高等数学下册复习提纲

合集下载

大一高数下册知识点框架

大一高数下册知识点框架

大一高数下册知识点框架在大一的高等数学下册中,学生们将进一步学习和掌握一系列高数的重要知识点。

本文将为您提供大一高数下册的知识点框架,以便于您对该学期的学习内容有一个全面的了解。

一、多元函数及其极限1. 二元函数的概念与表示2. 二元函数的极限与连续性3. 多元函数的极限与连续性4. 二元函数的偏导数与全微分二、多元函数的微分学1. 多元函数的偏导数与全微分的概念2. 多元函数的微分法则与高阶偏导数3. 隐函数与参数方程的求导4. 多元函数的泰勒展开式三、多元函数的积分学1. 重积分的概念与性质2. 二重积分的计算方法3. 三重积分的计算方法4. 曲线与曲面的面积四、向量代数与空间解析几何1. 向量的基本概念与运算2. 空间直线与平面的方程3. 空间曲线的参数方程与切向量4. 空间曲面的方程与切平面五、微分方程1. 常微分方程的基本概念与解法2. 一阶线性微分方程及其应用3. 高阶线性常微分方程及其应用4. 非齐次线性微分方程的常数变易法六、级数1. 数项级数的概念与性质2. 收敛级数的判定方法3. 幂级数的收敛半径与收敛域4. 泰勒级数与函数的展开七、常微分方程初步1. 常微分方程的基本概念与解法2. 可化为常微分方程的高阶微分方程3. 高阶线性微分方程的常数变易法4. 常微分方程的应用问题八、多元函数微分学应用1. 多元函数的条件极值与最值2. 线性规划与凸集3. 多元函数在工程与物理问题中的应用4. 二重积分在平面图形中的应用九、场论初步1. 初等矢量场2. 偏导数与梯度3. 散度与旋度4. 基本定理与应用以上为大一高数下册的知识点框架,希望对您的学习有所帮助。

通过系统地学习这些知识点,并进行大量的练习与应用,相信您将能够顺利掌握高等数学下册的内容,并取得优异的成绩。

祝您学业进步!。

高等数学下册考试提纲

高等数学下册考试提纲

高等数学下册考试提纲第一篇:高等数学下册考试提纲高等数学下册考试提纲一、二元函数求极限二、求向量投影,已知一定条件求平面方程三、求方向导数最大值(梯度的模),隐函数求一阶偏导,多元抽象复合函数求二阶偏导四、二元分段函数在分界点连续,偏导数、可微性判断五、交换二重积分次序;二重积分在直角坐标计算六、三重积分计算(球面坐标)七、第一类曲线积分计算;第二类曲线积分计算(利用曲线积分与路径无关或格林公式)八、第一类曲面积分计算;第二类曲面积分计算(利用高斯公式)九、求数项级数的和;求幂级数的收敛域与和函数十、数项级数敛散性判断;利用比较法证明数项级数收敛十一、利用条件极值求最大、最小值在几何上的应用题第二篇:《高等数学》考试大纲《高等数学》考试大纲――各专业(工科及管理类专业)适用1.极限与连续数列极限和函数极限的概念和性质,函数的左、右极限概念,无穷小的概念及性质,无穷小与无穷大的关系,无穷小的比较,极限的四则运算,极限存在准则与两个重要极限,利用存在准则1及两个重要极限求极限。

函数连续的概念及运算,函数间断点及其分类,初等函数的连续性,利用初等函数的连续性求极限,闭区间上连续函数的性质。

2.导数与微分导数的概念,几何意义,可导与连续的关系,基本初等函数的导数公式,导数的四则运算,反函数的导数,复合函数的求导法则,隐函数的求导方法,对数求导法,高阶导数及其计算。

