21电网的纵联差动保护

合集下载

电网的纵联保护

电网的纵联保护
电网的纵联保护
❖ 随着电力系统容量的扩大,电压等级的提高, 线路输电容量的增加,为保证系统的稳定性, 要求瞬时切除被保护线路每一点的故障。
纵联保护分类
❖ 1.按通道类型分类 保护通道类型主要有: (1)导引线,两侧保护电流回路由二次电
缆连接起来,用于线路纵差保护; (2)载波通道,使用电力线路构成载波通
2)暂态不平衡电流
原因:由于非周期分量对时间变化率远小于 周期分量,故非周期分量很难变换到二次侧, 但却使铁芯严重饱和,导致励磁阻抗急剧下 降,励磁电流剧增,从而使二次电流的误差 增大。
结论:暂态不平衡电流要比稳态不平衡电 流大得多,并且含有很大的非周期分量。
外部短路时的不平衡电流:
短路电流
不平衡电流
流 I unb 。
(2)内部故障时
Ir IM 2 IN2 0 ,有很大的电流流入差动继 电器,保护动作,断开线路两侧断路器,切 除短路故障。
(3)不平衡电流
1)稳态不平衡电流 由于电流互感器总是具有励磁电流,且励 磁特性不完全相同。同一生产厂家相同型 号,相同变比的电流互感器也是如此。
理想
1、平行线路内部故障特点
正结常论运:行电或流区差外短II 路 I时II 是:否II为零II可I 作0为
内平部行短线路路时有:无I故I 障I的II 依0据。 要的线判 方路断 向1短哪,路条以时线这:路一短原II 路理 ,去III则实≥0需现要的判差断动保电护流称差
为线横路联2短差路动时方:向I保I 护 I。II ≤0
道,用于高频保护; (3)微波通道,用于微波保护; (4)光纤通道,用于光纤差动保护。
❖ 2.按保护原理分类 (1)电流差动原理; (2)纵联方向原理。
3.按通道传送信息含义分类

光纤纵联电流差动保护通道异常

光纤纵联电流差动保护通道异常

1概述光纤纵联电流差动保护是近年来发展相当快的输电线路保护之一,它借助光纤通道传送输电线路两端的信息,以基尔霍夫电流定律为依据,能简单、可靠地判断出区内、区外故障。

对于线路保护来说,分相电流差动保护具有天然的选相能力和良好的网络拓扑能力,不受系统振荡、非全相运行的影响,可以反映各种类型的故障,是理想的线路主保护。

光纤通信与输电线无直接联系,不受电磁干扰的影响,可靠性高,通信容量大。

光纤纵联电流差动保护既利用了分相电流差动的良好判据,又克服了传统导引线方式的种种缺陷,具有其他保护无以比拟的优势,因此,近年来国内外各大公司均加强在该领域的研究开发,各自相继推出了此类保护产品。

就光纤纵差保护的应用环境来说,随着国家电力工业的发展,通讯技术的日新月异,光缆及光纤设备费用的急剧下降,光纤通讯网在电力系统的架设越来越普遍。

如广东目前已建成了光缆1300km,SDH(Synchronous Digital Hierarchy)站点30多个,以珠江三角洲为中心的SDH自愈环电力光纤网络。

目前,许多地方都把发展光纤通信主干网作为电力通信的发展方向和重要任务,这都为继电保护所需要的稳定、可靠的数字化信息传输通道创造了有利条件。

在光纤网络敷设的光缆中,除提供数据共用光纤通道接口,满足数据通信、宽带多媒体、图像信息等的需求外,还提供了继电保护专用的纤芯,这为高压输电线的电流纵联差动保护提供了复用光纤通道(与SDH共用的数据通道)和专用光纤通道(利用光纤网络中继电保护用纤芯构成)。

另外,由于光纤电流差动保护简单、可靠,不受线路运行方式的影响,在城网和短输电线路中大量采用。

如上海电网已把采用光纤分相电流纵差保护作为电网继电保护“十五”规划的一个重要配置原则来执行,目前已投运和即将投运的光纤电流差动保护达194套。

因城网中输电线大多较短,光纤芯直接接入不需附加复接设备,管理也较方便,故在城网中光纤电流差动保护以专用光纤通道方式为多。

纵联电流差动保护概述

纵联电流差动保护概述

纵联电流差动保护概述摘要:纵联电流差动保护有明确的选择性,逐渐成为高压线路的主保护。

本文首先重点介绍了纵联电流差动保护的保护原理,然后分析了影响纵联电流差动保护的性能因素及其解决办法,最后介绍了纵联电流差动保护在现场的对调工作。

关键字:纵联电流差动保护;选择性;原理;解决办法;对调0、引言根据继电保护在电力系统中所担负的任务,通常继电保护装置必须满足四个基本要求,即选择性、快速性、灵敏性和可靠性。

