扬州市2016-2017学年八年级上月考数学试卷(12月)含答案解析

合集下载

2016-2017学年北师大八年级上第一次月考数学试卷含答案

2016-2017学年北师大八年级上第一次月考数学试卷含答案

1 五中2016-2017学年八年级(上)第一次月考数学试卷•选择题:A . 3B . 7C . 3, 7D . 1 , 72•在平面直角坐标系中,已知点 P 的坐标是(3, 4),贝U OP 的长为( )A . 3B . 4C . 5 D. r :3. 下列各组数中,能构成直角三角形的是( )A . 4, 5, 6B . 1 , 1,C . 6, 8, 11D . 5, 12, 234. 若点P (x , y )满足:xy=0,则点P 必在( )A .原点B . x 轴C . y 轴D . x 轴或y 轴5. 下面哪个点不在函数 y= - 2x+3的图象上( )A . (- 5, 13)B .( 0.5, 2)C .( 3, 0)D . ( 1, 1)A . k >0, b > 0B . k > 0, b v 0C . k v 0, b > 0D . k v 0, b v 02 Vb _ 8+ |c - 1017.已知a 、b 、c 是三角形的三边长,如果满足( a -6) + =0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形&若点P (m , 1)在第二象限内,则点 Q (- m , 0)在( )A . x 轴正半轴上B . x 轴负半轴上C . y 轴正半轴上D . y 轴负半轴上-29.已知函数y=( m+1) 是正比例函数,且图象在第二、四象限内,则m 的值是() A . 2 B . - 2 C . ± 2 D .1. X 是 •的平方根, y 是64的立方根,贝y x+y=(15 .已知点P 在第二象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是— 16 .已知一次函数 y=kx - k+4的图象与y 轴的交点坐标是(0,- 2),那么这个一次函数 的表达式是 _____ .17 .若三角形的三边满足 a : b : c=5: 12: 13,则这个三角形中最大的角为 ____ 度. 18 . 一次函数y=kx+b 与y=2x+1平行,且经过点(-3, 4),则表达式为: __________ .三.解答题(本大题共 40分)19 .计算10 .已知一次函数 y=kx+b 的图象经过第一、二、三象限,则b 的值可以是(A . - 2B . - 1C . 0D . 211.若直线 垃 y= +n 与y=mx - 1相交于点(1,- 2),则(5 1 5 n= - , B . m= , , n= - 1 C . m= - 1, n=-,3 D . m= - 3, n=-, 12•若函数 y= ( m - 1) x |m| - 5是一次函数,则 m 的值为(A . ± 1B . - 1C . 1D . 2二.填空题13 .已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式是 _ 14 .如图,已知一根长 8m 的竹竿在离地3m 处断裂,竹竿顶部抵着地面,此时,顶部距底(3)(4) (5) (1—J 3nr^2n=16 j3m- n-1x+3y=7(6)[厂 y=ly=x+6 ; :2K +3 尸 8么+3尸-19x+5y=l 四、综合应用:(本题共38 分) 21.当 m , n 为何值时,y (m — 1) ': +n . (1)是一次函数;(2 )是正比例函数.22. 已知:一次函数 y=kx+b 的图象经过 M (0, 2), N (1 , 3)两点.求该图象与 点的坐标. 23. 直线y=kx+b 与x 轴、y 轴的交点分别为(-1, 0)、( 0, 3),求这条直线的解析式, 并求出该直线与两坐标轴围成的三角形面积.(7) (8)20 •若a 、b 、c 满足^,求代数式 -——的值.x 轴交。

2016-2017学年上人教版八年级数学第一次月考试卷

2016-2017学年上人教版八年级数学第一次月考试卷

2016-2017 学年上八年级数学第一次月考试卷(时间: 90 分钟分数:100分)班级: _________姓名: __________一、选择题(每题 2 分,共 24 分)1、已知三角形的两边长分别为 3 和 5,则这个三角形的第三边长可能是()A、2B、3C、8D、92、如图, D,E 分别是△ ABC 的边 AC 、BC 的中点,那么以下说法中不正确的是()A、 DE 是△ BCD 的中线B、BD 是△ ABC 的中线C、 AD=DC ,BE=ECD、AD=EC , DC=BE第2题图第3题图3、如图,图中是△ ABC 的外角的是()A、∠ EAB 、∠ EAD B 、∠ EAD 、∠ DACC、∠ EAB、∠ EAD 、∠ DAC D 、∠ EAB、∠ DAC4、如图,在△ ABC 中, BE 是△ ABC 的高,此中画法正确的选项是()A、B、C、D、5、在△ ABC 中,∠ A :∠ B:∠ C=3:4:5,则∠ C=()A、45°B、60°C、75°D、90°6、要使一个六边形的木架稳固,起码要钉()根木条A、9 根B、6 根C、4 根D、3 根7、一个多边形的内角和是 900°,则这个多边形的边数是()A、 7B、8C、9D、108、在四边形 ABCD中, AB=AD ,CB=CD,若连结 AC 、BD 订交于点 O,则图中全等三角形共有()A、1 对B、2 对C、3 对D、4 对9、如图,已知△ AB D≌△ CDB ,且 AB 、CD 是对应边,下边四个结论中不正确的是()A、△ ABD 和△ CDB 的周长相等B、∠ ABD =∠ CBDC、AD∥BCD、∠ C+∠ ABC=180°第9题图第12题图10、以下说法:①形状同样的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积也相等;④在△ABC和△ DEF中,若∠A=∠D,∠B=∠E,∠C=∠ F,则这两个三角形关系可记作△ ABC≌△ DEF.此中正确的个数是()A、1个B、2个C、3个D、4个11、在△ ABC 和△ A’B’C’中, AB=A’B’,AC=A’C’, 要证明△ ABC≌ △A’B’C’, 须增添一个条件,这个条件能够是①∠A=∠ A’, ②∠ B=∠ B’ , ③BC=B’C’中的()A、①或②或③B、①或②C、①或③D、②或③12、如图,在△ ABC和△ DEF中,AB=DE,∠ B=∠E,要增添一个条件使△ ABC≌△DEF,则以下条件中错误的选项是()A、BC=EFB、∠ A=∠ DC、AC=DFD、∠ C=∠ F二、填空题(每题 3 分,共 30 分)13、建筑高楼经常需要用塔吊来吊建筑资料,而塔吊的上部是三角形构造,这是由于: ______________________________.14、如图,用符号表示图中全部的三角形__________________________________________________________________________.第14题图第16题图第17题图15、已知等腰三角形的两边长分别是2,4,则这个等腰三角形的周长是_______.16、如图, AB=AD , CB=CD,∠ B=31°,∠ BAD=5 4°,则∠ ACD的度数是___________.17、如图,在 Rt △ABC中,∠ C=90°,∠ ABC的均分线 BD交 AC于点 D. 若CD=3,则点 D 到 AB的距离是 __________.18、如图,∠ ABC=∠DEF,AB=DE,要说明△ ABC≌△ DEF,(1)若以“ SAS”为依照,还需增添的条件是 _____________;( 2)若以“ ASA”为依照,还需增添的条件是 ____________;( 3)若以“ AAS” 依照,需增添的条件是____________.第18第19第2019、如,若 AB∥CD,∠ 1=45°, ∠2=35°,∠ 3=__________.20、如,小亮从 A 点出,沿着直前10 米后向左 30,再沿着直前10 米,又向左 30,⋯⋯,照走下去,他第一次回到出地 A 点,一共走了 __________米.21、如所示,若△ ABD≌△ ACE,∠ B 与∠ C 是角,若AE=5㎝, BE=7㎝,∠ ADB=100°,∠ AEC=,AC=___________.第21第2222、在如所示的 6× 5 方格中,每个小方格都是 1 的正方形,△ ABC是格点三角形(即点恰巧是正方形的点),与△ ABC有一条公共 BC且全等的全部格点三角形的个数是 __________个.三、解答题( 46 分)23、一个多形的内角和与它的外角和 2520°,个多形的数是多少?(8 分)24、如所示,在△ ABC中,∠ A=38°,∠ ABC=70°, CD⊥ AB于点 D,CE均分∠ACB.求∠ DCE的度数 . (8 分)25、如图,在△ AFD和△ CEB中,点 A、E、F、C在同一条直线上, AE=CF,∠B=∠D, AD∥BC.求证: DF=BE( 8 分)26、如图, BC⊥AC, BD⊥AD,AC=AD,点 E 在 AB上,求证: CE=DE( 10 分)27、如图,点 M、 N 分别是正五边形 ABCDE的 BC、CD上的点,且 BM=CN, AM与BN订交于点 P. 求证:(1)△ ABM≌△ BCN;(2)求∠ APN的度数 . (12 分)。

