西城区2017-2018年学年度第一学期期末初1数学附加卷(1)

合集下载

6西城区2017-2018学年度第一学期期末初1数学试题答案

6西城区2017-2018学年度第一学期期末初1数学试题答案

北京市西城区2017— 2018学年度第一学期期末试卷七年级数学参考答案及评分标准2018.1一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题4分)19.(21)(9)(8)(12)---+---解:(21)(9)(8)(12)---+---=-21 +9 -8 +12 1分=-29 + 213分=-84分20.311()()(2)424-⨯-÷-解:311()()(2)424-⨯-÷-319424=-⨯÷2分314429=-⨯⨯3分16=-4分21.31125(25)25()424⨯--⨯+⨯-解:311 25(25)25()424⨯--⨯+⨯-=311252525424⨯+⨯-⨯1分=31125()424⨯+-2分=254分22.3213(2)0.254[()]4028-⨯-÷---解:3213(2)0.254[()]4028-⨯-÷---=1380.254()4048-⨯-÷--1分=180.254()408-⨯-÷--2分=24840-+⨯-3分=10-4分四、解答题(本题共21分,23~25题每小题5分,第26题6分)23.2223()2()3x xy x y xy ---+,其中1x =-,3y =. 解:2223()2()x xy x y xy ---+=22233223x xy x y xy --++2分 =222x y +3分 当1x =-,3y =时, 原式=22(1)23-+⨯4分=19.5分24.解方程12423x x +-+=. 解:去分母,得3(1)2(2)24x x ++-=.1分去括号,得332424x x ++-=.2分 移项,得322443x x +=+-.3分 合并同类项,得525x =.4分 系数化1,得5x =.5分25.253 1.x y x y +=⎧⎨-=⎩,解:由①得52x y =-.③1分把③代入②,得3(52)1y y --=.2分 解这个方程,得2y =.3分 把2y =代入③,得1x =.4分①②所以,这个方程组的解为12.x y =⎧⎨=⎩,5分26.解:(1)依题意,画图如下:图1 图24分(2)15或5.6分五、解答题(本题共13分,第27题6分,第28题7分) 27.(1)525 ,585;2分(2)解:设这个班购买x (x >5 )盒乒乓球时,在甲、乙两家商店付款相同. 3分由题意,得100525(5)0.910050.925x x ⨯+-=⨯⨯+⨯.5分 解方程,得30x =.答:购买30盒乒乓球时,在甲、乙两家商店付款相同.6分28.解:(1)∠AOC =∠BOD ;1分理由如下:∵点A ,O ,B 三点在同一直线上, ∴∠AOC +∠BOC = 180°.2分 ∵∠BOD 与∠BOC 互补, ∴∠BOD +∠BOC = 180°. ∴∠AOC =∠BOD .3分(2)①补全图形,如图所示.②设∠AOM =α, ∵OM 平分∠AOC , ∴∠AOC =2∠AOM =2α. ∵∠MON =40°,∴∠AON =∠MON +∠AOM =40°+α. ∵ON 平分∠AOD , ∴∠AOD =2∠AON =80°+2α. 由(1)可得∠BOD =∠AOC =2α,∵∠BOD+∠AOD =180°,∴2α.+80 +2α.=180°.∴2α. =50°.∴∠BOD =50°.7分。

北京市西城区2017-2018学年度第一学期期末试卷高一数学试题

北京市西城区2017-2018学年度第一学期期末试卷高一数学试题

北京市西城区2017-2018学年度第一学期期末试卷高一数学试卷满分:150分考试时间:120分钟A卷[必修模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.10. 如图,半径为1的M 切直线AB 于O 点,射线OC 从OA出发,绕着点O ,顺时针方向旋转到OB ,在旋转的过程中,OC 交M 于点P ,记PMO x ∠=,弓形PNO (阴影部分)的面积()S f x =,那么()f x 的图象是( ) (A )(B )(C )(D )二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. 若向量(12)=-,a 与向量(,4)x b =平行,则实数x =______.12. 若θ为第四象限的角,且1sin 3θ=-,则cos θ=______;sin 2θ=______. 13. 将函数cos 2y x =的图象向左平移π4个单位,所得图象对应的函数表达式为______.14. 若,a b 均为单位向量,且a 与b 的夹角为120 ,则-a b 与b 的夹角等于______. 15. 已知11sin sin ,cos cos 35x y x y +=+=,则cos()x y -=_____. 16. 已知函数()sin()(0,(0,π))f x x ωϕωϕ=+>∈满足π5π()()066f f ==,给出以下四个结论:○1 3ω=; ○26k ω≠,k *∈N ;○3 ϕ可能等于3π4; ○4符合条件的ω有无数个,且均为整数. 其中所有正确的结论序号是______.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知(0,π)ϕ∈,且π1tan()43ϕ+=-. (Ⅰ)求tan 2ϕ的值;(Ⅱ)求sin cos 2cos sin ϕϕϕϕ+-的值.18.(本小题满分12分)已知函数π()cos cos()3f x x x =⋅-. (Ⅰ)求函数()f x 的单调增区间;(Ⅱ)若直线y a =与函数()f x 的图象无公共点,求实数a 的取值范围.。

北京市西城区初一上学期期末数试卷(含答案)

北京市西城区初一上学期期末数试卷(含答案)

