x是自变量,y是因变量,故A不符合题意;B.弹簧不挂重物时的长度为10cm,故B不符合题意;C.所挂物体质量为5kg时,弹簧长度增加了0.25cm,故C不符合题意;D.所挂物体质量为9kg时,弹簧长度增加到12.25cm,故D符合题意.故选:D.7.解:(﹣)2018×(1.5)2019=()2018×(1.5)2018×1.5==.故选:B.8.解:由频数分布直方图可知,组数是5,组距是4.25﹣3.95=0.30,故选:D.9.解:任何不为0的0次幂均等于1,因此选项A正确;当x2+=9时,x+=,因此选项B不正确;因为a﹣n=,因此选项C正确;因为a m+n=a m•a n=3×2=6,因此选项D正确;故选:B.10.解:小新开始骑车去学校,所以S随t增大而增大,车子出故障后S不随时间变化而变化,最后恢复运动,S继续随时间增大而增大,观察图象,C满足题意.故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:根据定义∠α的余角度数是90°﹣53°27′=36°33′.故答案为:36°33′.12.解:﹣0.00000202=﹣2.02×10﹣6.故答案为:﹣2.02×10﹣6.13.解:线段AB=6cm,AC=2cm,若A、B在C的同侧,则BC的长是6﹣2=4cm;若A、B在C的两侧,则BC的是6+2=8cm;BC的长是8cm或4cm.故答案为4或8.14.解:90°﹣32°51′18″=89°59′60″﹣32°51′18″.故答案为:57°8′42″.15.解:∵(3m﹣2)0=1有意义,∴3m﹣2≠0,解得:m≠,∴若(3m﹣2)0=1有意义,则m的取值范围:m≠.故答案为:m≠.16.解:为统计某学生在睡觉、学习、体育锻炼、吃饭及其他事宜等五个方面在一天中所占的时间百分比,因此反映各个部分占整体的百分比,故选:扇形统计图,即扇形图,故答案为:扇形.17.解:添加∠1=∠2,∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行),故答案为:∠1=∠2(答案不唯一).18.解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故答案为:体温19.解:一组的成绩变化从70到90,二组的成绩变化是从70到85,所以一组进步更大.故答案为:一.20.解:(1)由表格可知,排数每增加1,座位数增加3,∴关系为y=3x+22;故答案为y=3x+22;(2)当x=11时,y=3×11+22=55,故答案为55;(3)当y=75时,3x+22=75,解得x=不是整数解,∴不可能;故答案为不可能.三.解答题(共9小题,满分60分)21.解:(1)原式=(﹣x6y3)•(﹣3xy2)=(﹣)×(﹣3)•x2×3+1y3+2=x7y5;(2)原式=z2﹣x2y2.22.解:(1)6x2y(﹣2xy+y3)÷xy2,=(﹣12x3y2+6x2y4)÷xy2=﹣12x2+6xy2,当x=2,y=﹣1时,原式=﹣12×22+6×2×(﹣1)2=﹣36;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y)=x2﹣4y2+x2﹣4xy+4y2﹣3x2+xy=﹣x2﹣3xy,当x=﹣2,y=时,原式=﹣(﹣2)2﹣3×(﹣2)×=﹣4+3=﹣1.23.解:(1)如图,射线AE即为所求.(2)∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=120°,∴∠CAB=60°,∵AE平分∠CAB,∴∠BAE=∠CAB=30°,∴∠AEC=∠BAE=30°.24.解:(1)∵∠AOB=50°,∴∠AOB的余角为:90°﹣50°=40°;(2)∵OD平分∠COE,∴∠EOC=2∠EOD=2×28°42'=57°24',又∵∠AOE=∠AOB+∠COB+∠EOC,而且点A、O、E在同一直线上,∴∠AOE=180°,∴∠COB=∠AOE﹣∠AOB﹣∠EOC=180°﹣57°24'=72°36'.25.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∴∠CAD=∠ACF,∠CBE=∠FCB,∴∠ACB=∠CAD+∠CBE,∴∠CAD=∠ACB﹣∠CBE=90°﹣40°=50°.26.解:(1)本次调查的总人数是:10÷25%=40(人).(2)喜欢体操的人数是:40×30%=12(人),喜欢跑步的人数是40﹣10﹣12﹣15=3(人),补全的条形统计图如图所示;(3)喜爱篮球的人所占的百分比是:×100%=37.5%,喜爱跑步的人所占的百分比是:×100%=7.5%.27.