八年级数学上学期第一次月考试卷(含解析) 湘教版-湘教版初中八年级全册数学试题

八年级数学上学期第一次月考试卷(含解析) 湘教版-湘教版初中八年级全册数学试题

某某省某某市黄亭中学2016-2017学年八年级(上)第一次月考数学试卷一、选择题(30分)1.下列式子:,,,1+,,其中是分式个数为()A.5 B.4 C.3 D.22.如果分式的值为0,那么x的值是()A.x=±1 B.x=1 C.x=﹣1 D.x=﹣23.下列等式成立的是()A. +=B. =C. =D. =﹣4.计算的结果为()A.B.C.D.5.下列算式中,你认为正确的是()A.B.C.D.6.下列分式是最简分式的是()A.B.C.D.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =18.某某市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =9.解分式方程,可知方程()A.解为x=7 B.解为x=8 C.解为x=15 D.无解10.关于x的分式方程的解是负数,则m的取值X围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0二、填空题(24分)11.若=,则=.12.分式与的最简公分母是.13.若(x+)2=9,则(x﹣)2的值为.14.若方程无解,则m=.15.2015×(1.5)﹣2016的结果是.16.使分式的值为0,这时x=.17.方程的解为.18.现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为升.三、解答题(24分)19.计算:(1)(1﹣)÷(2)(﹣)•.20.解方程: +=1.21.先化简,再求值:(﹣)•,其中x=4.四、应用题(22分)22.一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.23.某某火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?2016-2017学年某某省某某市黄亭中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(30分)1.下列式子:,,,1+,,其中是分式个数为()A.5 B.4 C.3 D.2【考点】分式的定义.【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【解答】解:,,1+是分式,共3个,故选:C.【点评】此题主要考查了分式的定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.如果分式的值为0,那么x的值是()A.x=±1 B.x=1 C.x=﹣1 D.x=﹣2【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得:(x+1)(x﹣1)=0,且x2﹣2x+1≠0,再解即可.【解答】解:由题意得:(x+1)(x﹣1)=0,且x2﹣2x+1≠0,解得:x=﹣1,故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.下列等式成立的是()A. +=B. =C. =D. =﹣【考点】分式的混合运算.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.计算的结果为()A.B.C.D.【考点】分式的混合运算.【分析】先计算括号里的,再相乘.【解答】解:==﹣=﹣.故选A.【点评】本题的关键是通分、分解因式、约分,用到了平方差公式.5.下列算式中,你认为正确的是()A.B.C.D.【考点】分式的混合运算.【分析】根据分式的混合运算法则对每一项进行计算,然后作出正确的选择.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选D.【点评】互为相反数的两个数为分母,那么最简公分母是其中的一个;除法应统一成乘法再计算;分式的分子分母能因式分解的要先因式分解,可以简化运算.6.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、原式=,分子、分母中含有公因式(x﹣1),则它不是最简分式,故本选项错误;B、它的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;C、原式=,分子、分母中含有公因式(x﹣1),则它不是最简分式,故本选项错误;D、它的分子、分母中含有公因式ab,则它不是最简分式,故本选项错误;故选:B.【点评】本题考查了最简分式.分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.8.某某市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得: =,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.9.解分式方程,可知方程()A.解为x=7 B.解为x=8 C.解为x=15 D.无解【考点】解分式方程.【分析】本题考查解分式方程的能力,解分式方程首先要确定最简公分母,将分式方程化成整式方程求解,再将所求解代入最简公分母进行检验,若最简公分母为零,则方程无解.【解答】解:最简公分母为(x﹣7),去分母,得x﹣8+1=8(x﹣7),解得x=7,代入x﹣7=0.∴此方程无解.故选D.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)解分式方程去分母时一定要注意不要漏乘.10.关于x的分式方程的解是负数,则m的取值X围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0【考点】分式方程的解.【分析】由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的X围.注意最简公分母不为0.【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.【点评】此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.二、填空题(24分)11.若=,则=.【考点】比例的性质.【分析】由=,根据比例的性质可得:3(2m﹣n)=n,则可求得m=n,继而求得答案.【解答】解:∵ =,∴3(2m﹣n)=n,∴6m﹣3n=n,解得:m=n,∴=.故答案为:.【点评】此题考查了比例的性质.此题难度不大,注意掌握比例变形与比例的性质是解此题的关键.12.分式与的最简公分母是x(x+3)(x﹣3).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是x(x+3)(x﹣3);故答案为:x(x+3)(x﹣3).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.13.若(x+)2=9,则(x﹣)2的值为 5 .【考点】完全平方公式.【分析】先由(x+)2=9计算出x2+=7,再由(x﹣)2,按完全平方公式展开,代入数值即可.【解答】解:由(x+)2=9,∴x2++2=9,∴x2+=7,则(x﹣)2=x2+﹣2=7﹣2=5.故答案为:5.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14.若方程无解,则m= 1 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】本题考查了分式方程无解的条件,是需要识记的内容.15.(﹣)2015×(1.5)﹣2016的结果是﹣.【考点】负整数指数幂.【分析】由于指数大,底数不是±1、0,不能先乘方再乘除;观察底数互为相反数,观察指数,有负整数指数,考虑逆用幂的相关公式计算.【解答】解:原式=﹣()2015×()2016=﹣[()2015×()2015]×()=﹣(×)2015×()=﹣故答案为:﹣【点评】本题考察了幂的相关计算法则,解决本题逆运用了积的乘方法则及同底数幂的乘法法则.16.使分式的值为0,这时x= 1 .【考点】分式的值为零的条件.【分析】让分子为0,分母不为0列式求值即可.【解答】解:由题意得:,解得x=1,故答案为1.【点评】考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.17.方程的解为x=﹣1 .【考点】解分式方程.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为:x(x﹣2),去分母,化为整式方程求解.【解答】解:方程两边同乘x(x﹣2),得x﹣2=3x,解得:x=﹣1,经检验x=﹣1是方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.18.现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为40 升.【考点】分式方程的应用.【分析】设桶的容积为x升,根据设桶的容积为X升,倒出20升农药后用水补满,浓度为,第二次倒出的10升中含农药10•,可计算出共倒出多少农药,根据这时,桶中纯农药与水的体积之比为3:5,纯农药占容积的,可列方程求解.【解答】解:设桶的容积为x升,=x=40或x=﹣8(舍去).经检验x=40是方程的解.故桶的容积为40升.【点评】本题考查理解题意的能力,关键将剩下农药的和容积的比值做为等量关系列方程求解.三、解答题(24分)19.计算:(1)(1﹣)÷(2)(﹣)•.【考点】分式的混合运算.【分析】(1)先计算括号的式子,再根据分式的除法即可解答本题;(2)先计算括号的式子,再根据分式的乘法即可解答本题.【解答】解:(1)(1﹣)÷==;(2)(﹣)•===.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.20.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣x2+2x+4=4﹣x2,解得:x=0,经检验x=0是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.先化简,再求值:(﹣)•,其中x=4.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=x+2,当x=4时,原式=6.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、应用题(22分)22.(10分)(2010春•昌宁县校级期末)一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.【考点】分式方程的应用.【分析】如果设这列火车原来的速度为每小时x千米,那么提速后的速度为每小时(x+0.2x)千米,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可.【解答】解:设这列火车原来的速度为每小时x千米.由题意得:﹣=.整理得:12x=900.解得:x=75.经检验:x=75是原方程的解.(4分)答:这列火车原来的速度为每小时75千米.(5分)【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.如本题:车速提高了0.2倍,是一种隐含条件.23.(12分)(2015•某某)某某火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【考点】分式方程的应用;二元一次方程组的应用.【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26﹣a)人种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.。

历年江苏省扬州市中考数学试卷(含答案)

历年江苏省扬州市中考数学试卷(含答案)

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.(3分)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.(3分)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.(3分)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.(3分)经过圆锥顶点的截面的形状可能是()A.B. C.D.6.(3分)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.127.(3分)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.98.(3分)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.(3分)若=2,=6,则=.11.(3分)因式分解:3x2﹣27=.12.(3分)在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.(3分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.(3分)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=°.16.(3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P 处,且DP⊥BC,若BP=4cm,则EC=cm.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.(3分)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m 的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.(8分)解不等式组,并求出它的所有整数解.21.(8分)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.(10分)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB 的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.(10分)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O 于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.(10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA=;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.(12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G 在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•扬州)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.2.(3分)(2017•扬州)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.【点评】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质,属于基础运算,比较简单.3.(3分)(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)(2017•扬州)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(3分)(2017•扬州)经过圆锥顶点的截面的形状可能是()A.B. C.D.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.【点评】本题考查的是用一个平面去截一个几何体,掌握圆锥的特点是解题的关键.6.(3分)(2017•扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(3分)(2017•扬州)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.8.(3分)(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【分析】对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点.【解答】解:抛物线y=x2+bx+1与y轴的交点为(0,1)∵C(2,1),∴对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,∴b≥﹣2,故选:C.【点评】本题考查了二次函数图象与系数的关系.解题时,利用了二次函数图象上点的坐标特征来求b的取值范围.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104立方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•扬州)若=2,=6,则=12.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.【点评】本题考查了有理数的除法,求得a=2b,c=是解题的关键.11.(3分)(2017•扬州)因式分解:3x2﹣27=3(x+3)(x﹣3).【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(3分)(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=80°.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.13.(3分)(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.(3分)(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=50°.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°﹣80°)÷2=50°.故答案为:50.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(3分)(2017•扬州)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=(2+2)cm.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.【点评】本题考查了翻折变换﹣折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.17.(3分)(2017•扬州)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为y=.【分析】设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,得到AC=n,OC=﹣m,根据全等三角形的性质得到AC=OD=n,CO=BD=﹣m,于是得到结论.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.18.(3分)(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为15.【分析】由题意m=,令y=,则x=2017﹣y2,可得m==,由m是正整数,y≥0,推出y=1时,m=12,y=2时,m=3,由此即可解决问题.【解答】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.【点评】本题考查无理方程、换元法、正整数等知识,解题的关键是学会利用换元法解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(2017•扬州)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).【分析】(1)根据零指数幂的意原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【解答】解:(1)原式=﹣4+1﹣2×+﹣1=﹣3﹣+﹣1=﹣4(2)原式=3a﹣2a2+2(a2﹣1)=3a﹣2a2+2a2﹣2=3a﹣2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•扬州)解不等式组,并求出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,∴不等式组的整数解为﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•扬州)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?【分析】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【解答】解:(1)8÷5%=160(人),160×30%=48(人),32÷160×360°=0.2×360°=72°.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)30%×1000=300(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(8分)(2017•扬州)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23.(10分)(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【点评】此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.24.(10分)(2017•扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===10.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣10=16.【点评】本题考查了四边形综合题,需要掌握平移的性质,解直角三角形,勾股定理以及菱形的判定与性质等知识点.解答(1)题时,往往误认为四边形ACC'A'是平行四边形,岂不知还要根据已知条件继续证得该四边形是菱形,属于易错题.25.(10分)(2017•扬州)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,∵OB=OF,∴OG⊥BF,∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,∴∠OCD=90°,∴DE是⊙O的切线.(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=OC.②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.【点评】本题考查切线的判定、平行四边形的性质、等边三角形的判定和性质、弧长公式,解直角三角形等知识,解题的关键是学会添加常用辅助线,证明三角形是等边三角形是解题的突破点,属于中考常考题型.26.(10分)(2017•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB 与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0,OC△OA=7;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DN=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S=BC×AO=6.△ABC【点评】此题是三角形综合题,主要考查了勾股定理,含30°的直角三角形的性质,勾股定理,等腰三角形的性质,解(1)的关键是求出OD,解(2)的关键是BD,解(3)的关键是用方程组的思想解决问题,是一道很好的新定义题目.27.(12分)(2017•扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+(2400+30a)x﹣(1500a+45000),对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.【点评】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.28.(12分)(2017•扬州)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x2=。