北京市西城区2017-2018学年度第一学期期末试卷七年级数学2016.1试卷满分:100分,考试时间:100分钟一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列算式中,运算结果为负数的是( ). A. (2)--B. 2-C. 3(2)-D. 2(2)-2.科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000 用科学记数法表示为( ). A .70.2510⨯ B .62.510⨯ C .72.510⨯ D .52510⨯3.下列各式中,正确的是( ).A. (25)25x x -+=-+B. 1(42)222x x --=-+C. ()a b a b -+=--D. 23(32)x x -=-+4.下列计算正确的是( ).A. 277a a a +=B. 22232x y x y x y -=C. 532y y -=D. 325a b ab +=5.已知1a b -=,则代数式223a b --的值是( ).A. 1B. 1-C. 5D. 5-6.空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是( ). 制冷剂编号R22R12 R410A制冷剂 二氟一氯甲烷 二氟二氯甲烷 二氟甲烷50%,五氟乙烷50%沸点近似值 (精确到1℃)41-30-52-A. R12,R22,R410AB. R22,R12,R410AC. R410A ,R12,R22D. R410A ,R22,R127.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项 式的值用()f a 来表示,例如1x =-时,多项式2()35f x x x =+-的值记为(1)f -,那么(1)f -等于( ). A. 7-B. 9-C. 3-D. 1-8.下列说法中,正确的是( ).①射线AB 和射线BA 是同一条射线; ②若AB =BC ,则点B 为线段AC 的中点; ③同角的补角相等;④点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点. 若MN =5,则线段AB =10. A. ①②B. ②③C. ②④D. ③④9.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对 应顺序暂不确定).如果0ab <,0a b +>,ac bc >,那么表示数b 的点为( ). A. 点M B. 点NC. 点PD. 点O10.用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如右图所示,那么从左面看它得到的平面图形一定不是..( ).二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题4分,第16~18 题每小题2分)11.2016-的相反数是 . 12.单项式325x y -的次数是_______.13.用四舍五入法将3.886精确到0.01,所得到的近似数为 . 14.如图,∠AOB =7230'︒,射线OC 在∠AOB 内,∠BOC =30°.(1)∠AOC =_______;(2)在图中画出∠AOC 的一个余角,要求这个余角以O 为顶点,以∠AOC 的一边为边.图中你所画出的∠AOC 的余角是∠______,这个余角的度数等于______.15.用含a 的式子表示:(1)比a 的6倍小5的数: ;(2)如果北京某天的最低气温为a ℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为 ℃.16.请写出一个只含字母x 的整式,满足当2x =-时,它的值等于3. 你写的整式是 ____________.17.如果一件商品按成本价提高20%标价,然后再打9折出售,此时仍可获利16元,那么该商品的成本价为_______元.18.如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按 顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为 _____的点,…,第2016次“移位”后,他到达编号为______的点.三、计算题(本题共16分,每小题4分)19.(12)(20)(8)15---+--. 20.311(3)()42-⨯+÷-. 解: 解:21.21119(1.5)(3)29⨯+-÷-. 解:22.以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体..评价,并对相应的有效避 错方法给出你的建议.(2)解:四、先化简,再求值(本题5分)23.23235(42)4(53)a ab a ab ---,其中1a =-,2b =.解:五、解答题(本题5分) 24.解方程:123173x x -+-=. 解:六、解答题(本题7分)25.如图,90CDE CED ∠+∠=︒,EM 平分CED ∠,并与CD 边交于点M .DN 平分CDE ∠,并与EM 交于点N .(1)依题意补全图形,并猜想EDN NED ∠+∠的度数等于 ; (2)证明以上结论.证明:∵ DN 平分CDE ∠,EM 平分CED ∠,∴ 12EDN CDE ∠=∠, NED ∠=.(理由: ) ∵ 90CDE CED ∠+∠=︒,∴ ( ) 90 EDN NED ∠+∠=⨯∠+∠=⨯︒=︒.七、解决下列问题(本题共10分,每小题5分)26.已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m ;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.解:27.从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?解:(1)(2)(3)八、解答题(本题6分)28.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当2t=时,求PQ的值;(3)当12PQ AB=时,求t的值.(2)解:(3)解:北京市西城区2017-2018学年度第一学期期末试卷七年级数学附加题2016.1试卷满分:20分一、操作题(本题6分)1.公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“”、 划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是_______;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.二、推理判断题(本题5分)2.七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如下表所示:一班名次 二班名次 三班名次 四班名次 五班名次一班班长猜 3 5 二班班长猜 1 4 三班班长猜 5 4 四班班长猜 2 1 五班班长猜 3 4 正确结果年级组长说,每班的名次都至少被...他们中的....一人说对....了.,请你根据以上信息将 一班~五班的正确名次填写在表中最后一行.三、解答题(本题9分)3.唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒 诗百篇”之说.《算法统宗》中记载了一个“李白沽酒” 的故事.诗云:注:古代一斗是10升.今携一壶酒,游春郊外走.逢朋加一倍,入店饮斗.九. 相逢三处店,饮尽壶中酒.试问能算士:如何知原有.大意是:李白在郊外春游时,做出这样一条约定: 遇 见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有0a 升酒,在第n 个店饮酒后壶中余n a 升酒,如第一次饮后所余酒为10219a a =-(升),第二次饮后所余酒为2102192(219)19a a a =-=-- 2102(21)19a =-+⨯(升),…….① 用1n a -的表达式表示n a ,再用0a 和n 的表达式表示n a ;② 按照这个约定,如果在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.解:北京市西城区2017-2018学年度第一学期期末试卷七年级数学参考答案及评分标准2016.1一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案CBCBBDADAC二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题4分,第16~18 题每小题2分)11.2016. 12.4 . 13.3.89.14.(1)4230'︒;(2)如图1,AOD 或COE ,4730'︒.(画图1分,每空1分) 15.(1)65a -;(2)10a +.(每空2分) 16.答案不唯一,如32x -或5x +. 17.200.18.3,4.(每空1分)三、解答题(本题共16分,每小题4分) 19.(12)(20)(8)15---+--1220815=-+-- ……………………………………………………………………… 2分 202015=-+- 15=-.…………………………………………………………………………………… 4分20.311(3)()42-⨯+÷- 11(3)()48=-⨯+÷-…………………………………………………………………………1分13(8)4=-⨯⨯-…………………………………………………………………………… 2分 6=.…………………………………………………………………………………………4分21.21119(1.5)(3)29⨯+-÷- 1119(1.5)929=⨯+-÷ …………………………………………………………………… 1分1119.5 1.599=⨯-⨯ ……………………………………………………………………… 2分1(19.5 1.5)9=⨯- ……………………………………………………………………………3分 1189=⨯ 2=.……………………………………………………………………………………… 4分22.解:(1)……………………………………………………………………………… 2分 说明:两处错误及改错各1分.(2)根据学生解答酌情给分.…………………………………………………… 4分 四、先化简,再求值(本题5分) 23.解:23235(42)4(53)a ab a ab ---图1232320102012a a b a a b=--+ ……………………………………………………… 2分 32ab =.……………………………………………………………………………… 3分 当1a =-,2b =时,原式32(1)2=⨯-⨯ ………………………………………………………………… 4分 2816=-⨯=-.………………………………………………………………… 5分 五、解答题(本题5分)24.123173x x -+-=. 解:去分母,得 3(12)217(3)x x --=+.……………………………………………… 1分去括号,得 3621721x x --=+. ……………………………………………………2分 移项,得 6721321x x --=-+.…………………………………………………… 3分 合并,得 1339x -=.………………………………………………………………… 4分 系数化1,得 3x =-.………………………………………………………………… 5分 所以原方程的解是 3x =-. 六、解答题(本题7分)25.(1)补全图形见图2.……………………………1分猜想EDN NED ∠+∠的度数等于45︒. …………………………………………2分(2)证明:∵ DN 平分CDE ∠,EM 平分CED ∠,∴ 12EDN CDE ∠=∠,12N E D C E D ∠=∠.……………………………………………………3分(理由: 角平分线的定义) ……………………………………………4分 ∵ 90CDE CED ∠+∠=︒, ∴ 1( )2EDN NED CDE CED ∠+∠=⨯∠+∠ ………………………… 5分 1902=⨯︒ …………………………………………………………………6分45 =︒ .………………………………………………………………… 7分七、解决下列问题(本题10分,每小题5分)26.解:∵ 各横行中,从第二个数起的数都比它左边相邻的数大m ,∴ 12218m +=.………………………………………………………………… 1分 解得3m =.…………………………………………………………………………2分 又∵ 各竖列中,从第二个数起的数都比它上边相邻的数大n ,∴ (12)330m n ++=.…………………………………………………………… 3分 将 3m =代入上述方程得 15330n +=.解得5n =.………………………………………………………………………… 4分 此时1221223511x m n =-+=-⨯+=.…………………………………………5分图227.解:(1)2.28300684⨯=(元).……………………………………………………… 1分(2)2.28350+2.5(500350)7983751173⨯⨯-=+=(元).…………………… 2分(3)设小冬家2016年用了x 立方米天然气.∵ 1563>1173,∴ 小冬家2016年所用天然气超过了500立方米.根据题意得 2.28350+2.5(500350) 3.9(500)1563x ⨯⨯-+-=.即 1173 3.9(500)1563x +-=.……………………………………………… 3分移项,得 3.9(500)390x -=.系数化1得 500100x -=.移项,得 600x =. ……………………………………………………………4分答:小冬家2016年用了600立方米天然气.………………………………… 5分说明:以上两题其他解法相应给分.八、解答题(本题6分)28.解:(1) 5 BP t =-, 102 AQ t =-;……………………………………………… 2分(2)当2t =时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上.(如图 3所示)此时()(10)2108PQ OP OQ OA AP OQ t t t =-=+-=+-=-=.…………4分(3)()(10)210PQ OP OQ OA AP OQ t t t =-=+-=+-=-.∵ 12PQ AB =, ∴ 10 2.5t -=.解得 7.5t =或12.5t =. …………………………………………………… 6分说明:t 的两个值各1分,不同解法相应给分.图3北京市西城区2017-2018学年度第一学期期末试卷七年级数学附加题参考答案及评分标准 2016.1一、 操作题(本题6分)1.(1)18; (2) .(各3分)二、推理判断题(本题5分)2.一班名次 二班名次 三班名次 四班名次 五班名次 正确结果 3 2 1 5 4说明:每个班的名次各1分.三、解答题(本题9分)3.解:(1)设壶中原有x 升酒.…………………………………………………………… 1分 依题意得 []22(219)19190x ---=.……………………………………… 3分 去中括号,得 4(219)3190x --⨯=.去括号,得 87190x -⨯=.系数化1,得 5168x =.……………………………………………………… 4分 答:壶中原有5168升酒.(2)①1219n n a a -=-. …………………………………………………………… 5分 -1202(221)19n n n n a a -=-+++⨯ .……………………………………… 7分 (或写成02(21)19n n n a a =--⨯)②当4n =时,4321402(2221)19a a =-+++⨯.(或写成44402(21)19a a =--⨯)∵ 在第4个店喝光了壶中酒,∴ 432102(2221)190a -+++⨯=.……………………………………… 8分 (或写成4402(21)190a --⨯=)即 01615190a -⨯=. 解得0131716a =.…………………………………………………………… 9分 答:在第4个店喝光了壶中酒时,壶中原有131716升酒.。