微分的概念,微分基本公式,微分运算法则,微分形式不变性,微分的计算。

3.中值定理及其导数应用罗尔定理、拉格朗日中值定理、柯西中值定理,利用洛必塔(罗彼塔)法则求极限。

函数单调性的判别法,函数单调区间的求法及利用单调性证明不等式,函数取极值的判别法及极值求法,函数最大值与最小值的求法,最值应用。

曲线的凹(上凹)、凸(下凹)的判别法,曲线凹(上凹)、凸(下凹)区间及拐点的求法。

4.不定积分原函数和不定积分的概念,不定积分的基本性质,基本积分公式,不定积分的第一、第二换元积分法,分部积分法,简单有理函数及无理函数的不定积分求法。

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)复提纲1. 函数- 函数的概念及分类- 函数的性质及其图像- 常见函数及其性质2. 数列- 数列的概念及其分类- 数列的通项公式及前n项和公式- 常见数列及其性质3. 三角函数- 三角函数的概念及其关系式- 常见三角函数的性质- 解三角函数的基本方程4. 平面向量- 向量的概念及其运算- 向量的线性运算及应用- 向量共线、垂直及夹角的判定5. 解析几何- 二维平面直角坐标系、极坐标系及其应用- 空间直角坐标系及其应用- 点、直线、圆、锥面、曲面及其方程大纲1. 函数与导数1.1 函数的概念与性质1.2 常见函数及其变换1.3 导数概念及其计算法1.4 函数的极值与最值1.5 函数的单调性及曲线的凹凸性2. 不等式组与线性规划2.1 一元一次不等式及其解法2.2 多元一次不等式组及其解法2.3 线性规划基本概念及其解法3. 数列与数学归纳法3.1 数列的概念及性质3.2 等差数列、等比数列及其应用3.3 数学归纳法的原理及应用4. 三角函数4.1 角度及弧度制与三角函数关系4.2 常见三角函数及其性质4.3 三角函数的图像及其变换4.4 解三角形的基本原理及解法5. 平面向量5.1 向量的概念及其运算5.2 向量的线性运算及应用5.3 向量的共线、垂直、平行及夹角的判定6. 解析几何6.1 二维平面直角坐标系、极坐标系及其应用6.2 空间直角坐标系及其应用6.3 几何图形的基本性质及其坐标表示7. 概率论基础7.1 随机事件与概率的概念7.2 基本概型及其计算7.3 条件概率及乘法公式7.4 全概率公式及贝叶斯公式8. 统计与统计图8.1 样本与总体的概念及其统计量8.2 常见统计图及其应用8.3 正态分布及其应用。

高等数学-下期末复习提纲 PPT课件

高等数学-下期末复习提纲 PPT课件
由 fx 2x 2y 0, f y 2x 2 0得唯一驻点 (1, 1) ,且 f (1, 1) 1. 又D的边界包含四条直线段 L1, L2 , L3, L4.
易得最大值、最小值分别为 f (3, 0) 9, f (0, 0) 0 .
第四章 多元函数积分学
重 点 二重积分计算(直角系与极坐标)、三重积分计算 (直角系、柱坐标系、球坐标系)、利用三重积分 求物体体积与质量.
再见!
x0
ln(
y

x)

y 1
y 1
x


ln(1

0)

1
1 02
1.
例8、设
z

4x3

3x2
y

3xy 2

x

y
,

2z x2
,
2z .
yx
解 z 12x2 6xy 3y 2 1,
x
z 3x2 6xy 1;
例7、求下列函数的极限
(1)
lim (x2
x0

y2
)sin
x2
1
y2
;
y0

lim( x 2
x0

y2 ) sin
x2
1
y2
lim u sin 1
u0
u
0,
其中u
=
x2

y2;
y0

(2) limln( y x)
y
.
xy01
1 x2


lim
与球面
所围立体.

高等数学复习提纲 同济大学 下册

高等数学复习提纲 同济大学 下册

高等数学复习提纲一、考试题型 1.填空题6题 2.计算题8题 二、知识点 1.平面及其方程。

例题:一平面过点(1? 0? ?1)且平行于向量a ?(2? 1? 1)和b ?(1? ?1? 0)? 试求这平面方程?解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=?所求平面的方程为(x ?1)?(y ?0)?3(z ?1)?0? 即x ?y ?3z ?4?0?2.空间直线及其方程。