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是.三、解答题(共46分)19.(5分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.20.(6分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED 的度数.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】三角形内角和定理.【专题】压轴题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,再判断三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,5k°.根据三角形内角和定理可知2k°+3k°+5k°=180°,得k°=18°,所以2k°=36°,3k°=54°,5k°=90°.即这个三角形是直角三角形.故选:A.【点评】此类题利用三角形内角和定理列方程求解可简化计算.有一个角是90°的三角形是直角三角形.3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【考点】三角形的外角性质;三角形内角和定理.【专题】几何图形问题.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故选:B.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形的性质进行判断即可.【解答】解:①全等三角形的面积相等,说法正确;②全等三角形的周长相等,说法错误;③全等三角形的对应角相等,说法正确;④全等三角形的对应边相等,说法正确;正确的有4个,故选D.【点评】本题考查了对全等三角形的定义和性质的应用,主要考查学生的理解能力和辨析能力,注意:全等三角形的对应边相等,对应角相等.5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.【考点】全等三角形的判定.【分析】三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等,据此判断即可.【解答】解:A、∵a,c边夹角为50°,∴根据SAS可判定两三角形全等,故A正确;B、∵a,c边夹角不一定为50°,∴不能判定两三角形全等,故B错误;C、∵72°角所对的边不相等,∴不能判定两三角形全等,故C错误;D、∵50°和58°的角的夹边不相等,∴不能判定两三角形全等,故D错误;故选:A.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的判定方法.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm【考点】三角形的角平分线、中线和高.【分析】利用中线的定义可知AD=CD,可知△ABD和△BCD的周长之差即为AB和BC的差,可求得答案.【解答】解:∵BD是△ABC的中线,∴AD=CD,∵△ABD周长=AB+AD+BD,△BCD周长=BC+CD+BD,∴△ABD周长﹣△BCD周长=(AB+AD+BD)﹣(BC+CD+BD)=AB﹣BC=5﹣3=2(cm),即△ABD和△BCD的周长之差是2cm,故选B.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S+S△ACD列出方程求解即可.△ABD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•A D,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值X围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值X围,从而确定绝对值内的代数式的符号,难度不大.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO (只需一个即可,图中不能再添加其他点或线).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是a=﹣1,b=3 .【考点】命题与定理.【分析】根据有理数的加法和绝对值的性质,只要a、b异号即可.【解答】解:a=﹣1,b=3时|a+b|=|a|+|b|”是假命题.(答案不唯一,只要a、b是异号两数即可).故答案为:a=﹣1,b=3.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了有理数的加法和绝对值的性质.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是 3 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角平分线的性质可知:DE=CD.【解答】解:过点D作DE⊥AB于点E,∵BD平分∠ABC,∠C=∠BED=90°∴DE=CD=3,∴点D到AB的距离为3,故答案为:3【点评】本题考查角平分线的性质,属于基础题型.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为 4 .【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到EA=8,做差后得到BE的长度.【解答】解:∵△ABC中,AB=AC=12,EF为AC的中垂线∴EC=EA=8,BE=12﹣8=4.BE的长为4.故填4.【点评】此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本题的关键.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是19 .【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值X围,再根据第三边是奇数确定其值.【解答】解:根据三角形的三边关系,得第三根木棒的长大于4而小10.又∵第三根木棒的长是奇数,则应为5,7,9.这样的三角形的周长最大值是3+7+9=19,故答案为19【点评】此题考查了三角形的三边关系,关键是根据第三边大于两边之差而小于两边之和解答.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于70°.【考点】三角形内角和定理.【分析】先根据垂直的定义得出∠BEH=∠HDC=90°,由三角形外角的性质得出∠EBH与∠DCH的度数,再根据三角形内角和定理求出∠HBC+∠HCB的度数,进而可得出∠ABC+∠ACB的度数,由此可得出结论.【解答】解:∵BD⊥AC,CE⊥AB,∴∠BEH=∠HDC=90°.∵∠BHC=110°,∴∠EBH=∠DCH=110°﹣90°=20°,∠HBC+∠HCB=180°﹣110°=70°,∴∠ABC+∠ACB=∠EBH+∠DCH+(∠HBC+∠HCB)=20°+20°+70°=110°,∴∠A=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是∠1+∠2=2∠A .【考点】三角形内角和定理.【分析】设∠AED的度数为x,∠ADE的度数为y,根据全等三角形的对应角相等,以及平角的定义表示出∠1和∠2,求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:设∠AED的度数为x,∠ADE的度数为y,则∠1=180°﹣2x,∠2=180°﹣2y,∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A,∴关系为:∠1+∠2=2∠A.故答案为:∠1+∠2=2∠A.【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.本题解法多样,也可以运用三角形外角性质进行求解.三、解答题(共46分)19.已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.【考点】作图—复杂作图.【分析】先作∠MBN=∠α,再在∠MBN的两边上分别截取AB=a,BC=b,最后连接AC即可.【解答】解:如图所示,△ABC即为所求.【点评】本题主要考查了尺规作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,进而得到∠EAD=∠CAB,结合∠CAD=35°,即可求出∠EAD和∠CAB的度数,再结合外角的性质即可求出所求角的度数.【解答】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,又∵且∠CAD=35°,∠EAB=105°,∴∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°,∴∠DFB=∠DAC+∠B=70°+20°=90°,∠BED=∠BFD﹣∠D=90°﹣20°=70°.【点评】本题主要考查了全等三角形的性质,解题的关键是掌握三角形外角的性质,此题难度不大.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,∠C=∠D ,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.【考点】全等三角形的判定.【分析】直接利用全等三角形的判定方法,添加:∠C=∠D,进而得出答案.【解答】解:添加条件是∠C=∠D.理由如下:在△ABC与△BAD中,∵∴△ABC≌△BAD(AAS),故答案为∠C=∠D.【点评】本题考查了三角形全等的判定方法,根据已知结合图形及判定方法选择条件是正确解答本题的关键.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】设∠ABC=x°,再根据三角形外角的性质得出∠BAD=∠B+∠C=90°+x°,根据AF平分外角∠BAD可知∠DAF=∠BAD=(90°+x°),根据对顶角的性质得出∠EAG=∠DAF=(90°+x°),根据BE平分∠ABC可知∠CBE=∠ABC=x°,故可得出∠AGE的度数,由三角形内角和定理即可得出结论.【解答】解:设∠ABC=x°,∵∠BAD是△ABC的外角,∠C=90°,∴∠BAD=∠ABC+∠C=90°+x°,∵AF平分外角∠BAD,∴∠DAF=∠BAD=(90°+x°),∴∠EAG=∠DAF=(90°+x°).∵BE平分∠ABC,∴∠CBE=∠ABC=x°,∴∠AGE=∠BGC=90°﹣∠CBE=90°﹣x°,∵∠E+∠EAG+∠AGE=180°,即∠E+(90°+x°)+90°﹣x°=180°,解得∠E=45°.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.【考点】角平分线的性质.【分析】(1)分析题意易证得△ADE≌△ADC,则有CD=DE,而BC=BD+DC可求BC的长;(2)根据题意画出图形,利用三角形的面积公式即可得出结论.【解答】解:(1)∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵,∴△ADE≌△ADC(SAS)∴DE=DC,∴BC=BD+DC=BD+DE=2+3=5(cm);(2)如图,∵∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,∴S△ABC=S△AOC+S△AOF+S△BCF=×6a+×9a+×5a=3a+a+a=10a(cm)2.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】延长CE、BA交于F点,然后证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.【解答】证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠BEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CE=CF,∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=FC,∴BD=2CE.【点评】此题主要考查了全等三角形的判定与性质,以及等腰三角形的性质,关键是证明△ADB≌△AFC和CE=CF.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)先根据三角形内角和定理,求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,最后由三角形内角和定理,即可求出∠BPC的度数;(2)先连接AP并延长至D,根据∠ABC与∠ACB的角平分线相交于P,求得∠1=ABC,∠3=∠ACB,最后根据三角形的外角性质,求得∠BPC的度数.【解答】解:(1)∵△ABC中,∠A=112°,∴∠ABC+∠AC B=180°﹣∠A=180°﹣112°=68°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×68°=34°,∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°.(2)如图,连接AP并延长至D,∵∠ABC与∠ACB的角平分线相交于P,∴∠1=ABC,∠3=∠ACB,∵∠BPD是△ABD的外角,∴∠BPD=∠1+∠BAP,同理可得∠CPD=∠3+∠CAP,∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP=ABC+∠ACB+∠BAC=(∠ABC+∠ACB)+α=(180°﹣α)+α=90°+α.【点评】本题考查的是三角形内角和定理,三角形外角性质及角平分线的定义的综合应用,本题解法多样,熟知三角形的内角和定理是解答此题的关键.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