2017-2018学年北京市西城区八年级第一学期数学期末考试(含答案)

2017-2018学年北京市西城区八年级第一学期数学期末考试(含答案)

北京市西城区2017— 2018学年度第一学期期末试卷2.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到 0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学 记数法表示为().3•下列各式中,能用完全平方公式进行因式分解的是( ).2小A . x 2x 22 ‘B . X1C . x 24x 4D .2x 4x 14•化简分式7a7b 的结果是( ).(a b)2a b 7a b7A .B .C .D .7a b7a b5.在平面直角坐标糸xOy 中,点 M , N , P , Q 的位置如图L所示.若直线y kx 经过第一、三象限, 则直线 y kx 2可能经过的点是( ).-2 02A .点MB .点N-C .点PD .点Qc 「m X 1 6.已知一一,则3x y的值为()y 2y152A . 7B .-C . —D . —7252018.1A . 0.22 10B . 2.2 1010C . 1122 10 0.22 10八年级数学试卷满分:100分,考试时间:100分钟 、选择题(本题共 30分,每小题3分) F面各题均有四个选项,其中只有一个 是符合题意1.).春”、A轴对称图形的是(DD .①④二、填空题(本题共 25分,第13题4分,其余每小题 3分)211.要使分式 ------ 有意义,则x 的取值范围是x 112 .点P ( 3 , 4)关于y 轴的对称点 P'的坐标是 ___________________ 7.如图,在△ABC 中,BC 的垂直平分线分别交 AC , BC 于 点D , E -若厶 ABC 的周长为22 , BE=4,则厶ABD 的周长 为( ). A . 14 B . 18 C . 20D . 269. 如图,在3X 3的正方形网格中有四个格点A ,B ,C ,D ,以其中一个点为原点,网格线所在直线为坐标轴,建立 平面直角坐标系,使其余三个点中存在两个点关于一条 坐标轴对称,则原点可能是( A .点AB .点B某中学为了创建“最美校园图书屋” 格是文学类图书平均每本书价格的 用这些钱购买科普类图书的本数多 ).C .点CD .点D,新购买了一批图书,其中科普类图书平均每本书的价 1.2倍.已知学校用12000元购买文学类图书的本数比 100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是(元,则下面所列方程中正确的是C .). 12000 x 100 12000 10012000 1.2x 12000 1.2x12000 x12000 12000 100 1.2x 120001001.2x10.如图, 已知正比例函数 y 1 ax 与一次函数 y 2b 的图象交于点P .下面有四个结论:0 ;②b 0 ; ③当x 0时,y 1④当x 2时,y 1 y 2.其中正确的是( A .①②).B .②③C .①③ 13.计算: (1)((2)10ab 2~ c 5a4c14. 如图,点 B , E , C , F 在同一条直线上, AB=DE ,/ B= / DEF .要使△ ABCDEF ,则需要再添力口 的一个条件是 _______________________ .(写出一个 即可)B E15. 如图,△ ABC 是等边三角形, AB=6, AD 是BC 边上的中线. 点E 在AC 边上,且/ EDA=30° ,则直线 ED 与AB 的位置关 系是 ___________ ,ED 的长为 _____________ . 16•写出一个一次函数,使得它同时满足下列两个条件: ①y 随x 的增大而减小;②图象经过点(1 , 4). 答: ______________________ .17.如图,在 Rt △ ABC 中,/ B=90 ° (1) 作出/ BAC 的平分线AM ; (要求:尺规作图,保留作图痕迹,不写作法) (2) 若/ BAC 的平分线 AM 与BC 交于点D ,且BD=3 , AC=10,则△ DAC 的面积为 ___________ . 18•小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分 享要用的U 盘,便停下给妈妈打电话,妈妈接到电话后,带上 U 盘马上赶往学校,同时 小芸沿原路返回•两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达 学校比妈妈到家多用了 5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离 y 与小芸打完电话后 步行 的时间x 之间的函数关系如图所示,则妈妈从家 出发 ______________ 分钟后与小芸相遇,相遇后妈妈 回家的平均速度是每分钟 ___________ 米,小芸 家离学校的距离为 ___________ 米.(1) 5a 1 210ab ; 2(2) mx 12mx 36m解: 解:三、解答题(本题共 27分,第19、23题每小题6分,其余每小题5 分)19.分解因式: 20.老师所留的作业中有这样一个分式的计算题: 甲、乙两位同学完成的过程22.解分式方程:分别如下:老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正. (1) ______________ 我选择 同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第 _________ 步开始出现错误,错误的原因是 ________________________ _______________________________________________________________________ ; (2) 请重新写出完成此题的正确解答过程.2 x 5 x 1 x 2 1解:21.如图,在△ ABC 中,点D 在AC 边上,AE // BC ,连接ED 并延长交BC 于点F .若 AD = CD ,求证:ED=FD . 证明:5 2 1x 3 x 9x3解:已知一次函数y kx b,当x 2时y的值为1,当x 1时y的值为5 . (1 )在所给坐标系中画出一次函数y kx b的图象;(2) 求k, b的值;(3) 将一次函数y kx b的图象向上平移4个单位长度,求所得到新的函数图象与x轴,y轴的交点坐标.解: (2)(3)解答题(本题共18分,第24题5分,第25题6分,第26题7 分)23.四、24. 阅读材料:25.如图,在平面直角坐标系xOy 中,直线l i : y 3x 1与y 轴交于点A .直线12: y kx b课堂上,老师设计了一个活动:将一个4M 的正方形网格沿着网格线 划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方 法.约定:如果两位同学的划分结果经过旋转、 翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图1、图2、图3所示.小方说:“我们三个人的划分方法都是正确的•但是将小红的整个图形(图 3)逆时针旋转90°后得到的划分方法与我的划分方法 (图1)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1 )图4的划分方法是否正确?答: ________________ •(2) 判断图5的划分方法与图2小易的划分方法是否相同,并说明你的理由;答: ___________________________________________________________________________ (3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图6中画出来.与直线yx 平行,且与直线11交于点B (1, m ),与y 轴交于点C .图4图5r □ □ r r z-Z rr - —-— —图 6(1) 求m的值,以及直线12的表达式;(2) 点P在直线12:y kx b上,且FA=PC,求点P的坐标;(3) 点D在直线1i上,且点D的横坐标为a .点E在直线12上,且DE // y轴.若DE=6,求a的值.解: (1)(2)(3)26.在△ ABC中,/ A=60 ° BD , CE是厶ABC的两条角平分线,且BD , CE交于点F .(1) 如图1,用等式表示BE, BC, CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD = BC .他发现先在BC上截取BM,使BM = BE,连接FM ,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:i)在BC上截取BM,使BM = BE,连接FM,则可以证明△ BEF与__________________全等,判定它们全等的依据是 ________________ ;ii)由/ A=60° BD , CE是厶ABC的两条角平分线,可以得出/ EFB= _______ °②请直接利用i), i )已得到的结论,完成证明猜想证明:(2) 如图2,若/ ABC=40° 求证:BF=CA.证明:北京市西城区2017—2018学年度第一学期期末试卷八年级数学附加题试卷满分:20分BE+CD = BC的过程.图2一、解答题(本题共12分,每小题6分)1.基础代谢是维持机体生命活动最基本的能量消耗•在身高、年龄、性别相同的前提下(不考虑其他因素的影响),可以利用某基础代谢估算公式,根据体重x (单位:kg )计算得到人体每日所需基础代谢的能量消耗y (单位:Kcal),且y是x的函数•已知六名身高约为170cm的15岁男同学的体重,以及计算得到的他们每日所需基础代谢的能量消耗,如下表学生编号A B C D E F体重x (kg) 545660636770每日所需基础代谢的能量消耗y( Kcal)1596163117011753.51823.51876(1 )随着体重的增加,人体每日所需基础代谢的能量消耗 ____________ ;(填“增大”、“减小”或“不变”)(2)若一个身高约为170cm的15岁男同学,通过计算得到他每日所需基础代谢的能量消耗为1792Kcal,则估计他的体重最接近于();A. 59kgB. 62kgC. 65kgD. 68kg(3)当54W x w 70时,下列四个y与x的函数中,符合表中数据的函数是().2A. y xB. y 10.5x 1071 C . y 10x 1101 D . y 17.5x 6512. 