例题:求过点(2? 0? ?3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程?解 所求平面的法线向量n 可取为已知直线的方向向量? 即k j i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=?所平面的方程为?16(x ?2)?14(y ?0)?11(z ?3)?0? 即 16x ?14y ?11z ?65?0?例题:求过点(3? 1? ?2)且通过直线12354zy x =+=-的平面方程?解 所求平面的法线向量与直线12354zy x =+=-的方向向量s 1?(5? 2?1)垂直? 因为点(3? 1? ?2)和(4? ?3? 0)都在所求的平面上? 所以所求平面的法线向量与向量s 2?(4? ?3? 0)?(3? 1? ?2)?(1? ?4? 2)也是垂直的? 因此所求平面的法线向量可取为k j i kj i s s n 229824112521--=-=⨯=?所求平面的方程为8(x ?3)?9(y ?1)?22(z ?2)?0? 即 8x ?9y ?22z ?59?0?3.旋转曲面。

例题:将zOx 坐标面上的抛物线z 2?5x 绕x 轴旋转一周? 求所生成的旋转曲面的方程? 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2?z 2?5x ?例题:将zOx 坐标面上的圆x 2?z 2?9绕z 轴旋转一周? 求所生成的旋转曲面的方程?解 将方程中的x 换成22y x +±得旋转曲面的方程x 2?y 2?z 2?9?4. 多元复合函数求导,隐函数求导。

高数下册复习提纲

高数下册复习提纲

第7章:微分方程一、微分方程的相关概念1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶.2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解.通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解.3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(=.(2). 方程的解法:分离变量法(3). 求解步骤①. 分离变量,将方程写成dx x f dy y g )()(=的形式;②. 两端积分:⎰⎰=dx x f dy y g )()(,得隐式通解C x F y G +=)()(;③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式:⎪⎭⎫ ⎝⎛=x y dx dy ϕ. (2).方程的解法:变量替换法 (3). 求解步骤①.引进新变量x y u=,有ux y =及dxdux u dx dy +=; ②.代入原方程得:)(u dxdux u ϕ=+;③.分离变量后求解,即解方程xdxu u du =-)(ϕ;④.变量还原,即再用xy代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式:)()(x Q y x P dxdy=+. 一阶齐次线性微分方程:0)(=+y x P dxdy.一阶非齐次线性微分方程:0)()(≠=+x Q y x P dxdy. (2).一阶齐次线性微分方程0)(=+y x P dxdy的解法: 分离变量法. 通解为⎰-=x d x P Ce y )(,(R C ∈).(公式)(3).一阶非齐次线性微分方程0)()(≠=+x Q y x P dxdy的解法: 常数变易法. 对方程)()(x Q y x P dxdy=+,设⎰-=x d x P e x u y )()(为其通解,其中)(x u 为未知函数, 从而有 ⎰---'=⎰x d x P x d x P e x P x u x u dxdy)()()()(e )(,代入原方程有 )()()()()(e)()()()(x Q e x u x P e x P x u x u x d x P x d x P xd x P =+-'⎰-⎰--⎰,整理得 ⎰='x d x P x Q x u )(e )()(,两端积分得 C dx e x Q x u x d x P +=⎰⎰)()()(,再代入通解表达式,便得到一阶非齐次线性微分方程的通解))(()()(C dx e x Q e y x d x P x d x P +=⎰⎰⎰-dx e x Q e Ce x d x P x d x P x d x P ⎰⎰⎰-⎰-+=)()()()(,(公式)即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解.三、可降阶的高阶微分方程1. )()(x f y n =型接连n 次积分,可得此方程的含有n 个相互独立的任意常数的通解. 2. ),(y x f y '=''型令p y =',则dxdpy ='',代入原方程,并依次解两个一阶微分方程便可得此方程的通解. 3. ),(y y f y '=''型令p y =',则dy dp p dx dy dy dp dx dp y =⋅=='',代入原方程,得到一阶微分方程),(p y f dydp p =.解此一阶微分方程,得到),(1C y p y ϕ==',然后分离变量并积分便可得此方程的通解.第8章 向量与解析几何222cos A C A θ=+⋅第9章 多元函数微分法及其应用一、基本概念 1.多元函数(1)知道多元函数的定义n 元函数:),,,(21n x x x f y = (2)会求二元函数的定义域1°:分母不为0; 2°:真数大于0;3°:开偶次方数不小于0; 4°:u z arcsin =或u arccos 中||u ≤1 (3)会对二元函数作几何解释 2.二重极限A y x f y y x x =→→),(lim 0这里动点),(y x 是沿任意路线趋于定点),(00y x 的.(1) 理解二重极限的定义(2) 一元函数中极限的运算法则对二重极限也适用,会求二重极限; (3) 会证二元函数的极限不存在(主要用沿不同路径得不同结果的方法). 3.多元函数的连续性(1)理解定义:)()(lim 00P f P f P P =→.(2)知道一切多元初等函数在其定义域内连续的结论;(3)知道多元函数在闭区域上的最大最小值定理、介值定理。