八年级数学上册第一次月考试卷已修改

八年级数学上册第一次月考试卷已修改

第1页,共2页2016~2017学年第一学期第一次月考八年级 数学试卷一、选择题(每题3分,共30分)1、下列几组数据能否作为直角三角形的三边( ) A 9,12,15; B 15,36,39; C 7,24,40; D 12,18,22.2.一个三角形的三边的长分别是15cm,20cm,25cm ,则这个三角形的面积是( ) A 250 B 150 C 200 D 不能确定 3、湖的两端有A 、B两点,从与BA 方向成直角的BC 方向上的点C 测得CA=130米,CB=120米,则AB 为 ( ) A.50米 B.120米 C.1004、直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( )A . 27cm B. 30cm C. 40cm D. 48cm 5、36的平方根是( ) A 、6B 、6±C 、 6D 、6±6、下列各式中,正确的是( )2)2(2-=- (B) 9)3(2=- (C) 393-=- (D) 39±=±7、在实数中-23 ,0 3.14 ) A .1个 B .2个 C .3个 D .4个8、若3,b a b +a ,则的值为()A 、0B 、1C 、-1D 、2 9、若规定误差小于1, 那么60-2的估算值为( )A. 3B. 5或7C. 8D. 7或8 10、数轴上的点A 所表示的数为x ,如图所示,则210x -的立方根是( )A 10B .10C .2D .-2二、填空题(每题3分,共30分)11、若直角三角形的三边长分别为2、 4、 x ,则x=_____ 12、若2m-4与3m-1是同一个数的平方根,则m 的值____13、若等腰直角三角形的斜边长为2,则它的直角边的长为 ,斜边上的高的长为 。

14、若a 的平方根是±5,则a = 。

15、已知5是x+8的算术平方根,则x= 16、若3x+16的立方根是4,则2x+4的平方根= 17、大于的所有整数的和 . 18、若08)10(2=++-a b ,则_____=+的平方根是b a19、有一个长方体,长为4cm ,宽2cm ,高2cm ,试求蚂蚁从A 点到G 的最短路程20、如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_______。

江苏省扬州市江都区八校2023-2024学年八年级上学期12月月考数学试卷(含答案)

江苏省扬州市江都区八校2023-2024学年八年级上学期12月月考数学试卷(含答案)

八年级数学2023.12(满分:150分;考试时间:120分钟)一.选择题(本题共8小题,每小题3分,共24分.)1.下列图形中,是轴对称图形的为(▲)A. B. C. D.2.小明体重为48.95kg ,这个数精确到十分位的近似值为(▲)A.48kg B.48.9kg C.49kg D.49.0kg 3.在△ABC 中,下面条件不能构成直角三角形的是(▲)A.9,12,15B.14,48,50C.∠A:∠B:∠C=1:2:3D.1,2,34.如果点P(m,1﹣2m)在第四象限,那么m 的取值范围是(▲)A.102m <<B.102m -<<C.0m <D.12m >5.等腰三角形的底角等于80°,则该等腰三角形的顶角度数为(▲)A.20°B.80°C.20°或50°D.20°或80°6.已知一次函数y=(2m﹣1)x+2,y 随x 的增大而增大,则m 的取值范围是(▲)A.m<12B.m>12C.m≥1D.m<17.若点1)(3A y -,,2(2)B y ,,3(3)C y ,是函数)0(<+=k b kx y 图像上的点,则(▲)A.321y y y >>B.321y y y <<C.231y y y <<D.132y y y >>8.在七年级的学习中,我们知道了()()⎩⎨⎧<-≥=00t t t t t .小明同学突发奇想,画出了函数t s =的图像,你认为正确的是(▲)A B CD二、填空题(本题共10小题,每小题3分,30分.)9.计算:16=▲.10.若032=++-y x ,则()2013y x +的值为▲.2(填“˃”或“=”或“<”).12.在34,2π,0,223-,0.323323332,中,无理数有_▲_个.13.已知点P(a-1,-a+3),当a=_▲_时,点P 在第一三象限的角平分线上.14.过点(1,3)且与直线y=1-2x 平行的直线是_▲_15.在平面直角坐标系中,函数y mx n =+与y kx b =+的图像交于点P(2,1),则方程组0y mx ny kx b -=⎧⎨--=⎩的解为_▲_16.将一次函数21y x =+的图像向左平移3个单位长度后,其对应的函数关系式为▲.17.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式kx +6≤x +b 的解集是__▲__.18.在平面直角坐标系中,点P 的坐标为(a,b),点P 的“变换点”P’的坐标定义如下:当a≥b 时,P’点坐标为(-a,b);当a<b 时,P’点坐标为(a-10,b-3).线段l:y =−12+3(-2≤x≤8)上所有点按上述“变换点”组成一个新的图形,若直线y=kx-4与组成的新的图形有两个交点,则k 的取值范围是__▲_三、解答题(本题共96分)19.(本题共8分)(1)计算:(0π++;(2)解方程:29160x -=.20.(本题共8分)已知2a﹣1的平方根是±3,3a﹣b+1的立方根是2.(1)求a,b 的值;(2)求a+b 的算术平方根.21.(本题共8分)已知y 与3x ﹣2成正比例,且当x =2时,y =8.(1)求y 与x 的函数关系式;(2)求当x =﹣2时的函数值;22.(本题共8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与关于直线l 成轴对称的△'''A B C ;(2)△ABC 的面积为_______________(3)在直线l 上找一点P ,使PB PC +的长最短,此时,PB PC +=.23.(本题共8分)如图,AD、BC 相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ABD≌△BAC;(2)若∠ABC=40°,求∠CAO 的度数.24.(本题共10分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时的速度向南偏东40︒航行,乙船向北偏东50︒航行,2小时后,甲船到达B 岛,乙船到达C 岛,若CB 两岛相距40海里,(1)直接写出CAB ∠的度数;(2)求乙船的航速是多少?25.(本题满分10分)已知,如图所示,折叠长方形OABC 的一边BC ,使点B 落在AO 边的点D 处,如果B(10,8),(1)求D 的坐标;(2)求E 的坐标.26.(本题共10分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC AD =;(2)AB BC AD =+.A BCDEF27.(本题共12分)某商店销售甲、乙两种商品.下表为两次销售记录:甲商品/个乙商品/个总销售额/元第一次5040500第二次6030420(1)求甲和乙的销售单价分别是多少?(2)该商场计划再次购进两种商品共100个,根据市场实际需求,甲的数量不低于乙数量的4倍.已知甲的进价为1元/个,乙的进价为6元/个.设购买甲x 个,获得的利润为W 元;①求W 关于x 的函数关系式,并求出自变量x 的取值范围;②该商店应如何进货才能使销售总利润最大?并求出最大利润.28.(本题共14分)在平面直角坐标系中,一次函数y=12x+2的图象交x 轴、y 轴分别于A、B 两点,交直线y=kx 于P (-2,a).(1)求点A、B 的坐标;(2)若Q 为x 轴上一动点,△APQ 为等腰三角形,直接写出Q 点坐标;(3)点C 在直线AB 上,过C 作CE⊥x 轴于E,交直线OP 于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E 三点为“美好点”,求出C,D,E 三点为“美好点”时C 点的坐标.kxy =221+=x y 221+=x y kxy =八年级数学答案一、选择题二.填空题:9.410.-1;11.>;12.2;13.214.y=-2x+515.x =2y =116.y=2x+7;17.x≥3;18.−512≤k <−38三.解答题:19.(1)4(2)±43………………………………4分+4分20.(1)a=5,b=8(2)13………………………………6分+2分21.(1)k=2y=6x-4………………………………3分+3分(2)-16………………………………2分22.(1)略………………………………2分(2)3………………………………3分(3)13………………………………3分23.(1)HL ………………………………4分(2)10°………………………………4分24.(1)90………………………………3分(2)12………………………………7分25.(1)D(6,0)…………4分(2)E(10,3)………………………………6分26.(1)略………………………………5分(2)略………………………………5分27.(1)设甲销售单价为a 元/个,乙销售单价为b 元/个,a=2,b=10,即甲和乙的销售单价分别是2元/个,10元/个;………………4分(2)①W=-3x+400,………………3分∵甲的数量不低于乙数量的4倍,∴x≥4×(100-x),解得,x≥80,………………2分②当x=80时,W max =-3×80+400=160,100-x=20,………………2分答:该药店购进甲80个,乙20个,最大利润是160元.……1分28.(1)A(-4,0),B(0,2)………………………………2分+2分(2)Q(0,0)或Q −4±5,0或Q −114,0………………每个答案1分,共4分(3)C −83,23或C −43,43………………………………3分+3分题号12345678答案DD DD ABA B。

