干涉法测微小量(实验报告)

合集下载

干涉法测微小量

干涉法测微小量

实验八干涉法测微小量【实验目的】1. 理解牛顿环和尖劈干涉条纹的成因与等厚干涉的含义。

2. 学习用等厚干涉法测量曲率半径和薄膜厚度。

3. 学会使用读数显微镜。

【实验仪器】牛顿环仪、劈尖【仪器介绍】1、目镜接筒2、目镜3、锁紧螺钉4、调焦手轮5、标 尺6、测微鼓轮7、锁紧手轮I &接头轴9、方轴10、 锁紧手轮II 11、底座12、反光镜旋轮 13、压片 14、 半反镜组 15、物镜组 16、镜筒17、刻尺 18、锁 紧螺钉 19、棱镜室 读数显微镜是测微螺旋和带十字叉丝的显微镜的组 合体,它是一种既可作长度测量又可作观察之用的光学仪 器。

本实验用来测量牛顿环的直径和劈尖厚度。

中包括读数显微镜的主要结构。

目镜( 2) (3 )固定于任一位置,棱镜室(19)可在转,物镜(15)用丝扣拧入镜筒内,镜筒(轮(4)完成调焦。

转动测微鼓轮(6),显微镜沿燕尾导轨作纵向移动,利用锁紧手轮I (7),将方轴(9)固定于接头轴十字孔中。

接头轴( 8)可在底座(11)中旋转、升降,用锁紧手轮II (10)紧固。

根据使用要求不同方轴可插入接头轴另一个十字孔 中,使镜筒处水平位置。

压片(13)用来固定被测件。

旋转反光镜旋轮( 12)调节反光镜方位。

为便于做等厚干涉实验,本仪器还配备了半反镜(14)附件。

旋转测微鼓轮可以使显微镜筒横向水平移动,通过标尺和测微鼓轮的读数可以准确确定显微镜筒 的水平横向位置。

标尺读数准线和测微鼓轮组成一个螺旋测微装置,当测微鼓轮旋转 一周时,标尺读数准线沿标尺移动1mm ,而测微鼓轮的圆周上刻有 100个分度,故每分度便相当于0.01mm 。

如图16-2所示读书显微镜的读数应为 29.723mm 。

(注意要估读一位)1 —标尺;2-标尺读数准线 ;3 -测微鼓轮;4 -测微鼓轮读数准线。

读数显微镜、钠光灯。

如图 16-1 可用锁紧螺钉 3600方向上旋16)用调焦手2I 19 10 11图 16-1H 9 L8 171615 n J3 124【实验原理】图16-21、牛顿环们设任意两级暗环的直径为D K 1和D K 2,由(16-2)式可得出:牛顿环是牛顿1675年在制作天文望远镜时偶然将一个望远镜的物镜放在平玻璃 上发现的。

干涉法测微小量-实验报告

干涉法测微小量-实验报告

干涉法测微小量-实验报告一、实验目的1、了解干涉法的基本原理。

2、熟悉干涉法测量微小量的方法。

3、掌握利用干涉法测量薄膜厚度的实验方法。

二、实验仪器干涉仪、白光源、磨镜机、膜层样品。

三、实验原理干涉仪是一种利用光的干涉现象来测量物体形状、膜厚度等的仪器。

(1)薄膜颜色法当光通过薄膜时,由于光的反射和透射作用,产生了干涉现象。

观察到的颜色与膜厚有关系,当膜厚满足一定的条件时,可以观察到非常明显的颜色条纹。

(2)牛顿环法使用牛顿环法测量微小量时,实验者在透明物体表面放置一个凸透镜,然后将一部分光线通过透镜,并与另一部分光线在半透镜后相遇,这两部分光线发生干涉,形成一系列明暗相间的环带,实验者可以通过测量主环半径的变化来推算出微小量的值。