高数复习大纲同济六版下册

高数复习大纲同济六版下册

高等数学下册复习提纲 (向量代数—>无穷级数)第一次课1、向量与空间几何 向量:向量表示((a^b));向量的模: 向量的大小叫做向量的模.向量a 、→a 、→AB 的模分别记为|a |、||→a 、||→AB . 单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或→0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a 与b 平行, 记作a // b . 零向量认为是与任何向量都平行. 向量运算(向量积); 1. 向量的加法 2. 向量的减法3.向量与数的乘法设a =(a x , a y , a z ), b =(b x , b y , b z )即 a =a x i +a y j +a z k , b =b x i +b y j +b z k ,则 a +b =(a x +b x )i +(a y +b y )j +(a z +b z )k =(a x +b x , a y +b y , a z +b z ). a -b = (a x -b x )i +(a y -b y )j +(a z -b z )k =(a x -b x , a y -b y , a z -b z ).λa =λ(a x i +a y j +a z k ) =(λa x )i +(λa y )j +(λa z )k =(λa x , λa y , λa z ). 向量模的坐标表示式 222||z y x ++=r点A 与点B 间的距离为 →212212212)()()(||||z z y y x x AB AB -+-+-==向量的方向:向量a 与b 的夹角 当把两个非零向量a 与b 的起点放到同一点时, 两个向量之间的不超过π的夹角称为向量a 与b 的夹角, 记作^) ,(b a 或^) ,(a b . 如果向量a 与b 中有一个是零向量, 规定它们的夹角可以在0与π之间任意取值. 类似地, 可以规定向量与一轴的夹角或空间两轴的夹角.数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的 余弦的乘积称为向量a 和b 的数量积, 记作a ⋅b , 即a ·b =|a | |b | cos θ .数量积与投影:由于|b | cos θ =|b |cos(a ,^ b ), 当a ≠0时, |b | cos(a ,^ b ) 是向量 b 在向量a 的方向上的投影, 于是a ·b = |a | Prj a b .同理, 当b ≠0时, a·b = |b | Prj b a . 数量积的性质: (1) a·a = |a | 2.(2) 对于两个非零向量 a 、b , 如果 a·b =0, 则 a ⊥b 反之, 如果a ⊥b , 则a·b =0.如果认为零向量与任何向量都垂直, 则a ⊥b ⇔ a ·b =0. 两向量夹角的余弦的坐标表示:设θ=(a , ^ b ), 则当a ≠0、b ≠0时, 有222222||||cos zy x z y x zz y y x x b b b a a a b a b a b a ++++++=⋅=b a b a θ向量积: 设向量c 是由两个向量a 与b 按下列方式定出:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定.那么, 向量c 叫做向量a 与b 的向量积, 记作a ⨯b , 即 c = a ⨯b . 坐标表示:zy x z y x b b b a a a kj i b a =⨯=a y b z i +a z b x j +a x b y k -a y b x k -a x b z j -a z b y i= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . . 向量的方向余弦:设r =(x , y , z ), 则 x =|r |cos α, y =|r |cos β, z =|r |cos γ . cos α、cos β、cos γ 称为向量r 的方向余弦.||cos r x =α, ||cos r y=β, ||cos r z =γ. 从而 r e r r ==||1)cos ,cos ,(cos γβα向量的投影向量在轴上的投影设点O 及单位向量e 确定u 轴.任给向量r , 作→r =OM , 再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影), 则向量→M O '称为向量r 在u 轴上的分向量. 设→e λ='M O , 则数λ称为向量r 在u 轴上的投影, 记作Prj u r 或(r )u .按此定义, 向量a 在直角坐标系Oxyz 中的坐标a x , a y , a z 就是a 在三条坐标轴上的投影, 即a x =Prj x a , a y =Prj y a , a z =Prj z a . 投影的性质:性质1 (a )u =|a |cos ϕ (即Prj u a =|a |cos ϕ), 其中ϕ为向量与u 轴的夹角; 性质2 (a +b )u =(a )u +(b )u (即Prj u (a +b )= Prj u a +Prj u b ); 性质3 (λa )u =λ(a )u (即Prj u (λa )=λPrj u a );空间方程:曲面方程(旋转曲面和垂直柱面); (1)椭圆锥面由方程22222z by a x =+所表示的曲面称为椭圆锥面. (2)椭球面由方程1222222=++cz b y a x 所表示的曲面称为椭球面.(3)单叶双曲面由方程1222222=-+cz b y a x 所表示的曲面称为单叶双曲面. (4)双叶双曲面由方程1222=--cz b y a x 所表示的曲面称为双叶双曲面.(5)椭圆抛物面由方程z by a x =+2222所表示的曲面称为椭圆抛物面 (6)双曲抛物面.由方程z b y a x =-2222所表示的曲面称为双曲抛物面. 椭圆柱面12222=+b y a x ,双曲柱面122=-by a x , 抛物柱面ay x =2, .直线方程(参数方程和投影方程) 空间直线的一般方程空间直线L 可以看作是两个平面∏1和∏2的交线.