八年级数学上学期第一次月考试卷(含解析)苏科版

八年级数学上学期第一次月考试卷(含解析)苏科版

江苏省扬州市宝应县泰山中学、安宜中学联考2016-2017学年八年级(上)第一次月考数学试卷一、精心选一选:1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②3.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.54.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A.SAS B.ASA C.AAS D.SSS5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN6.如图,AC=AD,BC=BD,则有()A.CD垂直平分AB B.AB与CD互相垂直平分C.AB垂直平分CD D.CD平分∠ACB7.如图,已知△ACE≌△DFB,下列结论中正确的个数是()①AC=D B;②AB=DC;③∠1=∠2;④AE∥DF;⑤S△ACE=S△DFB;⑥BC=AE;⑦BF∥EC.A.4个B.5个C.6个D.7个8.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115° B.130° C.120° D.65°9.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1 B.2 C.3 D.4二、细心填一填:(3&#215;10=30分)11.线段、角、三角形、圆中,其中轴对称图形有个.12.若△ABC≌△DEF,∠B=40°,∠C=60°,则∠D= °.13.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB 的长为.15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.16.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=20°,∠E=110°,∠EAB=15°,则∠BAD的度数为.17.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是.18.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是cm.19.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.三.解答题或画图题(本大题共有9小题,共90分)21.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.22.(10分)已知Rt△ABC中,∠B=90°(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.(2)在(1)的基础上写出一对全等三角形:△≌△并加以证明.23.(8分)已知,如图,BC上有两点D、E,且BD=CE,AD=AE,∠1=∠2,求证:AB=AC.24.(8分)如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.25.(10分)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.26.(10分)如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.27.(12分)如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:①;②.28.(12分)如图,已知点C为线段AB上一点,△ACM、△BCN是等边三角形.(1)求证:AN=BM;(2)求∠NOB的度数.(3)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形(如图),AN与BM的数量关系如何?请说明理由.29.(12分)(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.2016-2017学年江苏省扬州市宝应县泰山中学、安宜中学联考八年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选:1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.【点评】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.5【考点】全等三角形的性质.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.4.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定.【分析】根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.【解答】解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选D.【点评】本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.6.如图,AC=AD,BC=BD,则有()A.CD垂直平分AB B.AB与CD互相垂直平分C.AB垂直平分CD D.CD平分∠ACB【考点】线段垂直平分线的性质.【分析】垂直平分线上任意一点,到线段两端点的距离相等.反之,到线段两端距离相等的点在线段的垂直平分线上.【解答】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB垂直平分线CD,故选(C)【点评】本题主要考查了线段垂直平分线的性质定理的逆定理,解题时注意:到线段两端距离相等的点在线段的垂直平分线上.7.如图,已知△ACE≌△DFB,下列结论中正确的个数是()①AC=DB;②AB=DC;③∠1=∠2;④AE∥DF;⑤S△ACE=S△DFB;⑥BC=AE;⑦BF∥EC.A.4个B.5个C.6个D.7个【考点】全等三角形的性质.【分析】运用全等三角形的性质,认真找对对应边和对应角,则该题易求.【解答】解:∵△ACE≌△DFB,∴AC=DB,①正确;∠ECA=∠DBF,∠A=∠D,S△ACE=S△DFB,⑤正确;∵AB+BC=CD+BC,∴AB=CD ②正确;∵∠ECA=∠DBF,∴BF∥EC,⑦正确;∠1=∠2,③正确;∵∠A=∠D,∴AE∥DF,④正确.BC与AE,不是对应边,也没有办法证明二者相等,⑥不正确.故选C.【点评】本题考查了全等三角形性质的运用,做题时结合图形及其它知识要进行综合思考.8.如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115° B.130° C.120° D.65°【考点】翻折变换(折叠问题).【分析】根据折叠前后角相等可知.【解答】解:∵∠1=50°,∴∠AEF=180°﹣∠BFE=180°﹣(180°﹣50°)÷2=115°故选A.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.9.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短 B.矩形的对称性C.矩形的四个角都是直角 D.三角形的稳定性【考点】三角形的稳定性.【分析】用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.【解答】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质.【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.【点评】此题考查三角形全等的判定与性质,正方形的判定与性质,运用割补法把原四边形转化为正方形,其面积保持不变,所求BE就是正方形的边长了;也可以看作将三角形ABE 绕B点逆时针旋转90°后的图形.二、细心填一填:(3&#215;10=30分)11.线段、角、三角形、圆中,其中轴对称图形有 3 个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:角,线段,圆均为轴对称图形.故答案为:3.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.若△ABC≌△DEF,∠B=40°,∠C=60°,则∠D= 80 °.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质得出∠D=∠A,即可得出答案.【解答】解:∵∠B=40°,∠C=60°,∴∠A=180°﹣∠B﹣∠C=80°,∵△ABC≌△DEF,∴∠D=∠A=80°,故答案为:80.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能正确运用全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.13.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件是∠C=∠B .【考点】全等三角形的判定.【分析】添加∠C=∠B,再加上公共角∠A=∠A,已知条件AB=AC可利用ASA判定△ABE≌△ACD.【解答】解:添加∠C=∠B,在△ACD和△ABE中,,∴△ABE≌△ACD(ASA).故答案为:∠C=∠B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB 的长为8 .【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等并进行等量代换.15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为8 cm2.【考点】轴对称的性质.【分析】正方形为轴对称图形,一条对称轴为其对角线;由图形条件可以看出阴影部分的面积为正方形面积的一半.=×4×4=8cm2.【解答】解:依题意有S阴影故答案为:8.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.16.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=20°,∠E=110°,∠EAB=15°,则∠BAD的度数为65°.【考点】全等三角形的性质.【分析】首先根据全等三角形的性质可得∠D=∠B=20°,再根据三角形内角和定理可得∠EAD 的度数,进而得到答案.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=20°,∵∠E=110°,∴∠EAD=180°﹣110°﹣20°=50°,∵∠EAB=15°,∴∠BAD=50°+15°=65°,故答案为:65°【点评】此题主要考查了全等三角形的性质,以及三角形内角和定理,关键是掌握全等三角形的对应角相等.17.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是9 .【考点】角平分线的性质.【分析】过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=BC•DE=×9×2=9.故答案为:9.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.18.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是 4 cm.【考点】线段垂直平分线的性质.【分析】要求周长,首先要求线段的长,利用垂直平分线的性质计算.【解答】解:因为AB的垂直平分线分别交AB、BC于点D、E,所以AE=BE,因为AC的垂直平分线分别交AC、BC于点F、G,所以AG=GC,△AEG的周长为AE+EG+AG=BE+EG+CG=BC=4cm.故填4.【点评】本题考查了线段垂直平分线的性质;根据垂直平分线的性质,将△AEG的周长转化为线段BC的长来解答是正确解答本题的关键.19.