随着微机保护技术和光纤通信技术的日益成熟,纵联电流差动保护逐渐成为高压线路的主保护,其保护原理简单,有明确的选择性和很好的速动性,可以实现线路全长范围内故障的无时限切除。

1、纵联电流差动保护原理纵联保护在电网中可实现全线速动,理论上具有绝对的选择性。

电流差动保护是较为理想的一种保护原理,其选择性不是靠延时,不是靠方向,也不是靠定值,而是靠基尔霍夫电流定律:流向一个节点的电流之和等于零【1】。

图1-1 纵联电流差动保护原理(b)比率制动特性设流过两端保护的电流、以母线流向被保护线路的方向规定为其正方向。

以两端电流的相量和作为继电器的动作电流,如式1-1(a),该电流有时也称作差动电流、差电流。

另以两端电流的相量差作为继电器的制动电流,如式1-1(b)。

式1-2 比率制动特性两折线公式而当线路外部短路时,经计算,其工作点落在动作特性的不动作区,差动继电器不动作。

差动继电器可以区分线路外部短路(含正常运行)和线路内部短路。

继电器的保护范围是两端TA之间的范围。

【2】2、影响差动保护的性能因素及其解决办法2.1 电流互感器的误差和不平衡电流同型号的电流互感器性能也不能保证完全一致,电流互感器之间存在误差;电流互感器励磁电流的影响也会带来误差;保护装置采样回路的误差等。

以上误差都会引起不平衡电流,不平衡电流增大会影响差动保护的灵敏度。

电流互感器的误差可以通过选取同一厂家同一批次的相同型号电流互感器来尽量减小,而对于保护装置采样回路的误差,则要求保护厂家采取措施尽量减小它的影响。

继电保护第四章差动

继电保护第四章差动

内部短路:
流入差动保护回路的电流为
' I I I 1 d 1 d d I I I r 2 d ' K K TA TA K TA ' 2 d
被保护线路内部故障时,流入差回路 的电流远大于差动继电器的起动电流,差 动继电器动作,瞬时发出跳闸脉冲,断开 线路两侧断路器。 结论:1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动
-、纵联差动保护的工作原理
电网的纵联差动保护反应被保护线路首末两端电流的 大小和相位,保护整条线路,全线速动。纵联差动保护原 理接线如下图所示。 流入继电器的电流为I2—I2, 即为电流互感器二次电流的差。
正常运行: 流入差回路的电流 ' I I ' 1 1 I I I 0 r 2 2 ' n TA n TA
四、纵联差动保护的评价
优点: 全线速动,不受过负荷及系统振荡的影响, 灵敏度较高。
缺点:
需敷设与被保护线路等长的辅助导线,且要求 电流互感器的二次负载阻抗满足电流互感器10% 的误差。这在经济上,技术上都难以实现。
需装设辅助导线断线与短路的监视装置,辅助导 线断线应将纵联差动保护闭锁。
应用: 在输电线路中,只有用其它保护不能满足要求的 短线路(一般不超过5~7km 线路)才采用。
复习思考题:
4-1 纵联差动保Байду номын сангаас与电流保护的区别是什么? 4-2 纵联差动保护的原理及优缺点是什么? 4-3 横联差动保护的原理及优缺点是什么?
第四章
电网的差动保护
一、电网的纵联差动保护
二、 平行线路横联差动保护
第一节
电网的纵联差动保护
电流、电压和距离保护属于单端保护,不能 瞬时切除保护范围内任何地点的故障。这就不能 满足高压输电线路系统稳定的要求。如何保证瞬 时切除高压输电线路故障?