如果两个相交平面∏1和∏2的方程分别为A 1x +B 1y +C 1z +D 1=0和A 2x +B 2y +C 2z +D 2=0, 那么直线L 上的任一点的坐标应同时满足这两个平面的方程, 即应满足方程组 ⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A .空间直线的对称式方程与参数方程方向向量: 如果一个非零向量平行于一条已知直线, 这个向量就叫做这条直线的方向向量. 容易知道, 直线上任一向量都平行于该直线的方向向量.确定直线的条件: 当直线L 上一点M 0(x 0, y 0, x 0)和它的一方向向量s = (m , n , p )为已知时, 直线L 的位置就完全确定了.直线方程的确定: 已知直线L 通过点M 0(x 0, y 0, x 0), 且直线的方向向量为s = (m , n , p ), 求直线L 的方程.设M (x , y , z )在直线L 上的任一点, 那么(x -x 0, y -y 0, z -z 0)//s , 从而有pz z n y y m x x 000-=-=-. 这就是直线L 的方程, 叫做直线的对称式方程或点向式方程 ⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 直线L 1和L 2的夹角ϕ可由 |) ,cos(|cos 2^1s s =ϕ222222212121212121||p n m p n m p p n n m m ++⋅++++=直线与平面的夹角设直线的方向向量s =(m , n , p ), 平面的法线向量为n =(A , B , C ), 直线与平面的夹角为ϕ , 那么|) , (2|^n s -=πϕ, 因此|) , cos(|sin ^n s =ϕ. 按两向量夹角余弦的坐标表示式, 有222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ平面方程:点法式(法向量)、一般式、任一平面都可以用三元一次方程来表示 . Ax +By +Cz +D =0.其中x , y , z 的系数就是该平面的一个法线向量n 的坐标, 即 n =(A , B , C ). 提示:D =0, 平面过原点.n =(0, B , C ), 法线向量垂直于x 轴, 平面平行于x 轴. n =(A , 0, C ), 法线向量垂直于y 轴, 平面平行于y 轴. n =(A , B , 0), 法线向量垂直于z 轴, 平面平行于z 轴.n =(0, 0, C ), 法线向量垂直于x 轴和y 轴, 平面平行于xOy 平面. n =(A , 0, 0), 法线向量垂直于y 轴和z 轴, 平面平行于yOz 平面. n =(0, B , 0), 法线向量垂直于x 轴和z 轴, 平面平行于zOx 平面.截距式;平面夹角和距离两平面的夹角: 两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面∏1和∏2的法线向量分别为n 1=(A 1, B 1, C 1)和n 2=(A 2, B 2, C 2), 那么平面∏1和∏2的夹角θ 应是) ,(2^1n n 和) ,() ,(2^12^1n n n n -=-π两者中的锐角, 因此, |) ,cos(|cos 2^1n n =θ. 按两向量夹角余弦的坐标表示式, 平面∏1和∏2的夹角θ 可由2222222121212121212^1|||) ,cos(|cos C B A C B A C C B B A A ++⋅++++==n n θ.来确定.从两向量垂直、平行的充分必要条件立即推得下列结论: 平面∏1和∏2垂直相当于A 1 A 2 +B 1B 2 +C 1C 2=0;平面∏ 1和∏ 2平行或重合相当于212121C C B B A A == 空间曲线的一般方程空间曲线可以看作两个曲面的交线. 设F (x , y , z )=0和G (x , y , z )=0是两个曲面方程, 它们的交线为C . 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组⎩⎨⎧==0),,(0),,(z y x G z y x F空间曲线的参数方程(33)空间曲线C 的方程除了一般方程之外, 也可以用参数形式表示, 只要将C 上动点的坐标x 、y 、z 表示为参数t 的函数:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x .当给定t =t 1时, 就得到C 上的一个点(x 1, y 1, z 1); 随着t 的变动便得曲线C 上的全部点. 方程组(2)叫做空间曲线的参数方程. 切平面和切线: 切线与法平面;设空间曲线Г的参数方程为),(),(),(t z t y t x ωφϕ=== 曲线在点),,(000z y x M 处的切线方程为)(00t x x ϕ'-=.)()(0000t z z t y y ωφ'-='- 向量 )}('),('),('{000t t t T ωφϕ=就是曲线Г在点M 处的一个切向量 法平面的方程为0))(('))(('))( ('000000=-+-+-z z t y y t x x t ωφϕ切平面与法线隐式给出曲面方程((,,)0F x y z =)法向量为:)},,,(),,,(),,,({000000000z y x Fz z y x F z y x F n y x = 切平面的方程是))(,,())(,,())(,,(000000000000z z z y x F y y z y x F x x z y x F z y x -+-+-法线方程是.),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-),(y x z =在点),(00y x如果用α、β、γ表示曲面的法向量的方向角,并假定法向量的方向是向上的,即使得它与z 轴的正向所成的角γ是一锐角,则法向量的方向余弦为 ,1cos 22yxx ff f ++-=α ,1c o s 22yxy ff f ++-=β.11cos 22yxff ++=γ2、多元函数微分学多元函数极限:简单复习讲解 偏微分全微分:如果三元函数),,(z y x u φ=可以微分,那么它的全微分就等于它的三个偏微分之和, du =x u ∂∂dx +y u ∂∂dy +zu ∂∂dz 第二次课3、重积分二重积分:利用直角坐标计算二重积分我们用几何观点来讨论二重积分f x y d D(,)σ⎰⎰的计算问题。