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 4 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.【点评】本题考察了利用轴对称设计图案的知识,此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是50 .【考点】全等三角形的判定与性质;勾股定理.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.【点评】本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.三.解答题或画图题(本大题共有9小题,共90分)21.已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E.F,AE=CF.求证:DE=BF.【考点】全等三角形的判定与性质.【分析】先由AE=CF根据等式的性质就可以得出AF=CE,再由条件证明△ABF≌△CDE就可以得出结论.【解答】证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.在Rt△ABF和At△CDE中,,∴Rt△ABF≌At△CDE(HL),∴DE=BF.【点评】本题考查了等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是解答本题的关键.22.(10分)(2016秋•宝应县校级月考)已知Rt△ABC中,∠B=90°(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED.(2)在(1)的基础上写出一对全等三角形:△AEH ≌△DEH 并加以证明.【考点】作图—复杂作图;全等三角形的判定;线段垂直平分线的性质.【分析】(1)根据角平分线和线段垂直平分线的作法作出图形即可;(2)根据线段垂直平分线的性质可得AE=ED,∠AHE=∠EHD,然后再利用HL定理判定Rt △AEH≌Rt△DEH即可.【解答】解:(1)如图所示:(2)Rt△AEH≌Rt△DEH,∵EF是AD的垂直平分线,∴AE=ED,∠AHE=∠EHD,在Rt△AEH和Rt△DEH中,∴Rt△AEH≌Rt△DEH(HL),故答案为:AEH;DEH.【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握角平分线和线段垂直平分线的作法.23.已知,如图,BC上有两点D、E,且BD=CE,AD=AE,∠1=∠2,求证:AB=AC.【考点】全等三角形的判定与性质.【分析】求出BE=CD,然后利用“边角边”证明△ABE和△ACD全等,根据全等三角形对应边相等证明即可.【解答】证明:∵BD=CE,∴BD+DE=CE+DE,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AB=AC.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据轴对称的性质画出△A1B1C1即可;(2)连接A1C交直线DE于点Q,则点Q即为所求点.【解答】解:(1)如图所示;(2)连接CA1,交直线DE于点Q,则点Q即为所求点.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.25.(10分)(2016•浙江模拟)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC .证明:AC=BD .【考点】全等三角形的判定与性质.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.26.(10分)(2016秋•宝应县校级月考)如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.【考点】旋转的性质;全等三角形的判定与性质.【分析】(1)根据“ASA”可判断△ABC≌△ADE;(2)先根据全等的性质得到AC=AE,则∠C=∠AEC=75°,再利用三角形内角和定理计算出∠CAE=30°,根据旋转的定义,把△ADE绕着点A逆时针旋转30°后与△ABC重合,于是得到这个旋转角为30°.【解答】(1)证明:在△ABC和△ADE中,∴△ABC≌△ADE;(2)解:∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°﹣∠C﹣∠AEC=30°,∴△ADE绕着点A逆时针旋转30°后与△ABC重合,∴这个旋转角为30°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质.27.(12分)(2016秋•宝应县校级月考)如图,已知△ABC中,AB=BC=AC,∠ABC=∠BCA=∠CAB=60°,M、N分别在△ABC的BC、AC边上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:①是;②是.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)先根据SAS定理得出△ABM≌△BCN,故可得出∠1=∠2,再由∠BQM=∠AQN,∠AQN是△ABQ的外角即可得出结论;(2)①根据ASA定理得出△ABM≌△BCN,由全等三角形的性质即可得出结论;②同①可证△ABN≌△CAM,由全等三角形的性质即可得出结论.【解答】(1)证明:如图1,∵△ABC是正三角形,∴AB=BC,∠ABC=∠C=60°,在△ABM与△BCN中,,∴△ABM≌△BCN(SAS),∴∠1=∠2,∵∠BQM=∠AQN,∠AQN是△ABQ的外角,∴∠BQM=∠AQN=∠1+∠3=∠2+∠3=∠ABC=60°,∴∠BQM=60°;(2)①仍为真命题;证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∵∠BQM=∠AQN=60°,∴∠1+∠3=60°,∵∠3+∠2=60°,∴∠1=∠2,在△ABM与△BCN中,,∴△ABM≌△BCN(ASA),∴BM=CN;②解:如图2所示,同①可证△ABN≌△CAM,∴∠N=∠M,∵∠NAQ=∠CAM,∴∠BQM=∠ACB=60°,∴仍能得到∠BQM=60°.【点评】本题考查的是全等三角形的判定与性质,熟知等边三角形的性质、全等三角形的判定与性质等知识是解答此题的关键.28.(12分)(2013秋•集美区校级期中)如图,已知点C为线段AB上一点,△ACM、△BCN是等边三角形.(1)求证:AN=BM;(2)求∠NOB的度数.(3)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形(如图),AN与BM的数量关系如何?请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】(1)等边三角形的性质可以得出△ACN,△MCB两边及其夹角分别对应相等,两个三角形全等,得出线段AN与线段BM相等.(2)设BM和AN相交于O,由∠BON=∠AOM=∠NAB+∠ABM=∠CMB+∠CBM=∠ACM而得出结论.(3)若把原题中“△ACM和△BCN是两个等边三角形”换成两个正方形,则AN=BM,证明△ACN≌△MCB即可.【解答】(1)证明:∵△ACM、△CBN都是等边三角形,∴AC=CM,CN=CB,∠ACM=∠BCN=60°,∴∠ACM+∠MCN=∠BCN+∠MCN,∴∠ACN=∠BCM,∵在△ACN和△MCB中,∴△ACN≌△MCB(SAS),∴AN=MB;(2)∵∠BON=∠AOM,且∠AOM=∠NAB+∠ABM,∴∠BON=∠NAB+∠ABM.∴∠BON=∠CMB+∠ABM.∵∠CMB+∠ABM=∠ACM=60°,∴∠BON=60°.(3)AN=BM,理由如下:∵四边形AFMC和四边形NCBF是正方形,∴AC=CM,∠ACN=∠MCB=90°,CN=CB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=BM.【点评】本题考查了正方形的性质的运用,等边三角形的性质的运用,全等三角形的判定与性质的运用,等边三角形的判定与性质的运用,平行线的判定,三角形的外角与内角的关系的运用,解答时证明三角形全等是关键.29.(12分)(2016秋•宝应县校级月考)(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.【考点】几何变换综合题.【分析】(1)先利用等角的余角相等得到∠EAC=∠BCD,则可根据“AAS”证明△AEC≌△CDB;(2)作B′D⊥AC于D,如图2,先证明△B′AD≌△ABD得到B′D=AC=4,然后根据三角形面积公式计算;(3)如图3,利用旋转的性质得∠FOP=120°,OP=OF,再证明△BOF≌△CPO得到PC=OB=1,则BP=BC+PC=4,然后计算点P运动的时间t.【解答】(1)证明:如图1,∵BD⊥l,AE⊥l,∴∠AEC=∠BDC=90°,∵∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,∴∠EAC=∠BCD,在△AEC和△CDB中∴△AEC≌△CDB;(2)作B′D⊥AC于D,如图2,∵斜边AB绕点A逆时针旋转90°至AB′,∴AB′=AB,∠B′AB=90°,即∠B′AC+∠BAC=90°,而∠B+∠CAB=90°,∴∠B=∠B′AC,在△B′AD和△ABD中,∴△B′AD≌△ABD,∴B′D=AC=4,∴△AB′C的面积=×4×4=8;(3)如图3,∵OC=2,∴OB=BC﹣OC=1,∵线段OP绕点O逆时针旋转120°得到线段OF,∴∠FOP=120°,OP=OF,∴∠1+∠2=60°,∵△BCE为等边三角形,∴∠BCE=∠CBE=60°,∴∠FBO=120°,∠PCO=120°,∴∠2+∠3=∠BCE=60°,∴∠1=∠3,在△BOF和△CPO,,∴△BOF≌△CPO,∴PC=OB=1,∴BP=BC+PC=3+1=4,∴点P运动的时间t==4s.【点评】本题考查了几何变换综合题:熟练掌握旋转的性质和等腰直角三角形的性质;会运用全等三角形的知识解决线段相等的问题;解决此题的关键是理解(1)小题的解题方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年江苏省扬州市八年级(上)月考数学试卷(12月份)一、选择题1.下列不是轴对称图形是()A.B.C.D.2.计算的结果是()A.3 B.±3 C.﹣3 D.93.在3.14,﹣,,π,0.2020020002…五个数中,无理数有()A.1个 B.2个 C.3个 D.4个4.下列各数中,不能作为直角三角形三边长度的是()A.8,15,17 B.11,60,61 C.12,35,36 D.,,15.已知一次函数y=mx+n﹣3的图象如图,则m、n的取值范围是()A.m>0,n<3 B.m>0,n>3 C.m<0,n<3 D.m<0,n>36.老王以每千克0.8元的价格从批发市场购进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.2元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么老王赚了()A.32元B.36元C.38元D.44元7.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=18.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②若等腰三角形一腰上的高与底边的夹角为20°,则顶角为40°;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④斜边上的高和一直角边分别相等的两个直角三角形全等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个二、填空:(本大题共有10小题,每小题4分,共40分.)9.16的平方根是.10.某电子显微镜的分辨率为0.000000014cm,请用科学记数法表示为.11.如图,△ABC中,AB=AC,点D、E在边BC上,请你添加一个条件,使△ABD与△ACE全等.12.在平面直角坐标系中,把直线y=2x+1向上平移两个单位后,得到的直线解析式为.13.