我们把正n边形(n 3)的各边三等分,分别以居中的那条线段为一边向外作正n边形,并去掉居中的那条线段,得到一个新的图形叫做正n边形的“扩展图形”,并将它的边数记为a n .如图1,将正三角形进行上述操作后得到其“扩展图形”,且a3=12 .图3、图4分别是正五边形、正六边形的“扩展图形”•二、解答题(本题8分)13. 在平面直角坐标系xOy中,直线11:y -x b与x轴交于点A,与y轴交于点B,且点C2的坐标为(4,4).(1 )点A的坐标为 ____________ ,点B的坐标为_______________ ;(用含b的式子表示)图2(1)如图2,在5X 5的正方形网格中用较粗的虚线画有出此正方形的“扩展图形”;(2)已知a3=12,a4=20,a s =30,则图4 中a6=_“扩展图形”中a,2中用实线画n -1111(3)已知,一3 4 a4a3则n=a5,根据以上规律,(用含n的式子表示)1 16,……,且a6 a3a4 a5正n边形的97300,个正方形,请在图(2) 当b 4时,如图1所示•连接AC , BC ,判断△ ABC 的形状,并证明你的结论;(3) 过点C 作平行于y 轴的直线12,点P 在直线12上•当5 b 4时,在直线l i 平移的 过程中,若存在点 P 使得△ ABP 是以AB 为直角边的等腰直角三角形,请直接写出所 有满足条件的点 P 的纵坐标.备用图北京市西城区2017— 2018学年度第一学期期末试卷题号12345678910△ ABC 的形状是 证明:(3)点P 的纵坐标为:y i也75斗31]T 一总-7 -6 -5 7 T -2 -lC■1 12 3^ 5 6 7 8 ?~Tb H J2 x-23■-6-7 - -a - -9 -10-11 - -12 -八年级数学参考答案及评分标准2018.1 解:21 .2=m(x 6).解:(1)选甲:一,理由合理即可,如:第一个分式的变形不符合分式的基本性质,分子漏乘x 1; .........................................选乙:二,理由合理即可,如:与等式性质混淆,丢掉了分母;证明:如图.•/ AE// BC,•••/ 1 =/ C,/ E= / 2. ..........在厶AED和厶CFD中, / 1 = / C,■■ / E= / 2,答案D B C B A C A D B D3 分)二、填空题(本题共25分,第13题4分,其余每小题12. ( 3, 4).14.答案不唯一.^口:/ A= / D .16 .答案不唯一.如:y 4x .9b413.(1)一2 ;a15.平行,3.(2)8b.(各2 分)c(第一个空1分,第二个空2分)17 . (1)如图所示;(2) 15. (1 分)18. 8, 60, 2100.(各1 分)19.解答题(本题共27分,第19、23题每小题6分,其余每小题5 分)解:(1)5a 10ab= 5a(a 2b);2(2)mx 12mx36m=m(x2 12x 36)20.2(x 1)(x 1)(x 1) 2x 2 x 5 (x 1)(x 1)3x 3(x 1)(x 1)3 ...... x 1x 5(x 1)(x 1)2分AD=CD ,•••△ AED ◎△ CFD . ED=FD .22•解:方程两边同乘(x 3)(x 3),得5(x 3) 2 x 3 .整理,得 5x 15 2 x 3 . .................................................................. 3分解得 x 4 .......................................................................................... 4分经检验x 4是原分式方程的解. ......................................... 5分 所以,原分式方程的解为 x 4 .23. .................................................................................... 解:(1)图象如图所示; 1分(2)v 当x 2时y 的值为1,当x 1时y 的值为2k b 1, kb 5.1•令 y 0,x 2 ;令x°,y 1.2............................................................................................................. 6分四、解答题(本题共 18分,第24题5分,第25题6分,第26题7分)24. .................................................................................................................................... 解:(1)不正确; ....................................................................... 1分(2)相同, ......................................................... 2分理由合理即可,女口:因为将图5沿直线翻折后得到的划分方法与图2的划分方法相同; ...................................................... 3分 (3) 答案不唯一.如:25. 解:(1).点B (1, m )在直线11上,解得k 2, b 3.(3).•—次函数y 2x 3的图象向上平移4个单位长度后得到的新函数为y 2x 1 ,1•••新函数的图象与 x 轴,y 轴的交点坐标分别为(-,0), (°, 1 ).3分4分•- m 3 1 1 4. ............................................................................ 1 分.直线12:y kx b与直线y x平行,•k 1..•点B (1, 4)在直线12上,• 1 b 4,解得b 5.•直线12的表达式为y x 5 . 2 分(2)T直线l i:y 3x 1与y轴交于点A,•••点A的坐标为(0, 1).•••直线12与y轴交于点C,•点C的坐标为(0, 5).•/ FA=PC,•••点P在线段AC的垂直平分线上.•••点P的纵坐标为1 5 1 3 . ...... 3分2••点P在直线12上,•- x 5 3,解得x 2 .•••点P的坐标为(2, 3). ....... 4分(3)T点D在直线1仁y3x1上, 且点D的横坐标为a,•••点D的坐标为(a , 3a 1 ).• •点E在直线S : y kx b上,且DE // y轴,•••点E的坐标为(a , a5).•/ DE=6,• 3a 1 ( a 5)6.二 a 5或-. .............................................. 6 分2 226. 解:(门①厶BMF,边角边,60; 3分②证明:如图1. A•••由门知厶BEF◎△ BMF ,•••/ 2= / 1 .•••由ii)知/ 1= 60°,•••/ 2=60°,/ 3= / 1= 60°.•••/ 4=180°-Z 1-Z 2=60°•••/ 3= Z 4. ..........................••• CE是厶ABC的角平分线,• Z 5= Z 6.在厶CDF和厶CMF中,Z 3= Z 4CF=CF,Z 5= Z 6,•••△CDF CMF .• CD=CM.• BE+CD= BM + CM=BC.(2)证明:作Z ACE的角平分线CN交AB于点N,如图2. ‘•••Z A=60 ° Z ABC=40 °•Z ACB=180°-Z A-Z ABC=80° . \• BD , CE分别是△ ABC的角平分线,..1• Z 1 = Z 2= Z ABC=20°,2/ 3= / ACE=1 / ACB=40° .2•/ CN 平分/ ACE ,•••/ 4=1 / ACE =20 °2• / 1 = / 4.•••/ 5= / 2+ / 3=60° , :丄 5= / A .•••/ 6= / 1+ / 5,/ 7=/4+ / A ,•••/ 6= / 7. • CE=CN .•// EBC=/ 3=40° , • BE=CE . • BE=CN .在厶BEF 和厶CNA 中,/ 5= / A / 1 = / 4,BE= CN , • △ BEF ◎△ CNA . • BF= CA.............................................................................. 7 分北京市西城区2017— 2018学年度第一学期期末试卷八年级数学附加题参考答案及评分标准2018.1一、解答题(本题共12分,每小题6分)1 .解:(1)增大; ........................................................ 2分(2)等腰直角三角形; .............................................. 3分 证明:过点C 作CD 丄y 轴于点D ,如图, 则/ BDC= / AOB=90° . •••点C 的坐标为(4, 4 ),点D 的坐标为(0, 4), CD=4.当b=4时,点A , B 的坐标分别为(8 , 0) , (0, 4), AO=8, BO=4, BD=8. AO=BD BO= CD\4 J-4 D在厶AOB和厶BDC中,AO=BD ,」/ AOB = Z BDC ,L BO= CD,•••△AOB^A BDC . ................................................................. 4 分•••/ 1 = / 2, AB=BC.•••/ 1 + / 3=90° ,•••/ 2+ / 3=90°,即/ ABC=90°.• △ ABC是等腰直角三角形. .............................. 5分8(3) 12, 8, & ................................................................................ 8 分3。