高数下知识点复习

高数下知识点复习

高数下知识点复习一、导数与微分1.导数的定义导数是描述函数变化率的概念,表示函数在某一点的瞬时变化率。

导数的定义为:$$f'(x)=\lim_{\Delta x \to 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}$$2.导数的性质导数具有如下的性质:(1) 导函数存在的充要条件是函数在该点可导。

(2) 导函数的值表示函数的斜率。

(3) 导函数具有线性性质,即对于常数a和b,有$(af(x)+bg(x))'=af'(x)+bg'(x)$。

(4) 导函数的导数为二阶导数,记作$f''(x)$。

3.微分的定义与性质微分是导数的一种几何解释,表示函数在某一点附近的变化量。

微分的定义为:$$df(x) = f'(x)dx$$微分满足的性质包括:(1) $\Delta f = f(x+\Delta x)-f(x) \approx df$(2) 微分的四则运算:若函数f(x)和g(x)可导,则$$d(f\pm g) = df \pm dg$$$$d(f \cdot g) = g(df) + f(dg)$$$$d\left(\frac{f}{g}\right) = \frac{g(df) - f(dg)}{g^2}$$二、极限与连续1.数列极限数列极限是描述数列趋向某一值的概念。

数列的极限定义为:对于任意给定的正数$\varepsilon$,存在正整数N,使得当$n>N$时,有$|a_n-L|<\varepsilon$。

2.函数极限函数极限是描述函数趋向某一值的概念。

函数的极限定义为:对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$0<|x-a|<\delta$时,有$|f(x)-L|<\varepsilon$。