110KV供电系统中的各种保护

110KV供电系统中的各种保护

1、纵联差动保护,即输电线的纵联差动保护,是用某种通信通道将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路范围外,从而决定是否切断被保护线路。

2、差动保护差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

特性由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。

但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。

以前由于受辅助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,由于光纤的广泛使用,纵联差动保护已可作为长线路的主保护。

对于发电机、变压器及母线等,均可广泛采用纵联差动保护实现主保护。

保护原理所谓变压器的纵联差动保护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的保护。

纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。

对于变压器线圈的匝间短路等内部故障,通常只作后备保护。

联差动保护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。

因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。

在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到保护作用。

变压器纵差保护原理接线图变压器纵差保护是按照循环电流原理构成的,变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差保护不动作。

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是一种电力系统中常用的保护方式,用于检测和保护主变压器、发电机、母线等重要设备的故障。

其基本原理是比较设备两侧电流的差值,当差值超过设定值时,即认为发生了故障,触发保护动作。

纵联差动保护的工作原理可以分为两个阶段:采样和比较。

首先,在设备两侧分别安装电流互感器,采样得到两侧电流的信号。

这些信号经过放大和调节后,送入差动继电器。

差动继电器进行差动计算,即计算两侧电流的差值。

如果差值低于设定值,差动继电器保持动作,表示系统正常。

但当差值超过设定值,差动继电器即判定为发生故障,触发保护装置的动作。

纵联差动保护的核心是差动继电器,其内部包含了一个差动计算单元和一个保护决策单元。

差动计算单元计算两侧电流的差值,并将结果送入保护决策单元。

保护决策单元根据计算结果,进行故障判定和相应的保护动作。

纵联差动保护的设计要考虑到系统的复杂性和可靠性。

在设计时,需要合理选择互感器的参数、差动计算的方式和设定值。

此外,还需要考虑到与其他保护装置的协调工作,使整个保护系统能够快速、准确地检测和定位故障,并采取适当的措施进行隔离和保护。

综上所述,纵联差动保护通过比较设备两侧电流的差值来检测和保护设备的故障。

它是一种重要的电力系统保护方式,能够有效地提升系统的可靠性和安全性。

第三讲:输电线纵联差动保护

第三讲:输电线纵联差动保护

IM f(• )=0 IN
圆外为动作区
21
一、输电线路的纵联差动保护
7.影响输电线纵差动保护正确工作的因素 7.影响输电线纵差动保护正确工作的因素
电流互感器的误差和不平衡电流; 导引线的阻抗和分布电容; 导引线的故障和感应过电压;
22
一、输电线路的纵联差动保护
CT误差和不平衡电流的影响 CT误差和不平衡电流的影响
35
三、高频保护概述
1.高频保护基本原理
将线路两端的电流相位或功率方向转化为高频信号,然后, 利用输电线路本身构成的高频(载波)电流通道,将此信 号送至对端,以比较两端电流的相位或功率方向的一种保 护。
36
三、高频保护概述
2.高频保护的分类 2.高频保护的分类
按照工作原理的不同,可以分为两大类:
正常运行或外部故障
I J 1 = I1m − I 2 m



• 1 • = (I1M − I 2 M ) = 0 n
I J 2 = I1n − I 2 n



• 1 • = (I1N − I 2 N ) = 0 n
32
二、平行双回线路的横联保护
2.横联方向差动保护原理分析 2.横联方向差动保护原理分析 线路1 线路1内部故障
29
一、输电线路的纵联差动保护
导引线的故障及感应过电压对保护的影响
对于环流法接线,导引线断线将造成保护误动作,导引线 短路将造成输电线内部短路时保护拒动; 对于均压法接线,导引线断线将造成保护拒动,导引线短 路将造成输电线内部短路时保护误动; 短路电流、雷电可在导引线中感应产生过电压,应采取过 电压保护措施。
正常运行或外部故障
继电器端电压较小,不动作

继电保护-第4章 电网的纵联保护

继电保护-第4章 电网的纵联保护
第 四 章
输电线路纵联保护
Pilot Protection for Transmission Lines
4.1
输电线路纵联保护概述
4.1.1 引言( 纵联保护的提出 )
1. 电流、距离保护的缺陷
M 1 2 N 3
k1
k2
反映:一侧电气量,即只采集线路一侧的电气量 缺陷:Ⅱ段有延时,无法实现全线速动,
N
正常运行时:两侧的测量阻抗都是负荷阻抗, 距离Ⅱ段都不启动 外部故障时:至少有一侧的距离Ⅱ段不启动(反方向)
I U M M
M
U I N N
N
区内故障时:两侧的距离Ⅱ段同时启动
4.1.3 纵联保护的基本原理
1、纵联电流差动保护
基本原理:利用输电线路两端电流波形和或电流相量和的特征。
I U M M
M SM SN
U I N N
N
正常运行或区外故障时:远故障点的功率方向是从母线流向 线路,功率方向为正;近故障点的功率方向是由线路流向母 线,功率方向为负。两端功率方向相反。 U I I U N
M
M
N