当光从第一介质的边界垂直地入射到第二介质(薄膜/interface)后,反射和透射光之间的相位差取决于第二介质的折射率和膜厚。

干涉图样中的环线,可以由相邻两个波前的相位相差为2π的条件得到:Δ = 2nt其中,Δ为相位差,n为薄膜的折射率,t为膜层的厚度。

四、实验步骤1、用磨镜机将膜层样品磨成两面平行、厚度均匀的薄片。

2、设置干涉仪,调节反射镜和凸透镜位置,使使干涉图案清晰。

3、通过调节厚度标准,测量出膜层厚度与颜色之间的关系。

4、分别记录膜层样品在白光源和单色光源下的干涉图案和颜色,比较两种光源下测得的膜厚度数据。

5、通过测量主环半径的变化来推算出微小量的值。

五、实验注意事项1、干涉法测微小量是一种高精度的测试方法,实验者在实验过程中要小心谨慎操作。

2、干涉法测微小量需要使用精度高的仪器,实验者要注意保养和维护干涉仪的正常使用状态。

六、实验结果及分析样品编号透射颜色透射波长n 膜层厚度(nm)样品1 黄蓝色573nm 1.44 201.29样品2 绿紫色520nm 1.48 153.48样品3 黄色579nm 1.53 124.96样品4 绿色486nm 1.49 142.962、微小量的数据样品编号主环半径(m)微小量(m)样品1 0.0051 1.27 × 10-6样品2 0.0048 1.20 × 10-6样品3 0.0043 1.08 × 10-6样品4 0.0046 1.15 × 10-6从表格数据可以看出,随着膜层厚度增加,透射颜色发生变化,且主环半径也随之发生变化。

(实验报告)干涉法测微小量(已批阅).

(实验报告)干涉法测微小量(已批阅).

(实验报告)干涉法测微小量(已批阅).
干涉法测微小量是物理、化学等多种领域常用的测量技术,可广泛应用于检测微小量的物理、化学物质的构成成分及大小等特性。

本实验以物理学仪器—干涉仪,以了解其相关原理及测量方法,详细研究并妥善操作干涉仪,实现对微小量的准确测量。

实验现场,我们装备了多种仪器设备,其中有半导体激光、光纤、波导、干涉物镜、计算机等,?表示所测实验样品的长度,?表示该物体的物理实验现象及测量结果。

所测样品经过精确调整,激光整体成像稳定、清晰。

依据干涉仪的原理,在激光学范畴,当灰度图像准确拍摄完毕,即可无缝连接计算机,把模拟航班仪及其相关接口的输入端全部接受,真实表示所测实验样品的物理偏移量。

在量测的过程中,根据实验要求,逐渐变化激光的数量,由而伴随波数的变化,随时记录模拟仪和相关输入端的变化,把变化偏移量输入计算机,由计算机将接受的数据按照原理预定义好的算法进行分析,由此根据分析结果,乘以放大系数,便可计算出微小物体的长度?。

本实验让我清楚地认识了干涉仪的基本原理,熟悉了具体的操作过程,详细了解了对微小量的测量原理,以及量测实验样品物理偏移量的处理过程,进而求出实验物体的长度?。

另外,本实验也锻炼了我们熟练操作干涉仪及相关仪器设备、形成有效数据、熟练处理数据的实际能力,积累了大量经验,掌握了实用的实验技术。

迈克尔逊专题实验报告

迈克尔逊专题实验报告

学院:电气工程学院班级:1108班姓名:李静怡学号:11291240指导老师:张丽梅上课时间:周五17:40【摘要】迈克尔逊干涉仪是用分振幅法产生双光束以实现干涉的精密仪器,其用途很广,主要用于观察干涉现象,研究许多物理参数(如温度,压强,电场,磁场等)对光传播的影响,测波长和波的折射率等。

迈克耳逊干涉仪是这个专题试验最主要的试验仪器。

本文记录了实验过程及实验收获,并且叙述了对于此次实验的心得及对实验的拓展。

【关键词】迈克尔逊干涉仪钠光双线白光干涉测量微小量【实验论述】一、实验理论迈克尔逊干涉仪专题实验中的三个实验中都不可或缺的就是右图所示的装置,三个实验均是通过调整从同一光源发出的两条相干光线到视野的光程差,找到光源发生干涉现象的距离。

之后,通过精密的仪器测量和理论推导的公式求出波长、双线波长差或测量玻璃的折射率等。

二、实验内容1、测量钠双线波长差。

这是第一个试验,实验内容主要有三方面:①观察钠光双光束干涉现象;①测量钠光平均波长,并与公认值比较;③测量钠光双线的波长差。

首先用激光调出激光的干涉条纹并调至中心,这一步较为简单,很快毛玻璃上就出现黑红相间的条纹了。

但换上钠光后条纹并不容易找到,换回激光后发现激光条纹也有变化了。

经过好几次的反复调整,钠光的条纹出现,为黄色的明暗相间的圆条纹。

转动微调手轮,并开始记录每冒出50个条纹时M1镜的位置,共记录了7个数据。

2、白光干涉测量平板玻璃折射率。

实验的主要内容有:①观察白光干涉现象;②测量玻璃折射率。

这是专题实验里最难最耗时的一个,试验对眼睛要求很高,连续直视着白炽灯不是一件好受的事情,对我的耐性考验极大,需要目不转睛的盯着小玻璃片背后的亮光随时可能出现也可能随时消失的条纹将微调手柄调上上千圈,一个不留神,幸运之神悄然远去,只留下在小白炽灯下苦叹并毅然决然从头再来的我们。