3.极限的性质极限具有如下的性质:(1) 唯一性:如果极限存在,则极限是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学下册复习提纲(14)
第七章 微分方程
1. 可分离变量的微分方程的解法.
练习 1.求微分方程ydx xdy =的通解.
2. . 求微分方程x
y dx dy 2
1+=的通解 3. 求微分方程y xe y ='的通解
2.一阶线性非齐次微分方程的通解公式
)()(x q y x p y =+'的通解公式为))(()()(⎰+⎰⎰=-C dx e x q e y dx x p dx x p
练习 1.求微分方程
23=+y dx dy 的通解. 2.求微分方程x x
y dx dy sin =+的通解. 3. 常系数齐次线性微分方程0=+'+''qy y p y 的解法
练习 1.求微分方程032=-'-''y y y 的通解.
2.求微分方程044=+'-''y y y 的通解.
3.求微分方程054=+'-''y y y 的通解
4. 常系数非齐次线性微分方程)(x f qy y p y =+'+''的解法
(1) 会找)(x f qy y p y =+'+''的特解
(2) 会求)(x f qy y p y =+'+''的通解(*y Y y +=)
练习 1.写出微分方程x e y y y 22=+'-''的特解形式
2.写出微分方程x x y y cos 4=+''的特解形式.
3.求微分方程54='-''y y 的通解.
5. 已知方程的解,求微分方程
练习:1.已知x x e y e y -==221,为某个二阶常系数齐次微分方程的特解,
求此微分方程,并写出其通解.
2.已知x y sin =为某个二阶常系数齐次微分方程的特解,
求此微分方程,并写出其通解.
6. 利用解的结构求解微分方程
练习:已知x e x y x y y ++=+==232213,3,3为某个二阶常系数非齐次微分方程的特解,求此微分方程的通解.
第八章 空间解析几何
1.会求向量{}z y x ,,的方向余弦 γβαcos ,cos ,cos .
练习 1.由点)0,1(P 到点)1,2(-Q 的向量的方向余弦.
2.会求空间曲面或是立体在坐标面上的投影.
练习 1锥面22y x z +=与平面1=z 所围成的立体在xoy 面上的投影. 2旋转抛物面22y x z +=与平面1=z 所围成的立体在xoy 面上的投影.
3.会求平面方程和直线方程
练习 1. 过点)1,0,3(-且与平面012573=-+-z y x 垂直的直线方程.
2. 过点)1,0,3(-且与直线
3
21z y x ==垂直的平面方程. 3. 过点)1,0,1(-且与直线321z y x ==,113121-=-=-z y x 平行的平面方程. 4. 求过点)1,0,1(-,且平行于)0,1,1(),1,1,2(-==的平面方程.
4.会判定直线与平面之间的位置关系
5.利用平面束求直线在平面上的投影直线
第九章 多元函数的微分法及其应用
1.会求偏导数和全微分dz
练习 1. 设22v u z +=,而y x u +=、y x v -=,求:x z ∂∂、y
z ∂∂. 2. 设v u z ln 2=,而y
x u =、y x v 23-=,求:x z ∂∂、y z ∂∂. 3. 设x y z =求:x z ∂∂、y
z ∂∂,和dz . 2.会求隐函数的偏导数
练习 设函数),(y x f z =是由方程14222=++z y x 所确定,求y
z x z ∂∂∂∂,.
3.会求含有抽象函数的隐函数的导数
练习 已知方程)(z y x f xz yz xy ++=++,求
y
z x z ∂∂∂∂,. 4.会求空间曲线的切线和法平面
练习 1. 求曲线⎪⎩
⎪⎨⎧===32t z t y t x 在1=t 处的切线方程和法平面方程.
2. 求曲线⎪⎩⎪⎨⎧===32t z t y t x 在哪点处的切线与平面42=++z y x 平行.
5.会求曲面的切平面和法线方程
练习 求曲面z y x 222=+在)2,1,1(处的切平面方程和法线方程.
