奥本海姆信号与系统习题参考答案电子科技大学
《信号与系统》考研奥本海姆版配套2021考研真题库

《信号与系统》考研奥本海姆版配套2021考研真题库第一部分考研真题精选一、选择题1下列关于冲激函数性质的表达式不正确的是()。
[西安电子科技大学2012研]A.f(t)δ′(t)=f(0)δ′(t)B.f(t)δ(t)=f(0)δ(t)C.D.【答案】A查看答案【解析】A项,正确结果应该为f(t)δ′(t)=f(0)δ′(t)-f′(0)δ(t)。
2x(t)=asint-bsin(3t)的周期是()。
[西南交通大学研]A.π/2B.πC.2πD.∞【答案】C查看答案【解析】因为asint的周期为T1=2π/1=2π,bsin(3t)的周期为T2=2π/3,因为T1/T2=3/1为有理数,因此x(t)是周期信号,且x(t)=asint-bsin (3t)的周期是3T2=T1=2π。
3序列f(k)=e j2πk/3+e j4πk/3是()。
[西安电子科技大学2012研]A.非周期序列B.周期N=3C.周期N=6D.周期N=24【答案】B查看答案【解析】f1(k)=e j2πk/3的周期N1=2π/(2π/3)=3,f2(k)=e j4πk/3的周期N2=2π/(4π/3)=3/2,由于N1/N2=2为有理数,因此f(k)为周期序列,周期为2N2=N1=3。
4积分[西安电子科技大学2011研]A.2B.1C.0D.4【答案】A查看答案【解析】5序列乘积δ(k+1)δ(k-1)=()。
[西安电子科技大学研]A.0B.δ(k)C.δ(k+1)D.δ(k-1)【答案】A查看答案【解析】根据f(k)δ(k-k0)=f(k0)δ(k-k0),因此δ(k+1)δ(k-1)=δ(2)δ(k-1)=0。
6信号f1(t)=2,f2(t)的波形如图1-1-1所示,设y(t)=f1(t)*f2(t),则y(11)=()。
[西安电子科技大学2011研]图1-1-1A.1B.0C.2D.3【答案】B查看答案【解析】7已知一连续系统在输入f(t)作用下的零状态响应为y(t)=f(4t),则该系统为()。
奥本海姆《信号与系统》第2版上册配套题库

奥本海姆《信号与系统》第2版上册配套题库奥本海姆《信号与系统》(第2版)配套题库【考研真题精选+章节题库】(上册)目录第一部分考研真题精选一、选择题二、填空题三、判断题四、简答题五、画图题六、证明题七、计算题第二部分章节题库第1章绪论第2章线性时不变系统第3章周期信号的傅里叶级数表示第4章连续时间傅里叶变换第5章离散时间傅里叶变换第6章信号与系统的时域和频域特性•试看部分内容考研真题精选一、选择题1下列关于冲激函数性质的表达式不正确的是()。
[西安电子科技大学2012研]A.f(t)δ′(t)=f(0)δ′(t)B.f(t)δ(t)=f(0)δ(t)C.D.【答案】A查看答案【解析】A项,正确结果应该为f(t)δ′(t)=f(0)δ′(t)-f′(0)δ(t)。
2x(t)=asi n t-b si n(3t)的周期是()。
[西南交通大学研]A.π/2B.πC.2πD.∞【答案】C查看答案【解析】因为asin t的周期为T1=2π/1=2π,bsin(3t)的周期为T2=2π/3,因为T1/T2=3/1为有理数,因此x(t)是周期信号,且x(t)=asint-b sin(3t)的周期是3T2=T1=2π。
3序列f(k)=e j2πk/3+e j4πk/3是()。
[西安电子科技大学2012研]A.非周期序列B.周期N=3C.周期N=6D.周期N=24【答案】B查看答案【解析】f1(k)=e j2πk/3的周期N1=2π/(2π/3)=3,f 2(k)=e j4πk/3的周期N2=2π/(4π/3)=3/2,由于N1/N2=2为有理数,因此f(k)为周期序列,周期为2N2=N1=3。
4积分[西安电子科技大学2011研] A.2B.1C.0D.4【答案】A查看答案【解析】5序列乘积δ(k+1)δ(k-1)=()。
[西安电子科技大学研]A.0B.δ(k)C.δ(k+1)D.δ(k-1)【答案】A查看答案【解析】根据f(k)δ(k-k0)=f(k0)δ(k-k0),因此δ(k+1)δ(k-1)=δ(2)δ(k-1)=0。
《信号与系统》考研奥本海姆版2021考研名校考研真题