如图,在Rt△ABC中,∠C=90°,BC=6,∠ABC的平分线BD交AC于D,且BD=8,点E是AB边上的一动点,则DE的最小值为.14.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,沿DE所在直线折叠,使点B恰好与点A重合,若CD=3,AB=8,则DB的值为.15.一次函数y=kx+b的图象如图所示,则不等式0≤kx+b<5的解集为.16.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣3,﹣1),白棋③的坐标是(﹣2,﹣3),则黑棋②的坐标是.17.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.18.如图,△ABC是第1个等腰直角三角形,∠C=90°,AC=BC=1,D是斜边AB的中点,以BD为一直角边向形外作第2个等腰直角三角形BDE,…,如此继续作下去,第n个等腰直角三角形的面积为.三、解答题:(共8小题,满分86分.)19.(10分)解下列方程.(1)x2﹣16=0;(2)(x﹣1)3=﹣27.20.(8分)如图,已知△ABC的三个顶点在格点上.(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)求出△A1B1C1的面积.21.(10分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.试说明:∠OAB=∠OBA.22.(10分)某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.23.(10分)如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭,使报亭到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭位置(不写作法,但需保留作图痕迹,交代作图结果);(2)如果AD=80m,CD=40m,求报亭到小路端点A的距离.24.(12分)如图表示一个正比例函数与一个一次函数的图象,它们交于点A (4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.25.(12分)如图,直线y=﹣2x+6与x轴、y轴分别相交于点C、B,与直线y=x 相交于点A.(1)点B、点C和点A的坐标分别是(0,)、(,0)、(,);(2)求两条直线与x轴围成的三角形的面积;(3)在坐标轴上是否存在一点Q,使△OAQ的面积等于6?若存在请直接写出Q点的坐标;若不存在,请说明理由.26.(14分)如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.(1)求点D的坐标;(2)过点C作CE⊥AD,交AB交于F,垂足为E.①求证:OF=OG;②求点F的坐标.(3)在(2)的条件下,在第一象限内是否存在点P,使△CFP为等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.2016-2017学年江苏省扬州市八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题1.下列不是轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.计算的结果是()A.3 B.±3 C.﹣3 D.9【考点】算术平方根.【分析】根据平方与开平方互为逆运算,可得一个数的算术平方根.【解答】解:,故选:A.【点评】本题考查了算术平方根,一个正数的算术平方根只有一个.3.在3.14,﹣,,π,0.2020020002…五个数中,无理数有()A .1个B .2个C .3个D .4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,π,0.2020020002…是无理数,故选:D .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列各数中,不能作为直角三角形三边长度的是( )A .8,15,17B .11,60,61C .12,35,36D .,,1【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A 、82+152=172,符合勾股定理的逆定理,故本选项不符合题意; B 、112+602=612,符合勾股定理的逆定理,故本选项不符合题意;C 、122+352≠362,不符合勾股定理的逆定理,故本选项符合题意;D 、()2+()2=12,符合勾股定理的逆定理,故本选项不符合题意. 故选C .【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.已知一次函数y=mx +n ﹣3的图象如图,则m 、n 的取值范围是( )A.m>0,n<3 B.m>0,n>3 C.m<0,n<3 D.m<0,n>3【考点】一次函数图象与系数的关系.【分析】先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交于正半轴可知n﹣3>0,进而可得出结论.【解答】解:∵一次函数y=mx+n﹣3的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n﹣3>0,∴n>3.故选D.【点评】本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.老王以每千克0.8元的价格从批发市场购进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.2元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么老王赚了()A.32元B.36元C.38元D.44元【考点】一次函数的应用.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:由图中可知,没有降价前40千克西瓜卖了64元,那么售价为:64÷40=1.6(元),降价0.2元后单价变为1.6﹣0.2=1.4,钱变成了78元,说明降价后卖了78﹣64=14元,那么降价后卖了14÷1.4=10(千克).总质量将变为40+10=50(千克).那么老王的成本为:50×0.8=40(元),赚了78﹣40=38元.故选C.【点评】此题主要考查了函数图象的性质,解决本题的关键是求出降价后卖的西瓜的质量,进而求得所有西瓜的总质量.7.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1【考点】全等三角形的判定与性质;坐标与图形性质;三角形的角平分线、中线和高.【分析】根据OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.【解答】解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.【点评】此题主要考查了角平分线的性质以及坐标点的性质,利用角平分线的作法得出C点坐标性质是解题关键.8.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②若等腰三角形一腰上的高与底边的夹角为20°,则顶角为40°;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④斜边上的高和一直角边分别相等的两个直角三角形全等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个【考点】等腰三角形的判定与性质;直角三角形全等的判定;勾股定理.【分析】画出图形,根据线段垂直平分线性质得出AB=AC,即可判断①;画出图形,求出∠C根据等腰三角形性质求出∠ABC,根据三角形内角和定理求出∠A,即可判断②;分为两种情况,即可判断③;先求出Rt△ADC≌Rt△A′D′C′,推出∠A=∠A′,再根据ASA即可推出Rt△ACB≌Rt△A′C′B′,即可判断④.【解答】解:如图,∵AD是高,∴AD⊥BC,∵BD=CD,∴AB=AC,即△ABC是等腰三角形,∴①正确;如图,∵BD⊥AC,∴∠BDC=90°,∵∠DBC=20°,∴∠C=70°,∵AB=AC,∴∠ABC=∠C=70°,∴∠A=180°﹣70°﹣70°=40°,∴②正确;可能斜边是4,一条直角边是3,∴③错误;如图,在Rt△ADC和Rt△A′D′C′中,AC=A′C′,CD=C′D′,符合HL定理,即能推出Rt△ADC≌Rt△A′D′C′,∴∠A=∠A′,再根据ASA即可推出Rt△ACB≌Rt△A′C′B′,∴④正确;即正确的有3个,故选C.【点评】本题考查了线段垂直平分线,全等三角形的性质和判定,等腰三角形的性质和判定,三角形内角和定理等知识点的应用,主要考查学生的推理能力和判断能力.二、填空:(本大题共有10小题,每小题4分,共40分.)9.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.某电子显微镜的分辨率为0.000000014cm,请用科学记数法表示为 1.4×10﹣8.【考点】科学记数法—表示较小的数.【分析】根据科学记数法表示的方法,可得答案.【解答】解:0.000000014=1.4×10﹣8,故答案为:1.4×10﹣8.【点评】本题考查了科学记数法,注意a是一位整数,n是数的第一个非0数字前面0的个数的相反数.11.如图,△ABC中,AB=AC,点D、E在边BC上,请你添加一个条件BD=CE,使△ABD与△ACE全等.【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.12.在平面直角坐标系中,把直线y=2x+1向上平移两个单位后,得到的直线解析式为y=2x+5.【考点】一次函数图象与几何变换.【分析】在平面直角坐标系中,把直线y=2x+1向上平移两个单位后,得到的直线解析式为y=2x+3.【解答】解:由“上加下减”的原则可知,把直线y=2x+1向上平移两个单位长度后所得直线的解析式为:y=2(x+2)+1=2x+5.故答案为:y=2x+5.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.如图,在Rt△ABC中,∠C=90°,BC=6,∠ABC的平分线BD交AC于D,且BD=8,点E是AB边上的一动点,则DE的最小值为2.【考点】角平分线的性质;垂线段最短.【分析】根据勾股定理求出CD,过D作DE⊥AB于E,根据角平分线求出CD=DE,代入求出即可.【解答】解:在Rt△BCD中,∠C=90°,BC=6,BD=8,由勾股定理得:CD==2,过D作DE⊥AB于E,则此时DE的值最小,∵BD平分∠ABC,∠C=90°,∴DE=CD=2,故答案为:2.【点评】本题考查了角平分线性质,勾股定理,垂线段最短的应用,注意:角平分线上的点到角的两边的距离相等.14.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,沿DE所在直线折叠,使点B恰好与点A重合,若CD=3,AB=8,则DB的值为5.【考点】翻折变换(折叠问题).【分析】由角平分线可得∠CBD=∠EBD,由折叠可得∠A=∠EDB,进而求得∠A=∠CBD=30°,利用直角三角形中30°锐角所对的直角边等于斜边的一半,进而可求出BC的长,再利用勾股定理即可求出DB的长.【解答】解:∵BD平分∠ABC,∴∠CBD=∠EBD,∵沿DE所在直线折叠,使点B恰好与点A重合,∴DE⊥AB,∠A=∠DBA,∴∠DBC=∠A=∠DBA=30°,∴AB=2BC,∵AB=8,∴BC=4,∵CD=3,∴DB==5.故答案为:5.【点评】此题考查了折叠的性质、勾股定理的运用以及角平分线、含30°角的直角三角形的性质,得到30°的角是正确解答本题的关键.15.一次函数y=kx+b的图象如图所示,则不等式0≤kx+b<5的解集为0<x≤2.【考点】一次函数与一元一次不等式.【分析】从图象上得到直线与坐标轴的交点坐标,再根据函数的增减性,可以得出不等式0≤kx+b<5的解集.【解答】解:函数y=kx+b的图象如图所示,函数经过点(2,0),(0,5),且函数值y随x的增大而减小,∴不等式0≤kx+b<5的解集是0<x≤2.故本题答案为:0<x≤2.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.16.