6. 理解多元函数连续、可微、偏导数存在三者之间的关系.
7. 会求方向导数和梯度 理解两者之间的关系
练习 函数22y x z +=在点)2,1(P 处沿)2,1(P 到点)32,2(+Q 的方向的方向导数,并求)2,1(gradf ,在)2,1(P 处的最大方向导数
8. 理解多元函数取得极值的必要条件和充分条件
9. 会用拉氏函数法求条件极值
第十章 重积分
1. 理解二重积分的几何意义:
2. 会求=⎰⎰D d σ
=⎰⎰⎰Ω
dv 3. 会在直角坐标系下用投影穿线法求二重积分
练习 1.计算二重积分,⎰⎰D
xyd σ其中D 是抛物线x y =与直线1,0==x y 所围成的.
2. 计算二重积分,22⎰⎰D
d y x σ其中D 是直线x y =与直线2,1==x x y 所围成的区域. 4. 会交换积分次序 练习 1 .
⎰⎰⎰⎰+21
214
1410),(),(y y y dx y x f dy dx y x f dy 交换积分次序⎰⎰2),(.210x x dy y x f dx 交换积分次序
5.会在极坐标系下求二重积分
练习 1.设D 为222R y x ≤+,求σd e D y x
⎰⎰+22
2.设D 为Rx y x 222≤+,则σd y x D
⎰⎰+22
3. 设D 为Ry y x 222≤+,则σd y x D
⎰⎰+22
3.设D 为222R y x ≤+,则σd y x D
⎰⎰+)(22
5. 会在直角坐标系下用投影穿线法求三重积分
练习 课本P162 例1
6.会用截面法或是柱面坐标法求三重积分
练习 1.计算三重积分⎰⎰⎰Ω
zdv 其中Ω是锥面22y x z +=与平面1=z 所围成的
立体.
2.计算三重积分⎰⎰⎰+Ω
dv y x )(22其中Ω是旋转抛物面22y x z +=与平面4=z 所
围成的立体.
7.理解球面坐标下求三重积分
练习 1.计算三重积分⎰⎰⎰++Ω
dv z y x )(222,其中Ω是球面1222=++z y x 所围成
的立体.
2. 计算三重积分⎰⎰⎰++Ω
dv z y x )(222,其中Ω是球面z z y x =++222所围成的立
体.
8.利用对称性和奇偶性计算重积分
练习:dxdy y x x
a y x ⎰⎰≤++++222)3(.
12 dv z y x ⎰⎰⎰++Ω)(.2,其中Ω是抛物面22y x z +=与平面1=z 所围成的
第十一章 线面积分
1. 会求=⎰L
ds 练习 课本P193 3 (1)(2)
2. 会用格林公式求第二类曲线积分
练习 课本P217 7
3. 理解曲线积分与路径无关的等价条件,会求⎰
+),(),(1100y x y x Qdy Pdx
4. 会用高斯公式求曲面积分
练习 课本P239 1
第十二章 级数
1. 会判定正项级数的敛散性
练习 课本 P272 4
2. 会判定绝对收敛,条件收敛
练习 课本 P272 5
3. 会求幂级数的的和函数及收敛域
练习 1. 求幂级数∑∞
=1n n
n x 的和函数)(x s 并指出其收敛域.
2. 求幂级数∑∞
=-11n n nx 的和函数)(x s 并指出其收敛域.
3. 课本 P281 2
4. 计算)1|(|)1()1(342312432<+⋅--++⋅+⋅-⋅x n
n x x x x n
n 5. 设幂级数 0n n n a x ∞
=∑, 当1n >时2 (1) n n a n n a -=-,且014, 1a a ==;
(1)求幂级数0n
n n a x ∞
=∑的和函数()S x ; (2)求和函数()S x 的极值. 4. 会把函数展成幂级数
熟记 ++++=!1n x x e n
x
)11(111<<-++++=-x x x x n 练习 课本 P287 例5 P290 5、6 将2)
2(1)(x x f -=展成x 的幂级数 将dt e x f x t ⎰=02
)(展成x 的幂级数 将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-01
2)1(n n
n 的和. 5.会求傅里叶级数的和函数(收敛定理)。

相关文档
最新文档