M SM SN
N
区内故障时:两端的功率方向都是从母线流向线路,同为正。
优点:不受系统振荡的影响,不受非全相的影响,简单可靠
缺点:导引线不能太长
4.2.2 电力线载波通信
将线路两端的电流相位(或功率方向)信息转变为高 频信号,经过高频耦合设备将高频信号加载到输电线 路上,输电线路本身作为高频信号的通道将高频载波 信号传输到对侧,对端再经过高频耦合设备将高频信 号接收,以实现各端电流相位(或功率方向)的比较, 称为高频保护。
缺点: a. 施工的要求高,“焊接”难(熔纤机); b. 光纤断裂难以查找; c. 通信距离还不够长。 光纤通讯网是电力通讯网的主干网,基于光纤通信的纵联保 护成为主流模式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 电网的差动保护
第一节 电网的纵联差动保护
一、纵联差动保护的基本原理
纵差保护的基本原理是基于比较被保护线路始端和末端电流的大小和相位原理构成的。

(a )正
常运行情
况 (b)区外短路情况 (c) 区内短路情况 在理想状态下,流入差动保护差回路中的电流为零。

在正常运行时,流入差回路的电流
0''11'22≈-=-=TA
TA r K I K I I I I 式中 K TA 、K TA '——分别为两侧电流互感器的变比。

当被保护线路外部K 点短路时,流入差动保护差回路中的电流为
0''1
1'22≈-=-=TA
d TA d d d r K I K I I I I 式中 I 1d 、I 1d '——电源供给短路点的短路电流;
当被保护线路内部k 点短路时,如图4-1(c)所示。

流入差动保护回路的电流为
TA
d TA d TA d d d r K I K I K I I I I =+=+=''11'22 (4—3) 式中 I 1d 、I 1d '——线路两侧电源供给短路点的短路电流;
I d ——流经短路点的短路电流。

故被保护线路内部故障时,流入差回路的电流为短路点短路电流的二次值,其值远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。

二、纵联差动保护的不平衡电流
由于被保护线路两侧电流互感器二次负载阻抗及互感器本身励磁特性不一致,在正常运行及保护范围外部发生故障时,差回路中的电流不为零,这个电流叫差动保护的不平衡电流 I unb 。

1.稳态情况下的不平衡电流
该不平衡电流为两侧电流互感器励磁电流的差。

当电流互感器进行10%误差校验后,每个电流互感器的误差均不会大于10%,电流互感器的误差为负误差,其差动回路中产生不平衡电流最大值为 式中 K err 一电流互感器 10%误差;
K st —电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l ; I d ∙max —被保护线路外部短路时,流过保护线路的最大短路电流。

2.暂态不平衡电流
2.暂态不平衡电流
纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流。

在短路后的暂态过程中,短路电流中除周期分量电流外,还有按指数规律衰减的非周期分量。

由于电流互感器原副边回路对非同期分量电流衰减时间常数不同,两侧电流互感器直流励磁程度不同,所以使暂态不平衡电流加大。

在纵差动保护计算中,其最大值为
max max '⋅⋅⋅⋅⋅=k np st err unb I K K K I 式中K np ——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5~2。

三、纵联差动保护的整定计算
为保证正常运行及保护范围外部故障时差动保护不动作,差动保护的动作电流按躲开外部故障时的最大不平衡电流整定
TA d np st err rel op K I K K K K I max
⋅⋅⋅⋅=
式中 K rel 一可靠系数,在有速饱和变流器时取 1.3。

为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定 TA d st err unb K I K K I max
max ⋅⋅⋅⋅=
TA
L rel op K I K I max ⋅⋅= 取两者中的较大值。

灵敏度校验:保护范围内故障时的最小短路电流与差动保护动作电流之比。

2min ≥=⋅op
d sen I I K 式中I d ∙min —保护范围内发生短路时,流过短路点的最小短路电流;
I op ——纵联差动保护一次动作电流。

四、纵联差动保护的应用
纵联差动保护的优点是全线速动,不受过负荷及系统振荡的影响,灵敏度较高。

但用于保护输电线路,还存在下列问题。

(l )需敷设与被保护线路等长的辅助导线,且要求电流互感器的二次负载阻抗满足电流互感器10%的误差。

这在经济上,技术上都难以实现。

(2)需装设辅助导线断线与短路的监视装置,辅助导线断线应将纵联差动保护闭锁。

否则,辅助导线断线后,在区外发生故障时会造成无选择性动作;辅助导线短路会造成区内故障拒动。

由于纵联差动保护存在上述问题,所以在输电线路中,只有用其它保护不能满足要求的短线路(一般不超过5~7km 线路)才采用。

相关文档
最新文档