2018年西城区八年级第一学期数学期末考试附加题(附答案)

2018年西城区八年级第一学期数学期末考试附加题(附答案)

北京市西城区2017— 2018学年度第一学期期末试卷八年级数学附加题 2018.1试卷满分:20分一、解答题(本题共12分,每小题6分)请根据上表中的数据回答下列问题:(1)随着体重的增加,人体每日所需基础代谢的能量消耗 ;(填“增大”、“减小”或“不变”)(2)若一个身高约为170cm 的15岁男同学,通过计算得到他每日所需基础代谢的能量消耗为1792Kcal ,则估计他的体重最接近于( ); A .59kgB .62kgC .65kgD .68kg(3)当54≤x ≤70时,下列四个y 与x 的函数中,符合表中数据的函数是( ). A .2y x = B .10.51071y x =-+ C .101101y x =+ D .17.5651y x =+2.我们把正n 边形(3n ≥)的各边三等分,分别以居中的那条线段为一边向外作正n 边形,并去掉居中的那条线段,得到一个新的图形叫做正n 边形的“扩展图形”,并将它的边数记为n a .如图1,将正三角形进行上述操作后得到其“扩展图形”,且3a =12.图3、图4分别是正五边形、正六边形的“扩展图形”.出此正方形的“扩展图形”;(2)已知3a =12,4a =20,5a =30,则图4中6a =__________,根据以上规律,正n 边形的“扩展图形”中n a =_______________;(用含n 的式子表示) (3)已知311134a =-,411145a =-,511156a =-,……,且345111197300n a a a a ++++=,则n =________.二、解答题(本题8分)3.在平面直角坐标系xOy中,直线l1:12y x b=+与x轴交于点A,与y轴交于点B,且点C的坐标为(4,4-).(1)点A的坐标为,点B的坐标为;(用含b的式子表示)(2)当4b=时,如图1所示.连接AC,BC,判断△ABC的形状,并证明你的结论;(3)过点C作平行于y轴的直线l2,点P在直线l2上.当54b-<<时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.解:(2)△ABC证明:(3)点P的纵坐标为:___________________.北京市西城区2017— 2018学年度第一学期期末试卷八年级数学附加题参考答案及评分标准2018.1一、解答题(本题共12分,每小题6分)1.解:(1)增大;…………………………………………………………………………2分(2)C;……………………………………………………………………………4分(3)D.……………………………………………………………………………6分2.解:(1)如图所示;………………………………………2分(2)42,(1)n n+;……………………………………4分(3)99.…………………………………………………6分二、解答题(本题8分)3.解:(1)(2b-,0),(0,b);………………………………………………………2分(2)等腰直角三角形;……………………………………………………………3分证明:过点C作CD⊥y轴于点D,如图,则∠BDC=∠AOB=90°.∵点C的坐标为(4,4-),∴点D的坐标为(0,4-),∵当b=4时,点A,B的坐标分别为(8-∴AO=8,BO=4,BD=8.∴AO=BD,BO= CD.在△AOB和△BDC中,AO=BD,∠AOB=∠BDC,BO= CD,∴△AOB≌△BDC.∴∠1=∠2,AB=BC.∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°.∴△ABC是等腰直角三角形.………………………………………5分(3)12-,83-,8.………………………………………………………………8分备用图。