3、法布里—玻罗干涉仪测钠双线波长差。

实验内容:①观察钠光多光束干涉现象;②测量钠双线波长差。

全息干涉技术_实验报告

全息干涉技术_实验报告

一、实验目的1. 理解全息干涉技术的原理和基本操作流程。

2. 掌握二次曝光全息干涉法的操作步骤。

3. 通过实验,观察并分析全息干涉条纹的形成和变化。

4. 学习全息干涉技术在微小形变测量中的应用。

二、实验原理全息干涉技术是一种利用光的干涉原理记录和再现物体光波波前信息的照相技术。

它能够记录物体光波的振幅和相位信息,从而实现物体的三维再现。

二次曝光全息干涉法是一种常用的全息干涉技术,通过在同一片感光板上分别记录同一物体变形前后的两张全息照片,来观察物体表面的微小形变。

三、实验仪器与材料1. 全息实验台2. 氦氖激光器3. 分束器4. 反射镜5. 扩束镜6. 载物台7. 全息干板8. 显影液和定影液9. 暗房设备10. 悬臂梁四、实验步骤1. 实验准备:将全息实验台、激光器、分束器、反射镜、扩束镜、载物台、全息干板等仪器设备安装调试好。

2. 激光束调整:调整激光器,使激光束通过分束器后分成两束,一束作为参考光束,另一束作为物光束。

3. 第一次曝光:将待测悬臂梁放置在载物台上,调整悬臂梁的位置,使其位于激光束的物光路径上。

打开激光器,对悬臂梁进行第一次曝光,记录下悬臂梁的初始状态。

4. 变形处理:在第一次曝光后,对悬臂梁施加一定的力,使其发生微小形变。

5. 第二次曝光:关闭激光器,将悬臂梁恢复到初始状态,再次打开激光器,对悬臂梁进行第二次曝光,记录下悬臂梁的变形状态。

6. 显影和定影:将全息干板放入显影液和定影液中,进行显影和定影处理。

7. 观察与分析:用激光照射全息干板,观察干涉条纹的形成和变化,分析物体表面的微小形变。

五、实验结果与分析1. 通过实验观察,可以看到全息干涉条纹的形成和变化。

当悬臂梁发生微小形变时,干涉条纹会发生相应的变化,从而反映了物体表面的形变情况。

2. 通过分析干涉条纹的疏密分布,可以计算出物体表面各点位移的大小,从而实现微小形变的测量。

3. 实验结果表明,全息干涉技术在微小形变测量中具有高精度、高分辨率的特点,是一种很有应用前景的测量技术。

光的干涉实验报告

光的干涉实验报告

光的干涉实验报告篇一:光的干涉和应用实验报告教案光的等厚干涉与应用一目的1、观察光的等厚干涉现象,加深理解干涉原理2、学习牛顿环干涉现象测定该装置中平凸透镜的曲率半径3、掌握读数显微镜的使用方法4、掌握逐差法处理数据的方法(原文来自:小草范文网:光的干涉实验报告)二仪器读数显微镜,钠光灯,牛顿环装置三原理牛顿环装置是一个曲率半径相当大的平凸透镜放在一平板玻璃上,这样两玻璃间形成空气薄层厚度e与薄层位置到中央接触点的距离r,凸透镜曲率半径R的关系为:(a) (b)图20—1根据干涉相消条件易得第K级暗纹的半径与波长λ及牛顿环装置中平凸透镜的凸面曲率半径R存在下述关系:根据与K成正比的性质采取逐差法处理实验数据四教学内容和步骤1、牛顿环装置的调整,相应的提出问题,怎样将干涉图样调到装置的中心?2、显微镜的调节,焦距怎么调?叉丝怎样调节?干涉图样不清晰怎么办?反光镜怎么用?刻度尺怎么读?3、读数方法,要防止螺距差。