《信号与系统》考研奥本海姆版2021考研名校考研真题第一部分考研真题精选一、选择题1已知信号f(t)的频带宽度为Δω,则信号y(t)=f2(t)的不失真采样间隔(奈奎斯特间隔)T等于()。
[西南交通大学研]A.π/(Δω)B.π/(2Δω)C.2π/(Δω)D.4π/(Δω)【答案】B查看答案【解析】根据卷积定理可知,y(t)=f2(t)→[1/(2π)]F(jω)*F(j ω)。
若信号f(t)的频带宽度为Δω,则y(t)的频带宽度为2Δω。
则奈奎斯特采样频率为4Δω,所以不失真采样间隔(奈奎斯特间隔)T等于2π/(4Δω)=π/(2Δω)。
2已知f(t)↔F(jω),f(t)的频带宽度为ωm,则信号y(t)=f(t/2-7)的奈奎斯特采样间隔等于()。
[西南交通大学研]A.2π/ωmB.2π/(2ωm-7)C.4π/ωmD.π/ωm【答案】A查看答案【解析】根据时域和频域之间关系,可知若时域扩展,则频域压缩。
所以若f(t)的频带宽度为ωm,则信号y(t)=f(t/2-7)的频带宽度为ωm/2。
所以,其奈奎斯特采样频率为(ωm/2)×2=ωm,即奈奎斯特采样间隔等于2π/ωm。
3有限长序列x(n)的长度为4,欲使x(n)与x(n)的圆卷积和线卷积相同,则长度L的最小值为()。
[中国科学院研究生院2012研]A.5B.6C.7D.8【答案】C查看答案【解析】x(n)的长度为4,则其线卷积的长度为4+4-1=7。
当x(n)与x(n)的圆卷积L≥7时,x(n)与x(n)的圆卷积和线卷积相同,可知L的最小值为7。
4下面给出了几个FIR滤波器的单位函数响应。
其中满足线性相位特性的FIR滤波器是()。
[东南大学研]A.h(n)={1,2,3,4,5,6,7,8}B.h(n)={1,2,3,4,1,2,3,4}C.h(n)={1,2,3,4,4,3,2,1}D.h(n)={1,2,3,4,-1,-2,-3,-4}【答案】C查看答案【解析】线性相位FIR滤波器必满足某种对称性,即h(n)=h(N-1-n)或者h(n)=-h(N-1-n)。
奥本海姆《信号与系统》配套题库【名校考研真题】(周期信号的傅里叶级数表示)

【答案】4
【解析】因是周期信号,其角频率
2π T
π
,则: a0
2 T
2 f (t)dt 2
0
T
2 dt 2,k 0
0
2
ak T
2 f (t) cos(kt)dt 2
0
T
2
cos(kπt)dt
sin(kπt)
2
0, k
1, 2,
0
kπ 0
所以:
ak 2 4
k
3 . x t 是 一 连 续 时 间 周 期信 号 , 其 基 波 频率 为 1 , 傅 里 叶 系 数 为 ak , 现 已 知
y(t) x(1 t ) x(t 1,) 问 y(t) 的基本频率 2 与 1 是什么关系?______; y(t) 的傅里叶级数
系数 bk 与 ak 的关系是什么?______。[华南理工大学 2007 研]
t0 T
1
bk T
T
t0 T x 1 t
x
t 1
e jkt dt
1 T
T
x 1t
t0 T
e jktdt 1 T
T x t 1 e jktdt
t0 T
1 T
T x 1 t ejktd 1 t 1
t0 T
T
T
x
t0 T
t 1
e jkt d
t 1
ak ak
2.一连续时间
LTI
系统的频率响应
H ( j)
1, 0,
≥250 ,当输入基波周期 T= π ,
其余
7
傅立叶级数系数为 ak 的周期信号 x t 时,发现输出 y(t) x(t) 。ak 需满足什么条件?( )
奥本海姆信号与系统(第二版)复习题参考答案