解:(1)上表反映了土豆的产量与氮肥的施用量的关系;(2)当氮肥的施用量是101千克/公顷时,土豆的产量是:32.29吨/公顷,如果不施氮肥,土豆的产量是:15.18吨/公顷;(3)当氮肥的施用量是336千克/公顷时,氮肥的施用量是比较适宜的,因为此时土豆产量最高,施肥太多或太少都会使土豆产量减产;(4)当氮肥的施用量低于336千克/公顷时,土豆产量随氮肥的施用量的增加而增产,当氮肥的施用量高于336千克/公顷时,土豆产量随氮肥的施用量的增加而减产.28.解:∵△ABC中∠A=60°,∠B的度数为x,∠C的度数为y,∴∠A+x+y=180°,∴y=120﹣x(0<x<120),图象如下:29.证明:∵∠1=∠2,∴AB∥DF(内错角相等.两直线平行).∴∠3=∠BCF(两直线平行,内错角相等).∵∠3=∠D,∴∠D=∠BCF.∴AD∥BC,∴∠5=∠CGE(两直线平行,同位角相等).∵∠4=∠5,∴∠4=∠CGE.∴AE∥BF.故答案为:两直线平行,内错角相等;∠BCF;AD∥BC;同位角相等,两直线平行;∠CGE;两直线平行,同位角相等;∠4=∠CGE.。
鲁教版 五四制 六年级下册数学期末测试卷

初一数学期末综合水平测试题一.选择题1.把一条弯曲得公路改成直道,可以缩短路程.用几何知识解释其道理正确得就是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之与大于第三边2.计算(﹣xy2)3,结果正确得就是()A. x3y5B.﹣x3y6C.x3y6D.﹣x3y5 3.下列计算正确得就是()A.2a+3b=5ab B.(a2)4=a8C.a3•a2=a6D.2a ﹣2=4.已知一粒米得质量就是0、000021千克,这个数字用科学记数法表示为() A.21×10﹣4千克B.2、1×10﹣6千克C.2、1×10﹣5千克D.2、1×10﹣4千克5.如图,直解三角板得直角顶点落在直尺边上,若∠1=56°,则∠2得度数为()A.56°B.44°C.34°D.28°(5)(6)(9)6.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A.145°B.110°C.70°D.35°7.在时刻8:30,时钟上得时针与分针之间得夹角为()A.85°B.75°C.70°D.60°8.下列调查中,①调查本班同学得视力;②调查一批节能灯管得使用寿命;③为保证“神舟9号”得成功发射,对其零部件进行检查;④对乘坐某班次客车得乘客进行安检.其中适合采用抽样调查得就是()A.①B.② C.③ D.④A.B.C.D.二.填空题9.计算:= _________ .10.如图,直线AB ,CD 相交于点O ,OE⊥AB,∠BOD=20°,则∠COE 等于 ___ 度.(10) (12) (14)11.若一个角得余角就是它得2倍,这个角得补角为 _________ . 12、如图,AB∥CD,∠1=62°,FG 平分∠EFD,则∠2= _________ .13.若a m =8,a n =2,则a 2m ﹣3n= _________ .14.为了了解我市某校“校园阅读”得建设情况,检查组随机抽取40名学生,调查她们一周阅读课外书籍得时间,并将结果绘成了频数分布直方图(每小组得时间值包含最小值,不包含最大值).根据图中信息估计.该校学生一周课外阅读时间不少于4小时得人数占全班人数得百分数等于 _________ . 三.解答题15.计算下列各题:(1))()2(223xy y x -- (2)(4ab 3﹣8a 2b 2)÷4ab+(2a+b )(2a ﹣b ) 16、先化简,再求值:(x+5)(x ﹣1)+(x ﹣2)2,其中x=﹣2. 17.如图,O 为直线AB 上一点,OC 平分∠BOD,OE⊥OC,垂足为O ,∠AOE 与∠DOE 有什么关系,请说明理由.18、下列表格列出了一项实验得统计数据,它表示皮球从一定高度落下时,下落高度y 与弹跳高度x 得关系如下: y 50 80 100 150 x 30 45 55 80 求y 与x 之间得函数关系、 19.小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,她加快速度骑车到校,我们根据小明得这段经历画了一幅图象,该图描绘了小明行驶路程s 与所用时间t 之间得函数关系,请根据图象回答下列问题:(1)小明骑车行驶了多少千米时,自行车“爆胎”修车用了几分钟? (2)小明共用多长时间到学校得?(3)小明修车前得速度与修车后得速度分别就是多少?(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么她比实际情况早到或晚到多少分钟?20.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.21.某校数学兴趣小组成员高超对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表与频数分布直方图.分组49、5~59、559、5~69、569、5~79、579、5~89、589、5~100、5合计频数 2 a 20 16 4 n占调查总人数得百分比4% 16% m 32% b 1请您根据图表提供得信息,解答下列问题:(1)分布表中a= _______ ,b= _______ ;m= ,n= 。
鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试题

鲁教版六年级数学下册第五章基本平面图形单元测试题一、选择题1.已知如图,则下列叙述不正确的是()A. 点O不在直线AC上B. 射线AB与射线BC是指同一条射线C. 图中共有5条线段D. 直线AB与直线CA是指同一条直线2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是()A. 两点确定一条直线B. 两点之间线段最短C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直3.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对4.如图,点A、B、C顺次在直线上,点M是线段AC的中点,点N是线段BC的中点,已知AB=16cm,MN=()A. 6cmB. 8cmC. 9cmD. 10cm5.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是()A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④6.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)角的大小与角的两边的长短有关.A. 1个B. 2个C. 3个D. 4个7.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A. B.C. D.8.如图所示,射线OB,OC将∠AOD分成三部分,下列判断中错误的是().A. 如果∠AOB=∠COD,那么∠AOC=∠BODB. 如果∠AOB>∠COD,那么∠AOC>∠BODC. 如果∠AOB<∠COD,那么∠AOC<∠BODD. 如果∠AOB=∠BOC,那么∠AOC=∠BOD9.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=13∠AOB ;②∠DOC=2∠BOC;③∠COB=12∠AOB;④∠COD=3∠BOC.正确的是()A. ①②B. ③④C. ②③D. ①④10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A. 67°64′B. 57°64′C. 67°24′D. 68°24′11.从八边形的一个顶点出发,可以画出m条对角线,它们将八边形分成n个三角形,则m,n的值分别为()A. 6,5B. 5,6C. 6,6D. 5,512.已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是()A. 6B. 7C. 8D. 10二、填空题13.小刚同学要在墙上钉牢一根木条至少需要______ 根铁钉,其数学道理是______ .第1页,共9页14.已知点A、B、C在同一直线上,AB=12cm,BC=13AC.若点P为AB的中点,点Q为BC的中点,则PQ=______ cm.15.如图,两根木条的长度分别为6cm和10cm,在它们的中点处各打一个小孔M、N(小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN=______cm.16.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=______.17.如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE−∠BOD= ______ °.18.过某多边形的一个顶点的所有对角线将这个多边形分成6个三角形,这个多边形是______ 边形.三、解答题19.计算:(1)48°39′+67°31′−21°17′×5;(2)90°−51°37′11″.20.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.21.已知:如图,OC是∠AOB的角平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的式子表示)22.(1)如图(1)所示是四边形,小明作出它对角线为2条,算法为4×(4−3)2=2.(2)如图(2)是五边形,小明作出它的对角线有5条,算法为5×(5−3)2=5.