西城区2017-2018年学年度第一学期期末初1数学附加卷

西城区2017-2018年学年度第一学期期末初1数学附加卷

北京市西城区2017— 2018学年度第一学期期末试卷七年级数学附加题2018.1试卷满分:20分一、填空题(本题共6分)1.用“△”定义新运算:对于任意有理数a,b,当a≤b时,都有2a b a b∆=;当a>b时,都有2a b ab∆=.那么,2△6 =,2()3-△(3)-=.二、解答题(本题共14分,每小题7分)2.输液时间与输液速率问题静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D,即每分钟输入多少滴液体,来计算输完点滴注射液的时间t(单位:分钟).他们使用的公式是:dVtD=,其中,V是点滴注射液的容积,以毫升(ml)为单位,d 是点滴系数,即每毫升(ml)液体的滴数.(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的12,准确地描述,在V和d保持不变的条件下,输完这瓶点滴注射液的时间将会发生怎样的变化?3.阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ上(点R能与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为−1,点M表示的数为2.图1(1)①点B,C,D分别表示的数为−3,32,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E 表示的数为x,若点A与点E关于线段OM的径向对称,则x的取值范围是;(2)点N是数轴上一个动点,点F表示的数为6,点A与点F关于线段ON径向对称,线段ON 的最小值是;(3)在数轴上,点H,K,L表示的数分别是−5,−4,−3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM 径向对称.解:(1)①与点A关于线段OM的径向对称;②x的取值范围是;(2)线段ON的最小值是;(3)。

北京市西城区2017—2018学年度第一学期高一数学期末试卷

北京市西城区2017—2018学年度第一学期高一数学期末试卷

北京市西城区2017 —2018学年度第一学期期末试卷高一数学2018.1 试卷满分:150分考试时间:120分钟A卷[三角函数与平面向量]满分:100分题号-一一-二二三本卷总分171819分数、选择题:本大题共10小题,每小题4分,共40分•在每小题给出的四个选项中, 只有一项是符合要求的•1.已知sin「:::0,且tan、* > 0,则〉的终边所在的象限是(A)第一象限(B )第二象限2.函数f(x) =sin2x的的最小正周期为(C)第三象限(D )第四象限(A)P2(B)p(C)2p3.如果向量a = (1,2),b = (3,4),那么2a -b =(A)(-1,0)(B)(-1,-2)(C)(1,0)4.计算sin(蔥一黨)• sin(二-)-(A)0(B)1(C)2sin a5.如图,在矩形ABCD中, (D)4p(D)(1,-2)(D)- 2sin a(A)ABAO OB AD -(B)AC7■: 6(A )向左平移 P 个单位长度3(B )向右平移 P 个单位长度3(C )向左平移匕个单位长度6(D )向右平移B 个单位长度61(B )卜畀]© [-4自二、填空题:本大题共 6小题,每小题4分,共24分.把答案填在题中横线上.(C ) AD(D) BD6.已知向量a , b 满足| a |=2 , | b |=1 , a b = ,则向量a , b 的夹角为 (A) -Pp (B)- 4 (C) 2P7.已知m 是函数f (x)二cosx 图象的一个对称中心的横坐标,则 f (m)= (A) -1 (B) 0 (D) 1 8.要得到函数^sin(2x3)的图象,只需将函数y =sin 2x 的图象9.函数f(x) 坐标原点,若 =Asinx(A 0)的图象如图所示, OP _ 0Q ,则 A = P,Q 分别为图象的最高点和最低点, O 为(A) 3(B)3p 2(D)10.已知在直角三角形 ABC 中,A 为直角,AB 点P 在丁 ABC 内部或边界上运动,则 -1,BCAM BP 的取值范围是(A) [-1,0]3(D )[-3,°]11. sin12. 已知向量a = (1,2), b = (x, —2),若a II b,则实数x = _________ .13. 角日的始边与x轴正半轴重合,终边上一点坐标为(-1,2),则tan G =__________ ;14. 函数f (x) =sin x - cosx的最大值为____________ .15. 已知点A(0, 4),(2,0),如果AB =2BC,那么点C的坐标为________________ ;设点P(3,t),且.APB是钝角,则t的取值范围是_______________ ;16. 已知函数f(x)二sinxtanx.给出下列结论:①函数f (x)是偶函数;②函数f (x)在区间(-^,。

2017_2018学年北京市西城区八年级第一学期数学期末考试(含答案)

2017_2018学年北京市西城区八年级第一学期数学期末考试(含答案)