第一章作业解答1.9解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2; 1.12解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 23 4 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。
1.14解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。
(也可以通过改变顺序求取输入、输出关系,与前面做对比)。
1.17解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。
奥本海姆《信号与系统》配套题库【名校考研真题】(连续时间傅里叶变换)

)。[西安电子科技大学 2010
A. f1 t t0 f2 t t0 f t B. f t t f t
C. f t t f t
D. f1 2t f2 2t f 2t
【答案】D
【解析】根据傅里叶变换性质和卷积定理, f1 2t f2 2t 的傅里叶变换为:
1 2
F1
f
(t)
2t
d dt
cos
2t
π 3
t
的傅里叶变换
F j
等于(
)。[西安电子科
技大学 2008 研]
A.1 j
B.1 j
C.-1
D. ej
【答案】C
【解析】由于
f
(t )
2t
d dt
cos
2t
π 3
t
t t ,根据常用傅里叶变换和时域微分
定理,可知 t j 。再根据频域微分性质,可得 t t 1。
求 cos0t 的傅里叶变换:
cos
0t
cos
0
t
0
FT
j
πe 0
0
0
所以:
1 2π
F
F
cos 0t
ej 0
0
2
F
0
ej 0
0
2
F
0
则其频带宽度为 0 W ,因为 0 W ,所以 0 W 0 。
6.设 f t f1 t f2 t ,则下列卷积等式丌成立的是(
tf (t) j dF ;再由时秱性质,可知 (1 t) f (1 t) j dF() ej 。
d
பைடு நூலகம்
d
10.已知信号 f (t) 的频带宽度为 ,则信号 y(t) f 2 (t) 的丌失真采样间隔(奈奎斯
《信号与系统》考研奥本海姆版配套2021考研真题库

《信号与系统》考研奥本海姆版配套2021考研真题库第一部分考研真题精选一、选择题1下列关于冲激函数性质的表达式不正确的是()。
[西安电子科技大学2012研]A.f(t)δ′(t)=f(0)δ′(t)B.f(t)δ(t)=f(0)δ(t)C.D.【答案】A查看答案【解析】A项,正确结果应该为f(t)δ′(t)=f(0)δ′(t)-f′(0)δ(t)。
2x(t)=asint-bsin(3t)的周期是()。
[西南交通大学研]A.π/2B.πC.2πD.∞【答案】C查看答案【解析】因为asint的周期为T1=2π/1=2π,bsin(3t)的周期为T2=2π/3,因为T1/T2=3/1为有理数,因此x(t)是周期信号,且x(t)=asint-bsin (3t)的周期是3T2=T1=2π。
3序列f(k)=e j2πk/3+e j4πk/3是()。
[西安电子科技大学2012研]A.非周期序列B.周期N=3C.周期N=6D.周期N=24【答案】B查看答案【解析】f1(k)=e j2πk/3的周期N1=2π/(2π/3)=3,f2(k)=e j4πk/3的周期N2=2π/(4π/3)=3/2,由于N1/N2=2为有理数,因此f(k)为周期序列,周期为2N2=N1=3。
4积分[西安电子科技大学2011研]A.2B.1C.0D.4【答案】A查看答案【解析】5序列乘积δ(k+1)δ(k-1)=()。
[西安电子科技大学研]A.0B.δ(k)C.δ(k+1)D.δ(k-1)【答案】A查看答案【解析】根据f(k)δ(k-k0)=f(k0)δ(k-k0),因此δ(k+1)δ(k-1)=δ(2)δ(k-1)=0。
6信号f1(t)=2,f2(t)的波形如图1-1-1所示,设y(t)=f1(t)*f2(t),则y(11)=()。
[西安电子科技大学2011研]图1-1-1A.1B.0C.2D.3【答案】B查看答案【解析】7已知一连续系统在输入f(t)作用下的零状态响应为y(t)=f(4t),则该系统为()。
信号与系统 奥本海姆1-4答案.doc