(3)如图(3)是六边形,可以作出它的对角线有______ 条,算法为______ .(4)猜想边数为n的多边形对角线条数的算法及条数.23.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.第3页,共9页答案和解析1.【答案】B【解析】【分析】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.根据直线、射线、线段的表示方法,以及线段的概念分别判断各选项即可.【解答】解:A.点O不在直线AC上,故A说法正确,不符合题意;B.射线AB与射线BC,端点不同,不是指同一条射线,故B错误,符合题意;C.图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D.直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选B.2.【答案】A【解析】【分析】本题考查了直线的性质,解题关键是zw掌握直线的性质:两点确定一条直线.解题时,由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.【解答】解:由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.故选A.3.【答案】C【解析】【分析】此题主要考查了两点间的距离的含义和求法,要熟练掌握,注意分两种情况讨论.根据题意,分两种情况讨论:(1)点C在A、B中间时;(2)点C在点A的左边时;求出线段BC的长为多少即可.【解答】解:(1)点C在A、B中间时,BC=AB−AC=10−2=8(cm).(2)点C在点A的左边时,BC=AB+AC=10+2=12(cm).∴线段BC的长为12cm或8cm.故选:C.4.【答案】B【解析】【试题解析】【分析】本题主要考查了线段的中点、线段的和差等知识点,注意理解线段的中点的概念,利用线段中点的定义转化线段之间的倍分关系是解题的关键.根据点M是线段AC的中点,点N是线段BC的中点,得出MC=12AC,NC=12BC,利用MN=MC−NC=12AB,继而可得出答案.【解答】解:∵点M是线段AC的中点,点N是线段BC的中点,∴MC=12AC,NC=12BC,∴MN=MC−NC=12AC−12BC=12(AC−BC)=12AB,∵AB=16cm,∴MN=8cm.故选B.5.【答案】D【解析】【分析】本题主要考查了两点间的距离的求法,解题时利用了线段的和差,线段中点的性质,解决此类问题的关键是找出各个线段间的关系.根据中点的概念与线段之间的和差关系判断即可.【解答】解: ①若AD=BM,则AM=BD.由M是AD的中点,得AM=MD,则AM=MD=BD,故AB=3BD; ②若AC=BD,则AD=BC.由M,N分别是AD,BC的中点,可得AM=12AD,BN=12BC,故A M=BN; ③因为AC=AM+MC=DM+MC,BD=BN+DN=CN+DN,所以AC−BD=DM−CN+MC−DN.又因为DM−CN=MC−DN,故AC−BD=2(MC−DN); ④因为MN=MD+CN−CD=12AD+12BC−CD=12(AD+BC)−CD=12(AB+CD)−CD=12(AB−CD),故2MN=AB−CD.故选D.6.【答案】A【解析】解:(1)连接两点之间线段的长度叫做两点间的距离,因此(1)不符合题意;(2)两点之间,线段最短是正确的,因此(2)符合题意;(3)若AB=2CB,当点C在AB上时,点C是AB的中点,当点C在AB的延长线上时,点C就不是AB的中点,因此(3)不符合题意;(4)角的大小与角的两边的长短无关,只与两边叉开的程度有关,因此(4)不符合题意;因此正确的是(2),故选:A.根据两点间的距离,线段性质,线段中点以及角的大小逐项进行判断即可.本题考查两点间的距离,线段性质,线段中点以及角的大小等知识,理解各个概念的内涵是正确判断的前提.7.【答案】C 【解析】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是C选项中的图,A,B,D选项中的图都不能同时用∠1、∠AOB、∠O三种方法表示同一个角,故选:C.根据角的三种表示方法,可得正确答案.本题考查了角的概念,熟记角的表示方法是解题关键.在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角.8.【答案】D【解析】【分析】本题主要考查了角的大小比较,解题的关键是正确找出各角的关系式.利用图中角与角的关系,即可判断各选项.【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOD,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC和∠BOD不一定相等,本选项错误.故选D.9.