北京市西城区2017— 2018学年度第一学期期末试卷八年级数学 2018.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2017年6月北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( ).ABCD2.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为( ). A .90.2210-⨯B .102.210-⨯ C .112210-⨯D .80.2210-⨯3.下列各式中,能用完全平方公式进行因式分解的是( ). A .222x x --B .21x +C .244x x -+D .241x x ++4.化简分式277()a ba b ++的结果是( ). A .7a b+ B .7a b+ C .7a b- D .7a b-5.在平面直角坐标系xOy 中,点M ,N ,P ,Q 的位置如图所示.若直线y kx =经过第一、三象限,则直线2y kx =- 可能经过的点是( ). A .点M B .点NC .点PD .点Q6.已知12x y =,则3x yy+的值为( ). A .7 B .17C .52D .257.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于 点D ,E .若△ABC 的周长为22,BE =4,则△ABD 的周长 为( ). A .14 B .18C .20D .268.如图,在3×3的正方形网格中有四个格点A ,B ,C ,D , 以其中一个点为原点,网格线所在直线为坐标轴,建立 平面直角坐标系,使其余三个点中存在两个点关于一条 坐标轴对称,则原点可能是( ). A .点AB .点BC .点CD .点D9.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,则下面所列方程中正确的是( ). A .1200012000100 1.2x x =+ B .12000120001001.2x x =+ C .1200012000100 1.2x x=- D .12000120001001.2x x=- 10.如图,已知正比例函数1y ax =与一次函数212y x b =+的图象交于点P .下面有四个结论:①0a <; ②0b <; ③当0x >时,10y >; ④当2x <-时,12y y >. 其中正确的是( ). A .①② B .②③C .①③D .①④二、填空题(本题共25分,第13题4分,其余每小题3分) 11.要使分式21x -有意义,则x 的取值范围是 . 12.点P (3,4)关于y 轴的对称点P′的坐标是 .13.计算:(1)223()b a =______________;(2)21054ab ac c÷=______________. 14.如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,∠B =∠DEF .要使△ABC ≌△DEF ,则需要再添加 的一个条件是 .(写出一个 即可)15.如图,△ABC 是等边三角形,AB =6,AD 是BC 边上的中线.点E 在AC 边上,且∠EDA =30°,则直线ED 与AB 的位置关 系是___________,ED 的长为___________.16.写出一个一次函数,使得它同时满足下列两个条件:①y随x的增大而减小;②图象经过点(1,4-).答:.17.如图,在Rt△ABC中,∠B=90°.(1)作出∠BAC的平分线AM;(要求:尺规作图,保留作图痕迹,不写作法)(2)若∠BAC的平分线AM与BC交于点D,且BD=3,AC=10,则△DAC的面积为.18.小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回.两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完电话后.....步行的时间x之间的函数关系如图所示,则妈妈从家出发分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟米,小芸家离学校的距离为米.三、解答题(本题共27分,第19、23题每小题6分,其余每小题5分)19.分解因式:(1)2mx mx m-+.+;(2)21236a ab510解:解:20.老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正. (1)我选择________同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第________步开始出现错误,错误的原因是____________________________________________________________________________________________;(2)请重新写出完成此题的正确解答过程.22511x x x +++- 解:21.如图,在△ABC 中,点D 在AC 边上,AE ∥BC ,连接ED 并延长交BC 于点F .若AD =CD ,求证:ED =FD .证明:22. 解分式方程:2521393x x x +=+--. 解:23. 已知一次函数y kx b =+,当2x =时y 的值为1,当1x =-时y 的值为5-.(1)在所给坐标系中画出一次函数y kx b =+的图象; (2)求k ,b 的值;(3)将一次函数y kx b =+的图象向上平移4个单位长度,求所得到新的函数图象与x轴,y 轴的交点坐标.解:(2)(3)四、解答题(本题共18分,第24题5分,第25题6分,第26题7分)24.阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线.....划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图1、图2、图3所示. 小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图3)逆时针旋转90°后得到的划分方法与我的划分方法(图1)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图4的划分方法是否正确?答:_______________.(2)判断图5的划分方法与图2小易的划分方法是否相同,并说明你的理由; 答:____________________________________________________________________. (3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图6中画出来.25.如图,在平面直角坐标系xOy中,直线l1:31=+与y轴交于点A.直线l2:y x=-平行,且与直线l1交于点B(1,m),与y轴交于点C.y kx b=+与直线y x(1)求m的值,以及直线l2的表达式;(2)点P在直线l2:y kx b=+上,且PA=PC,求点P的坐标;(3)点D在直线l1上,且点D的横坐标为a.点E在直线l2上,且DE∥y轴.若DE=6,求a的值.解:(1)(2)(3)26.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与____________全等,判定它们全等的依据是______________;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=_______°;……ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.②请直接利用....Array证明:图1(2)如图2,若∠ABC =40°,求证:BF =CA . 证明:北京市西城区2017— 2018学年度第一学期期末试卷图2八年级数学附加题2018.1试卷满分:20分一、解答题(本题共12分,每小题6分)1.基础代谢是维持机体生命活动最基本的能量消耗.在身高、年龄、性别相同的前提下(不考虑其他因素的影响),可以利用某基础代谢估算公式,根据体重x(单位:kg)计算得到人体每日所需基础代谢的能量消耗y(单位:Kcal),且y是x的函数.已知六名身高约为170cm的15岁男同学的体重,以及计算得到的他们每日所需基础代谢的能量消耗,如下表所示:请根据上表中的数据回答下列问题:(1)随着体重的增加,人体每日所需基础代谢的能量消耗;(填“增大”、“减小”或“不变”)(2)若一个身高约为170cm的15岁男同学,通过计算得到他每日所需基础代谢的能量消耗为1792Kcal,则估计他的体重最接近于();A.59kg B.62kg C.65kg D.68kg(3)当54≤x≤70时,下列四个y与x的函数中,符合表中数据的函数是().A.2y x=B.10.51071=+y xy x=-+C.101101D .17.5651y x =+2.我们把正n 边形(3n ≥)的各边三等分,分别以居中的那条线段为一边向外作正n 边形,并去掉居中的那条线段,得到一个新的图形叫做正n 边形的“扩展图形”,并将它的边数记为n a .如图1,将正三角形进行上述操作后得到其“扩展图形”,且3a =12.图3、图4分别是正五边形、正六边形的“扩展图形”.(1)如图2,在5×5的正方形网格中用较粗的虚线画有一个正方形,请在图2中用实线画出此正方形的“扩展图形”;(2)已知3a =12,4a =20,5a =30,则图4中6a =__________,根据以上规律,正n 边形的“扩展图形”中n a =_______________;(用含n 的式子表示)(3)已知311134a =-,411145a =-,511156a =-,……,且345111197300n a a a a ++++=,则n =________.二、解答题(本题8分)3.在平面直角坐标系xOy 中,直线l 1:12y x b =+与x 轴交于点A ,与y 轴交于点B ,且点C 的坐标为(4,4-).(1)点A 的坐标为 ,点B 的坐标为;(用含b 的式子表示)(2)当4b =时,如图1所示.