Signals and SystemChap11.6 Determine whether or not each of the following signals is periodic:(a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+-(c): 3[]{[4][14]}k x n n k n k δδ∞=-∞=----∑Solution:(a).No 【周期信号无始无终,单边肯定不周期】Because 12cos()2sin(),0()440,0t j t t x t t ππ⎧+++>⎪=⎨⎪<⎩ when t<0, )(1t x =0. (b).No 【注意n =0】 Because 21,0[]2,01,0n n n n x >⎧⎪==⎨⎪<⎩(c).Y es 【画图、归纳】 Because∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[3δδ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ{[4][14]}k n k n k δδ∞=-∞=----∑N=4.1.9 Determine whether or not each of the following signals is periodic, if a signal is periodic, specify its fundamental period:(a): 101()j tx t je =(b): (1)2()j t x t e -+=(c): 73[]j n x n e π=(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += Solution: (a). T=π/5Because 0w =10, T=2π/10=π/5. (b). Aperiodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic. (c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7. (d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5,N=(2π/0w )*m, and m=3. (e). Aperiodic.Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 consider a periodic signal 1,01()2,12t x t t ≤≤⎧=⎨-<<⎩with periodT=2. The derivative of this signal is related to the “impulsetrain ”()(2)k g t t k δ∞=-∞=-∑, with period T=2. It can be shownthat1122()()()dx t A g t t A g t t dt=-+-. Determine the values of1A , 1t , 2A , 2t .Solution:A 1=3, t 1=0, A 2=-3, t 2=1 or -1 Because∑∞-∞=-=k k t t g )2()(δ,)1(3)(3)(--=t g t g dtt dx1.15. Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S2. The input-output relationships for S 1 and S 2 areS 1: ],1[4][2][111-+=n x n x n y S 2: ]3[21]2[][222-+-=n x n x n yWhere ][1n x and ][2n x denote input signals.(a) Determine the input-output relationship for system S.(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(ie., if S2 follows S 1)? Solution: (a)]3[21]2[][222-+-=n x n x n y]3[21]2[11-+-=n y n y]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y【可以考虑先求取单位脉冲响应,再做卷积】(b).No. because it ’s linear, S 1 and S 2 do not diverge.1.16. Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is]2[][][-=n x n x n y(a) Is the system memory less?(b) Determine the system output when the input is ][n A δ, where A is any real or complex number . (c) Is the system invertible? Solution: (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,]2[][][2-=n n A n y δδ, so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17.Consider a continuous-time system with input x(t) and output y(t) related by ))(sin()(t x t y =, (a) Is this system causal? (b) Is this system linear? Solution: (A). No.For example,)0()(x y =-π. So it ’s not causal.【得到什么启示?】 (b). Y es.Because : ))(sin()(11t x t y = , (sin()(22tx t y =)()())(sin())(sin()(21213t by t ay t bx t ax t y +=+=1.21. A continuous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +-(f): ()[(3/2)(3/2)]x t t t δδ+--Solution: (a).(b).(c). (d).1.22. A discrete-time signal ][n x is shown in as the following. Sketch and label carefully each of the following signals: (a): [4]x n - (b): [3]x n - (c): [3]x n(d): [31]x n + (e): [][3]x n u n -(f): [2][2]x n n δ--(g): 11[](1)[]22nx n x n +-(h): 2[(1)]x n -Solution:(a).(b).(e).(f) ]2[-n δ(g)1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.(a): ()3cos(4)3x t t π=+ (b): (1)()j t x t e π-=(c): 2()[cos(2)]3x t t π=-(d): (){cos(4)()}x t t u t ενπ=(e): (){sin(4)()}x t t u t ενπ= (f): (2)()t n n x t e∞--=-∞=∑Solution:(a).Periodic. T=π/2. Solution: T=2π/4=π/2. (b). Periodic. T=2.Solution: T=2π/π=2.(c). Periodic. T=π/2.【括号内周期,平方后仍然周期,或者做三角变换】 (d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π= )}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π)4cos(21t π=So, T=2π/4π=0.5【值得商榷】 (e)、(f)非周期信号。