【答案】B【解析】解:设∠AOB=α,∵∠BOD=2∠AOB,OC是∠AOD的平分线,∴∠BOD=2α,∠AOC=∠COD=32α,∴∠COB=∠AOC−∠AOB=12∠AOB,故③正确,①错误;∴∠COD=3∠BOC,故④正确,②错误.故选B.设∠AOB=α,由∠BOD=2∠AOB,OC是∠AOD的平分线,可得∠BOD=2α,∠AOC=∠COD=32α,故能判断出选项中各角大小关系.本题主要考查角的比较与运算这一知识点,比较简单.第5页,共9页10.【答案】C【解析】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC−∠BOC=90°−22°36′=67°24′.故选:C.先利用角平分线的性质求出∠DOC的度数,再利用角的和差及互余关系求出∠BOA度数.本题考查了角平分线的性质、两角互余等知识点,掌握角的和差关系是解决本题的关键.11.【答案】B【解析】【分析】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.根据从一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2解答即可.【解答】解:对角线的数量m=8−3=5条;分成的三角形的数量为n=8−2=6个.故选:B.12.【答案】B【解析】【分析】本题主要考查了多边形的对角线的条数与多边形的边数之间的关系.n边形的对角线有12n⋅(n−3)条,根据对角线条数是它边数的2倍列方程即可求得多边形的边数.【解答】解:设这个多边形的边数是n⋅根据题意得:12n⋅(n−3)=2n,解得:n=7.则多边形的边数是7.故选B.13.【答案】2 两点确定一条直线【解析】解:根据直线的公理;故应填2,两点确定一条直线.根据直线的确定方法,易得答案.本题考查直线的确定:两点确定一条直线.14.【答案】4.5或9【解析】解:(1)点C在线段AB上,如图1:∵AB=AC+BC,BC=13AC,∴AB=3BC+BC=4BC又∵AB=12cm,∴BC=3cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=1.5cm,∴PQ=BP−BQ=6−1.5=4.5cm;(2)点C在线段AB的延长线上,如:∵AB=AC−BC,BC=13AC,∴AB=3BC−BC=2BC又∵AB=12cm,∴BC=6cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=3cm,∴PQ=BP+BQ=6+3=9cm;故答案为:4.5或9.分类讨论点C在AB上,点C在AB的延长线上,根据线段的中点的性质,可得BP、BQ的长,根据线段的和差,可得答案.本题考查了两点间的距离,线段中点的性质,线段的和差,分类讨论是解题关键.15.【答案】8或2【解析】解:有两种情形:(1)当A、C(或B、D)重合,且剩余两端点在重合点同侧时,MN=CN−AM=12CD−12AB=5−3=2(厘米);(2)当B、C(或A、C)重合,且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB=5+3=8(厘米);故两根木条的小圆孔之间的距离MN是2cm或8cm,故答案为:2或8.本题没有给出图形,在画图时,应考虑到A、B、M、N四点之间的位置关系的多种可能,再根据题意正确地画出图形解题.此题考查两点之间的距离问题,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】73°12′【解析】解:∵∠AOB=100°,∠1=26°48′,∴∠2=100°−26°48′=73°12′.故答案为:73°12′根据角的计算解答即可.此题考查角的计算,关键是根据度分秒的计算解答.17.【答案】110 【解析】解:设∠EOD=x°,∠BOC=y°,则∠EOC=∠EOD+∠COD=x°+40°.∵OE平分∠AOC,∴∠AOE=∠EOC=x°+40°.∵∠AOB=150°,∴∠AOE+∠COE+∠BOC=150°.即2(x°+40°)+y°=150°.∴2x°+y°=70°.∵2∠BOE−∠BOD=2(x°+40°+y°)−(y°+40°)=2x°+80°+2y°−y°−40°=2x°+y°+40°,∴2∠BOE−∠BOD=70°+40°=110°.故答案为110.设∠EOD=x°,∠BOC=y°,用x,y表示2∠BOE−∠BOD,利用已知条件得出x,y的关系式,然后整体代入可得结论.本题主要考查了角平分线的定义的应用以及角的计算,本题的关键在于借助中间量,利用整体代入进行计算.18.【答案】八【解析】【分析】本题考查了多边形对角线,n边形过一个顶点的所有对角线公式是(n−2)条.根据n边形对角线公式,可得答案.【解答】解:设多边形是n边形,由对角线公式,得n−2=6.