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣3,﹣1),白棋③的坐标是(﹣2,﹣3),则黑棋②的坐标是(0,﹣2).【考点】坐标确定位置.【分析】白棋①的坐标向右3个单位,向上平移1个单位为坐标原点建立平面直角坐标系,然后写出黑棋②的坐标即可.【解答】解:建立平面直角坐标系如图,所以,黑棋②的坐标为(0,﹣2).故答案为:(0,﹣2).【点评】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点是解题的关键.17.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.【考点】一次函数的应用.【分析】根据图象可得甲5小时行驶了120km,乙5小时行驶了120﹣4=116千米,再根据路程和时间求出速度,进而得到速度差.【解答】解:根据图象可得出:甲的速度为:120÷5=24(km/h),乙的速度为:(120﹣4)÷5=23.2(km/h),速度差为:24﹣23.2=(km/h),故答案为:.【点评】此题主要考查了一次函数的应用,关键是正确从图象中得到正确信息,掌握速度=路程÷时间.18.如图,△ABC是第1个等腰直角三角形,∠C=90°,AC=BC=1,D是斜边AB 的中点,以BD为一直角边向形外作第2个等腰直角三角形BDE,…,如此继续作下去,第n个等腰直角三角形的面积为.【考点】等腰直角三角形.【分析】利用等腰直角三角形的性质以及三角形面积公式进而得出三角形面积变化规律进而得出答案.【解答】解:∵∠C=90°,AC=BC=1,∴AB=,∵D是斜边AB的中点,等腰直角三角形BDE,∴DE=BD=,…=×1×1=,∴S△ABCS△BDE=××=,…∴第n个等腰直角三角形的面积为:.故答案为:.【点评】此题主要考查了图形变化类以及等腰直角三角形的性质等知识,根据已知得出三角形面积变化规律是解题关键.三、解答题:(共8小题,满分86分.)19.(10分)(2013秋•海陵区期末)解下列方程.(1)x2﹣16=0;(2)(x﹣1)3=﹣27.【考点】立方根;平方根.【分析】(1)根据平方与开平方互为逆运算,开平方,可得答案;(2)根据立方与开立方互为逆运算,开立方,可得答案.【解答】解:(1)x2=16,x=4或x=﹣4;(2)(x﹣1)3=﹣27,x﹣1=﹣3x=﹣2.【点评】本题考查了立方根,开方是求本题的关键.20.如图,已知△ABC的三个顶点在格点上.(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)求出△A1B1C1的面积.【考点】作图-轴对称变换.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可.(2)根据勾股定理求出三角形的底和高,依面积公式计算.【解答】解:(1)如图所示:(2)△A1B1C1的面积=(平方单位).(7分)【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接.21.(10分)(2013秋•海陵区期末)如图,已知AC⊥BC,BD⊥AD,AC与BD 交于O,AC=BD.试说明:∠OAB=∠OBA.【考点】全等三角形的判定与性质.【分析】利用HL进行△ABC和△BAD全等的判定即可得出结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴△ABC、△BAD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴△ABC≌△BAD(HL),∴∠OAB=∠OBA.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是熟练全等三角形的判定定理.22.(10分)(2013秋•高港区校级期末)某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.【考点】一次函数的应用.【分析】(1)首先表示出B种产品的数量进而利用A,B种产品的利润进而得出总利润;(2)利用不等式组求出x的取值范围,进而利用一次函数增减性进而得出最大利润.【解答】解:(1)设生产两种产品的获利总额为y(元),生产A产品x(件),则B种产品共(50﹣x)件,∴y与x之间的函数关系式为:y=1200x+700(50﹣x)=500x+35000;(2)∵生产A、B两种产品的件数均不少于10件,∴,解得:10≤x≤40,∵y=500x+35000,y随x的增大而增大,∴当x=40时,此时达到总利润的最大值为:40×500+35000=55000(元),答:总利润的最大值为55000元.【点评】此题主要考查了一次函数的应用以及不等式组的解法和函数最值求法等知识,得出y与x的关系式是解题关键.23.(10分)(2013秋•高港区校级期末)如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭,使报亭到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭位置(不写作法,但需保留作图痕迹,交代作图结果);(2)如果AD=80m,CD=40m,求报亭到小路端点A的距离.【考点】作图—应用与设计作图.【分析】(1)作AC的垂直平分线交AD与点G,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【解答】解:(1)如图所示:G点即为所求;(2)设AG=xm,则DG=(80﹣x)m,GC=xm,在Rt△DGC中,DG2+CD2=GC2,∴(80﹣x)2+402=x2,解得:x=50,答:报亭到小路端点A的距离50m.【点评】此题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得出AG=GC,进而利用勾股定理得出是解题关键.24.(12分)(2016春•太和县期末)如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;待定系数法求正比例函数解析式;勾股定理.【分析】先设出正比例函数、一次函数的解析式为y=mx和y=kx+b.根据交点为(4,3),进而求正比例函数解析式和一个关于k,b的方程,再根据勾股定理求出OA的长,从而得到OB的长,即b的值,再进一步求得k值.【解答】解:设正比例函数是y=mx,设一次函数是y=kx+b.把A(4,3)代入y=mx得:4m=3,即m=.则正比例函数是y=x;把(4,3)代入y=kx+b,得:4k+b=3①.∵A(4,3),∴根据勾股定理,得OA=5,∴OB=OA=5,∴b=﹣5.把b=﹣5代入①,得k=2.则一次函数解析式是y=2x﹣5.【点评】本题考查用待定系数法求正比例函数和一次函数的解析式,解题的关键根据通过勾股定理求OA的长,再进一步确定OB的长.25.(12分)(2013秋•海陵区期末)如图,直线y=﹣2x+6与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)点B、点C和点A的坐标分别是(0,6)、(3,0)、(2,2);(2)求两条直线与x轴围成的三角形的面积;(3)在坐标轴上是否存在一点Q,使△OAQ的面积等于6?若存在请直接写出Q点的坐标;若不存在,请说明理由.【考点】两条直线相交或平行问题.【分析】(1)根据坐标轴上点的坐标特征易得B点坐标为(0,6),C点坐标为(3,0),然后解方程组可确定A点坐标;(2)根据三角形面积公式计算;=×2×|a|=6;当Q (3)分类讨论:当Q点在x轴上,设Q(a,0),则S△AOQ=×2×|b|=6,然后分别求出a和b的值,点在y轴上,设Q(0,b),则S△AOQ从而得到Q点的坐标.【解答】解:(1)把x=0代入y=﹣2x+6得y=6,所以B点坐标为(0,6),把y=0代入y=﹣2x+6得﹣2x+6=0,解得x=3,所以C点坐标为(3,0),解方程组得,所以A点坐标为(2,2),故答案为6,3,2,2;=×3×2=3;(2)S△AOC(3)存在.=×2×|a|=6,当Q点在x轴上,设Q(a,0),则S△AOQ解得a=±6,则Q点坐标为(﹣6,0)、(6,0);=×2×|b|=6,当Q点在y轴上,设Q(0,b),则S△AOQ解得b=±6,则Q点坐标为(0,﹣6)、(0,6),综上所述Q点坐标为(0,6)、(0,﹣6)、(6,0)、(﹣6,0).【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.26.(14分)(2015秋•江都区校级期末)如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.(1)求点D的坐标;(2)过点C作CE⊥AD,交AB交于F,垂足为E.①求证:OF=OG;②求点F的坐标.(3)在(2)的条件下,在第一象限内是否存在点P,使△CFP为等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作DH⊥AB于H,由OA=OB=OC=6,就可以得出∠ABC=45°,由三角形的面积公式就可以求出DH的值,就可以求出BH的值,从而求出D的坐标;(2)①根据OA=OC,再根据直角三角形的性质就可以得出△AOG≌△COF,就可以得出OF=OG;②由△AOG∽△AHD就可以得出OG的值,就可以求出F的坐标.(3)根据条件作出图形图1,作PH⊥OC于H,PM⊥OB于M,由△PHC≌△PMF 就可以得出结论,图2,作PH⊥OB于H,由△COF≌△PHF就可以得出结论,图3,作PH⊥OC于H,由△COF≌△PHC就可以得出结论.【解答】解:(1)作DH⊥AB于H,∴∠AHD=∠BHD=90°.∵OA=OB=OC=6,∴AB=12,∴S△ABC==36,∵△ABD的面积为△ABC面积的.∴×36=,∴DH=2.∵OC=OB,∴∠BCO=∠OBC.∵∠BOC=90°,∴∠BCO=∠OBC=45°,∴∠HDB=45°,∴∠HDB=∠DBH,∴DH=BH.∴BH=2.∴OH=4,∴D(4,2);(2)①∵CE⊥AD,∴∠CEG=∠AEF=90°,∵∠AOC=∠COF=90°,∴∠COF=∠AEF=90°∴∠AFC+∠FAG=90°,∠AFC+∠OCF=90°,∴∠FAG=∠OCF.在△AOG和△COF中,∴△AOG≌△COF(ASA),∴OF=OG;②∵∠AOG=∠AHD=90°,∴OG∥DH,∴△AOG∽△AHD,∴,∴,∴OG=1.2.∴OF=1.2.∴F(1.2,0)(3)如图1,当∠CPF=90°,PC=PF时,作PH⊥OC于H,PM⊥OB于M ∴∠PHC=∠PHO=∠PMO=∠PMB=90°.∵∠BOC=90°,∴四边形OMPH是矩形,∴∠HPM=90°,∴∠HPF+∠MPF=90°.∵∠CPF=90°,∴∠CPH+∠HPF=90°.∵∠CPH=∠FPM.在△PHC和△PMF中,∴△PHC≌△PMF(AAS),∴CH=FM.HP=PM,∴矩形HPMO是正方形,∴HO=MO=HP=PM.∵CO=OB,∴CO﹣OH=OB﹣OM,∴CH=MB,∴FM=MB.∵OF=1.2,∴FB=4.8,∴FM=2.4,∴OM=3.6∴PM=3.6,∴P(3.6,3.6);图2,当∠CFP=90°,PF=CF时,作PH⊥OB于H,∴∠OFC+∠PFH=90°,∠PHF=90°,∴∠PFH+∠FPH=90°,∴∠OFC=∠HPF.∵∠COF=90°,∴∠COF=∠FHP.在△COF和△PHF中,∴△COF≌△PHF(AAS),∴OF=HP,CO=FH,∴HP=1.2,FH=6,∴OH=7.2,∴P(7.2,1.2);图3,当∠FCP=90°,PC=CF时,作PH⊥OC于H,∴∠CHP=90°,∴∠HCP+∠HPC=90°.∵∠FCP=90°,∴∠HCP+∠OCF=90°,∴∠OCF=∠HCP.∵∠FOC=90°,∴∠FOC=∠CHP.在△COF和△PHC中,∴△COF≌△PHC(AAS),∴OF=HC,OC=HP,∴HC=1.2,HP=6,∴HO=7.2,∴P(6,7.2),∴P(6,7.2),(7.2,1.2),(3.6,3.6).【点评】本题考查了坐标与图象的性质的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,全等三角形的判定与性质的运用,解答时求三角形全等是关键.。

相关文档
最新文档