读完一组之后要把牛顿环转90度再重新读一组。

4、用逐差法处理数据,忽略仪器误差。

五注意事项1、仪器轻拿轻放,避免碰撞。

2、镜头不可用手触摸,有灰尘时用擦镜纸轻轻拂去不能用力擦拭。

调焦及调鼓轮时不可超出可调范围。

为防止产生螺距误差,测量过程中鼓轮只能往一个方向转动,不许中途回倒鼓轮。

六主要考核内容1、预习报告内容是否完整,原理图、公式、表格等是否无误。

2、看是否将干涉图样调出来,数据是否有误等。

七参考数据篇二:光的等厚干涉牛顿环实验报告光的等厚干涉牛顿环实验报告[实验目的]1.观察光的等厚干涉现象,熟悉光的等厚干涉的特点。

2.用牛顿环测定平凸透镜的曲率半径。

3.用劈尖干涉法测定细丝直径或微小厚度。

[实验仪器]牛顿环仪,移测显微镜、钠灯、劈尖等。

[实验内容]1.用牛顿环测量平凸透镜表面的曲率半径(1)按图11-2安放实验仪器(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。

将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。

等厚干涉实验报告记录

等厚干涉实验报告记录

等厚干涉实验报告记录————————————————————————————————作者:————————————————————————————————日期:大学物理实验报告(等厚干涉)一、实验目的:1.、观察牛顿环和劈尖的干涉现象。

2、了解形成等厚干涉现象的条件极其特点。

3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。

二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。

当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。

由牛顿最早发现)。

由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。

牛顿环实验装置的光路图如下图所示:设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=kknd式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。

根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=kkdkkK=1,2,3,…K=0,1,2,…由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系222)(kkrdRR+-=。

由于dk远小于R,故可以将其平方项忽略而得到22kkrRd=。

结合以上的两种情况公式,得到:λkRRdrkk==22,暗环...,2,1,0=k由以上公式课件,r k与d k成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。

基于改装的迈克尔逊干涉仪测量微小长度的三种方法

基于改装的迈克尔逊干涉仪测量微小长度的三种方法

2、利用三棱镜测量光线偏振
光线偏振是指光线的电场方向在空间上呈一定规律的变化。利用三棱镜可以将 自然光分解为偏振光和自然光,通过测量偏振光的强度和相位差,可以确定光 线的偏振状态。具体方法是,将自然光照射到三棱镜的一个面上,经过三棱镜 的折射后,将得到偏振光和自然光,再通过迈克尔逊干涉仪对偏振光的强度和 相位差进行测量。
引言
物理实验是物理学的基础,也是培养学生科学素养和创新能力的关键环节。然 而,传统的物理实验教学存在一些问题,如实验内容单一、缺乏趣味性、与实 际应用脱节等,这些问题制约了学生创新能力和综合素养的培养。因此,本次 演示以迈克尔逊干涉仪的改装及应用为例,探讨如何通过改革物理实验教学, 培养综合创新人才。
差分测量迈克尔逊干涉仪是通过将参考臂和测量臂的路径差进行细分,从而增 加干涉条纹的精度。这种方法可以通过将路径差进行均分,使得每个干涉条纹 的间距更小,从而提高测量精度。
三种测量方法
1、利用迈克尔逊干涉仪测量平 面波动
平面波动是一种常见的物理现象,其波长和振幅是描述波动特征的重要参数。 利用迈克尔逊干涉仪可以测量平面波动的波长和振幅。具体方法是,将平面波 照射到迈克尔逊干涉仪的测量臂上,通过观察干涉条纹的变化,可以确定波长 和振幅。
结论
本次演示介绍了三种基于改装的迈克尔逊干涉仪测量微小长度的方法,包括利 用迈克尔逊干涉仪测量平面波动、利用三棱镜测量光线偏振和利用数字光学测 量系统测量微小长度。实验结果表明,这三种方法均能实现微小长度的测量, 但在精度、稳定性和操作难度方面存在差异。
参考内容
改革物理实验教学,培养综合创新人才——“迈克尔逊干涉仪的改装及应用” 的设计与实践
谢谢观看
在稳定性方面,数字光学测量系统和改进型迈克尔逊干涉仪均表现出良好的稳 定性。在实验过程中,数字光学测量系统的测量结果受外界干扰较小,而改进 型迈克尔逊干涉仪的干涉条纹也较为稳定。相比之下,传统迈克尔逊干涉仪的 干涉条纹容易受到外界干扰,稳定性较差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档