解得n=8,故答案为八.19.【答案】解:(1)原式=48°39′+67°31′−106°25′=9°45′;(2)原式=89°59′60″−51°37′11″=38°22′49″.【解析】(1)首先计算乘法,然后计算加减即可;(2)首先把90°化为89°59′60″,然后再利用度减度、分减分、秒减秒进行计算即可.第7页,共9页此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60″.20.【答案】解:(1)题图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个;(2)∵∠AOC=50°,OD平分∠AOC,∴∠AOD=12∠AOC=25∘,∴∠BOD=180°−∠AOD=155°;(3)∵∠DOE=90°,∠DOC=12∠AOC=25∘,∴∠COE=∠DOE−∠DOC=90°−25°=65°.又∵∠BOE=∠BOD−∠DOE=155°−90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.【解析】本题考查了有关角的概念,角的平分线,角的计算.正确的理解角的定义,角的平分线的定义是解决问题的关键.(1)数角的方法(" id="MathJax-Element-3441-Frame" role="presentation" style="box-sizing: content-box; - webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px; min-height: 0 px; border: 0 px; position: relative;" tabindex="0">((从一边数,再按一个方向数)" id="MathJax-Element-3442-Frame"role="presentation" style="box-sizing: content-box; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px;min-height: 0 px; border: 0 px; position: relative;" tabindex="0">)),这样才能做到不重不漏;(2)先求出∠AOD的度数,因为∠AOB是平角,∠BOD=∠AOB−∠AOD;(3)分别求出∠COE和∠EOB的度数即可.21.【答案】解:(1)∵OC是∠AOB的平分线(已知),∴∠AOC=12∠AOB,∵∠AOB=60°,∴∠AOC=30°.(2)∵OE⊥OC,∴∠EOC=90°,如图1,∠AOE=∠COE+∠COA=90°+30°=120°.如图2,∠AOE=∠COE−∠COA=90°−30°=60°.(3)∠AOE=90°+12α或∠AOE=90°−12α.【解析】(1)直接由角平分线的意义得出答案即可;(2)分两种情况:OE在OC的上面,OE在OC的下面,利用角的和与差求得答案即可;(3)类比(2)中的答案得出结论即可.此题考查了角的计算,以及角平分线定义,分类考虑,类比推理是解决问题的关键.22.【答案】9;6×(6−3)2第9页,共9页【解析】解:(3)六边形,可以作出它的对角线有9条,算法:6×(6−3)2=9;故答案为:9;6×(6−3)2=9;(4)n 的多边形对角线条数的算法及条数n(n−3)2.根据(1)(2)所给算法计算即可.此题主要考查了对角线,关键是掌握对角线的计算方法. 23.【答案】解:(1)线段AB =20,BC =15, ∴AC =AB -BC =20-15=5. 又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3, ∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5, ∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.【解析】【试题解析】(1)根据题意知AM =12AC ,AC =AB -BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .本题考查了两点间的距离,利用了线段的和差,线段中点的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版(五四制)2018六年级下册数学期末模拟测试题(一)
1.下列算式(1)(0.001)0=1;(2)10﹣3=0.0001;(3)10﹣5=0.00001;(4)(6﹣3×2)0=1,其中正确的有( )
A 1个
B 2个
C 3个
D 4个
2、下列说法:①不相交的两条直线平行;②一个角的补角一定大于这个角;③从直线外一点作这条直线的垂线段叫做点到这条直线的距离;④同旁内角相等,两直线平行.其中错误的个数有( )