连接AC ,BC ,判断△ABC 的形状,并证明你的结论; (3)过点C 作平行于y 轴的直线l 2,点P 在直线l 2上.当54b -<<时,在直线l 1平移的图1 图2图3图4过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.解:(2)△ABC证明:(3)点P的纵坐标为:___________________.图1备用图北京市西城区2017— 2018学年度第一学期期末试卷八年级数学参考答案及评分标准2018.1一、选择题(本题共30分,每小题3分)三、解答题(本题共27分,第19、23题每小题6分,其余每小题5分)19.解:(1)2+a ab510=5(2)a a b +; …………………………………………………………………3分 (2)21236mx mx m -+=2(1236)m x x -+ ……………………………………………………………4分 =2(6)m x -. …………………………………………………………………6分20.解:(1)选甲:一,理由合理即可,如:第一个分式的变形不符合分式的基本性质,分子漏乘1x -; …………………………………………………………………2分选乙:二,理由合理即可,如:与等式性质混淆,丢掉了分母;…………………………………………………………………………………2分 (2)22511x x x +++- =2(1)5(1)(1)(1)(1)x x x x x x -+++-+- …………………………………………………3分 =225(1)(1)x x x x -+++-=33(1)(1)x x x ++- …………………………………………………………………4分=31x -. ………………………………………………………………………5分21.证明:如图.∵AE ∥BC ,∴∠1 =∠C ,∠E =∠2. ……………………………2分 在△AED 和△CFD 中,∠1 =∠C , ∠E =∠2,AD =CD ,∴△AED ≌△CFD . ……………………………………………………………4分 ∴ ED =FD . ……………………………………………………………………5分22.解:方程两边同乘(3)(3)x x +-,得5(3)23x x -+=+. ……………………………2分 整理,得 51523x x -+=+. ……………………………………………………3分解得 4x =. ………………………………………………………………………4分 经检验4x =是原分式方程的解. …………………………………………………5分所以,原分式方程的解为4x =.23.解:(1)图象如图所示; …………………………1分(2)∵当2x =时y 的值为1,当1x =-时y 的值为-∴ 21,5.k b k b +=⎧⎨-+=-⎩ …………………………3分解得 2,3.k b =⎧⎨=-⎩……………………………4分(3)∵一次函数23y x =-的图象向上平移4个单位长度后得到的新函数为21y x =+,∴令0y =,12x =-;令0x =,1y =.∴新函数的图象与x 轴,y 轴的交点坐标分别为(12-,0),(0,1).…………………………………………………………………………………6分四、解答题(本题共18分,第24题5分,第25题6分,第26题7分) 24.解:(1)不正确; ………………………………………………………………………1分 (2) 相同, …………………………………………………………………………2分理由合理即可,如:因为将图5沿直线翻折后得到的划分方法与图2的划分方法相同;…………………………………………………………………………3分(3)答案不唯一.如:…………………………………5分25.解:(1)∵点B(1,m)在直线l1上,∴3114m=⨯+=.……………………………………………………………1分=-平行,∵直线l2:y kx b=+与直线y x∴1k=-.∵点B(1,4)在直线l2上,∴14bb=.-+=,解得5∴直线l2的表达式为5=-+.……………………………………………2分(2)∵直线y xl1:31y x=+与y轴交于点A,∴点A的坐标为(0,1).∵直线l2与y轴交于点C,∴点C的坐标为(0,5).∵PA=PC,∴点P在线段AC的垂直平分线上.∴点P 的纵坐标为51132-+=. ……………………………………………3分 ∵点P 在直线l 2上, ∴53x -+=,解得2x =.∴点P 的坐标为(2,3). ……………………………………………………4分(3)∵点D 在直线l 1:31y x =+上,且点D 的横坐标为a ,∴点D 的坐标为(a ,31a +).∵点E 在直线l 2:y kx b =+上,且DE ∥y 轴,∴点E 的坐标为(a ,5a -+).∵DE =6, ∴31(5)6a a +--+=. ∴52a =或12-. ………………………………………………………………6分 26.解:(1)①△BMF ,边角边,60; ……………………3分②证明:如图1.∵由ⅰ)知△BEF ≌△BMF ,∴∠2=∠1.∵由ⅱ)知∠1=60°,∴∠2=60°,∠3=∠1=60°.∴∠4=180°-∠1-∠2=60°.∴∠3=∠4. ………………………………4分∵CE 是△ABC 的角平分线,∴∠5=∠6.在△CDF 和△CMF 中, 图1∠3=∠4CF =CF ,∠5=∠6,∴△CDF ≌△CMF .∴ CD =CM .∴BE +CD = BM +CM =BC . …………………………………………………5分(2)证明:作∠ACE 的角平分线CN 交AB 于点N ,∵∠A =60°,∠ABC =40°,∴∠ACB =180°-∠A -∠ABC =80°.∵BD ,CE 分别是△ABC 的角平分线,∴∠1=∠2=12∠ABC =20°, ∠3=∠ACE =12∠ACB =40°. ∵CN 平分∠ACE ,∴∠4=12∠ACE =20°. ∴∠1=∠4.∵∠5=∠2+∠3=60°,∴∠5=∠A .∵∠6=∠1+∠5,∠7=∠4+∠A ,∴∠6=∠7.∴CE =CN .∵∠EBC =∠3=40°,图2∴BE=CE.∴BE=CN.在△BEF和△CNA中,∠5=∠A∠1=∠4,BE= CN,∴△BEF≌△CNA.∴BF= CA.…………………………………………………………7分北京市西城区2017— 2018学年度第一学期期末试卷八年级数学附加题参考答案及评分标准2018.1一、解答题(本题共12分,每小题6分)1.解:(1)增大;…………………………………………………………………………2分(2)C;……………………………………………………………………………4分(3)D.……………………………………………………………………………6分2.解:(1)如图所示;………………………………………2分n n ;……………………………………4分(2)42,(1)(3)99.…………………………………………………6分二、解答题(本题8分)3.解:(1)(2b-,0),(0,b);………………………………………………………2分(2)等腰直角三角形;……………………………………………………………3分证明:过点C作CD⊥y轴于点D,如图,则∠BDC=∠AOB=90°.∵点C的坐标为(4,4-),∴点D的坐标为(0,4-),∵当b=4时,点A,B的坐标分别为(-∴AO=8,BO=4,BD=8.∴AO=BD,BO= CD.在△AOB和△BDC中,AO=BD,∠AOB=∠BDC,BO= CD,∴△AOB≌△BDC.…………………………………………………4分∴∠1=∠2,AB=BC.∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°.∴△ABC是等腰直角三角形.………………………………………5分(3)12-,8-,8.………………………………………………………………8分3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2017— 2018学年度第一学期期末试卷
七年级数学附加题2018.1
试卷满分:20分
一、填空题(本题共6分)
1.用“△”定义新运算:对于任意有理数a,b,当a≤b时,都有2
a b a b
∆=;当a>b时,都
有2
a b ab
∆=.那么,2△6 =,
2
()
3
-△(3)
-=.
二、解答题(本题共14分,每小题7分)
2.输液时间与输液速率问题
静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D,即每分钟输入多少滴液体,来计算输完点滴注射液的
时间t(单位:分钟).他们使用的公式是:
dV
t
D
=,其中,V是点滴注射液的容积,以毫升
(ml)为单位,d 是点滴系数,即每毫升(ml)液体的滴数.
(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?
(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的1
2
,准确地描述,在V
和d保持不变的条件下,输完这瓶点滴注射液的时间将会发生怎样的变化?
3.阅读下列材料:
我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ上(点R能与点P或Q重合),则称点A与点B关于线段PQ径向对称.
下图为点A与点B关于线段PQ径向对称的示意图.
解答下列问题:
如图1,在数轴上,点O为原点,点A表示的数为−1,点M表示的数为2.
图1
(1)①点B,C,D分别表示的数为−3,3
2
,3,在B,C,D三点中,与点A关于线段OM径
向对称;
②点E 表示的数为x,若点A与点E关于线段OM的径向对称,则x的取值范围
是;
(2)点N是数轴上一个动点,点F表示的数为6,点A与点F关于线段ON径向对称,线段ON 的最小值是;
(3)在数轴上,点H,K,L表示的数分别是−5,−4,−3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM 径向对称.
解:(1)①与点A关于线段OM的径向对称;
②x的取值范围是;
(2)线段ON的最小值是;
(3)。

相关文档
最新文档