A 1个
B 2个
C 3个
D 4个
3、如果2(1)1x m x -++是完全平方式,则m 的值为( ) A ﹣1 B 1 C 1或﹣1 D 1或﹣3
4、在数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A 1 B 2 C 3 D 4
5、如图所示,a ∥b ,∠1=158°,∠2=42°,∠4=50°.那么∠3=( )
A 50°
B 60°
C 70°
D 80°
6、如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠ACB 相等的角有( )个 A 1 B 2 C 3 D 4
7、下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是( )
A .①
B . ②
C . ③
D . ④
8.已知2()8m n -=,
2()2m n +=.则22m n +=( )A 10 B 6 C 5 D 3 9.如图是某市一天的温度随时间变化的图象,通过观察可知,下列说法中错误的是( )
A .这天15时的温度最高
B . 这天3时的温度最低
C . 这天最高温度与最低温度的差是13℃
D . 这天21时的温度是30℃
10、如图所示,两个正方形的边长分别为a 和b ,如果a b +=10,ab =20,那么阴影部分A 10 B 15 C 18 D 20
11.已知221x x -=,则(1)(31)(1)x x x -⋅+-+的值是( )A 1 B 2 C 0 D -2
12.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒
遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )
A B C D
13.某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,总体是: ,样本是: .
14.已知1y x =-,则2()()1x y y x -+-+的值为 .
15、如果22(1)(2)x x ax a +-+的乘积中不含2x 项,则a = .
16、若22()7,()5a b a b +=-=,则22a b += ;2ab = .
17.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5; 则一定能判定AB ∥CD 的条件有 (填写所有正确的序号).
18、计算
(1)﹣32﹣(5﹣π)0﹣|﹣4|+(﹣)
﹣2 (2)(﹣3×105)•(7×104)•(﹣2×103)2
(3)65525(48)()6
a b c a b -÷-
(4)32332(2)(2)(2)(2)x y xy x y x ⋅-+-÷
19、先化简,再求值:2()(2)(2)(3)x y x y x y y ⎡⎤+---÷-⎣⎦,其中11,2
x y =-=.
20、在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
(1)本次抽样调查的样本容量是多少?
(2)请将条形统计图补充完整.
(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小
时对应的圆心角度数.
(4)根据本次抽样调查,试估计该市12000名初二学生中
日人均阅读时间在0.5~1.5小时的多少人.
21.已知AOB ∠及其内部一条射线PQ ,,求作QPM AOB ∠=∠(要求
用尺规作图,保留作图痕迹,不写作法)
22.如图,已知∠ABC=∠ACB ,∠1=∠2,∠3=∠F ,
试判断EC 与DF 是否平行,并说明理由.
23.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准
时间/分 1 2 3 4 5 … 电话费/元 0.36 0.72 1.08 1.44 1.8 …
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?
(2)如果用x 表示超出时间,y 表示超出部分的电话费,那么y 与x 的表达式是什么?
(3)如果打电话超出25分钟,需付多少电话费?
(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?
24.如图,已知直线c 和,a b 分别交于A 、B 两点,点P 在直线c 上
运动.
(1)若P 点在AB 两点之间运动,试探究:当∠1、∠2和∠3之间
满足什么数量关系时,a ∥b ?
(2)若P 点在AB 两点外侧运动,试探究:当∠1、∠2和∠3之间
满足什么数量关系时,a ∥b ?(写出结论,并说明理由)。