海岸动力学英文PPT课件Coastal Hydrodynamics_2.3
合集下载
海岸动力学英文PPT课件Coastal Hydrodynamics_复习

44/130
1. Statistical characteristics Zero-up crossing method Statistically representative waves
The significant wave (有效波高) corresponds to the average of the heights of the one-third highest waves.
Chapter 3 WAVE TRANSFORMATIONS
Stating ocean wave characteristics Stating transformations of waves entering shallow water
43/130
§3.1 Ocean Wave Characteristics
§2.2 Basic Equations of Wave Motion 1. Assumptions 2. Governing equation 3. Boundary conditions 4. Discussion
8/130
G.D.E.
2 0
h z, x
B.B.C.
Coastal Hydrodynamics
CONTENTS
Chapter1 Introduction Chapter2 Wave Theory Chapter3 Wave Transformations Chapter4 Nearshore Currents Chapter5 Coastal Sediment Chapter6 Coastal Processes
2 gktankhh
gT2 2
L tanh h
2 L
c2gTtanh2Lh
1. Statistical characteristics Zero-up crossing method Statistically representative waves
The significant wave (有效波高) corresponds to the average of the heights of the one-third highest waves.
Chapter 3 WAVE TRANSFORMATIONS
Stating ocean wave characteristics Stating transformations of waves entering shallow water
43/130
§3.1 Ocean Wave Characteristics
§2.2 Basic Equations of Wave Motion 1. Assumptions 2. Governing equation 3. Boundary conditions 4. Discussion
8/130
G.D.E.
2 0
h z, x
B.B.C.
Coastal Hydrodynamics
CONTENTS
Chapter1 Introduction Chapter2 Wave Theory Chapter3 Wave Transformations Chapter4 Nearshore Currents Chapter5 Coastal Sediment Chapter6 Coastal Processes
2 gktankhh
gT2 2
L tanh h
2 L
c2gTtanh2Lh
Coastal Hydrodynamics_3.1 WAVE TRANSFORMATIONS 海岸动力学课件

Statistically representative waves
➢ The maximum wave corresponds to the maximum height in a given wave group.
➢ The one-tenth highest wave corresponds to the average of the heights of the one-tenth highest waves.
15/39
Chapter 3
Rayleigh distribution curve
16/39
Chapter 3
From statistical theory H110 2.03H
we can obtain important H13 1.60H
relationships using the
distribution function Hrm s1.13H
a function of wave number. In fact, it has
been shown that the wave number and the
frequency are uniquely correlated.
20/39
Chapter 3
If the amplitudes are plotted versus frequency,
There is a great amount of randomness in
the sea, and statistical techniques need to
be brought to bear.
6/39
Chapter 3
Zero-up crossing method
《海岸动力学》课件

实验结果与分析
01 02 03
结果分析
分析潮汐和波浪对海岸的影响机制 。
研究海岸物质的迁移模式与潮汐、 波浪的相互关系。
06
海岸动力学的未来发展
海岸动力学的前沿问题
极端气候和海平面上升的影响
研究极端气候事件对海岸带的影响,以及海平面上升对海岸动力过程、海滩演变和沿海工 程设施的影响。
海洋酸化的影响
实验方法与步骤
• 重复进行多次实验,以获得可靠的实验结果。
实验方法与步骤
使用专业软件进行数据处 理和分析。
对采集的数据进行整理和 筛选。
数据分析
01
03 02
实验结果与分析
潮汐对海岸的影响
潮汐周期与海岸物质的迁移模式之间的关系。
波浪能量耗散
波浪在传递过程中能量损失的规律。
实验结果与分析
• 近岸流速分布:潮汐和波浪共同作用下近岸流速的分布情 况。
数值求解方法
数值求解是解决偏微分方程的重要手段,通过数值方法可以将偏微分方程 转化为离散点上的数值计算。
常见的数值求解方法包括有限差分法、有限元法、谱方法等,每种方法都 有其适用范围和优缺点。
选择合适的数值求解方法需要考虑模型的复杂性和计算精度要求,以及计 算资源的限制。
模型验证与比较
01
模型验证是确保模型准确性的重要步骤,通过与实际观测数据 进行比较,可以评估模型的可靠性和精度。
研究海洋酸化对海岸带生态系统、沉积物化学和矿物学的影响,以及这些变化如何影响海 岸动力过程。
海洋垃圾和塑料污染
关注海洋垃圾和塑料污染对海岸带生态系统和环境的影响,以及如何通过减少垃圾排放和 加强废弃物管理来减轻这些影响。
海岸动力学的研究趋势
《海岸动力学》课件

研究内容:包括海岸线变迁、海滩侵蚀、潮汐现象、海浪运动等。 应用领域:海岸工程、海洋资源开发、环境保护等领域。
海岸工程:如港口建 设、防波堤设计等
海洋资源开发:如潮 汐能、波浪能等
环境保护:如海岸侵 蚀、海平面上升等
自然灾害防治:如台 风、海啸等
军事应用:如潜艇隐 蔽、导弹发射等
学科背景:海岸动力学是研究海岸线、海岸带和海岸生态系统的动力学过程和规律的科学。 发展历程:海岸动力学起源于19世纪末,随着海洋科学的发展而逐渐形成。 学科发展:20世纪初,海岸动力学开始受到重视,并逐渐成为一门独立的学科。 当代研究:现代海岸动力学研究涵盖了海岸线变化、海岸带生态系统、海岸工程等多个领域。
数值模拟技术的发展趋 势:随着计算机技术的 不断发展,数值模拟技 术在海岸动力学中的应 用将会越来越广泛,精
度也会越来越高。
验证方法:对比实验结果与理 论预测
精度评估指标:误差、偏差、 方差等
影响因素:模型参数、初始条 件、边界条件等
提高精度的方法:改进模型、 优化算法、增加计算资源等
敏感性分析:研究模型参数变化对结果 影响的程度
国际合作:加强与其他国家的合作,共同研究海岸动力学问题 学术交流:举办国际学术会议,促进学术交流与合作 技术共享:共享研究成果和技术,提高海岸动力学的研究水平 人才培养:加强国际人才培养,提高海岸动力学的研究能力
感谢您的观看
汇报人:
海岸动力学PPT课件 大纲
汇报人:
目录
添加目录标题
海岸动力学概述
海岸动力学的基本原 理
海岸动力学的数学模 型与数值模拟
海岸动力学的实际应 用案例
海岸动力学的未来发 展趋势与挑战
添加章节标题
海岸动力学概述
海岸工程:如港口建 设、防波堤设计等
海洋资源开发:如潮 汐能、波浪能等
环境保护:如海岸侵 蚀、海平面上升等
自然灾害防治:如台 风、海啸等
军事应用:如潜艇隐 蔽、导弹发射等
学科背景:海岸动力学是研究海岸线、海岸带和海岸生态系统的动力学过程和规律的科学。 发展历程:海岸动力学起源于19世纪末,随着海洋科学的发展而逐渐形成。 学科发展:20世纪初,海岸动力学开始受到重视,并逐渐成为一门独立的学科。 当代研究:现代海岸动力学研究涵盖了海岸线变化、海岸带生态系统、海岸工程等多个领域。
数值模拟技术的发展趋 势:随着计算机技术的 不断发展,数值模拟技 术在海岸动力学中的应 用将会越来越广泛,精
度也会越来越高。
验证方法:对比实验结果与理 论预测
精度评估指标:误差、偏差、 方差等
影响因素:模型参数、初始条 件、边界条件等
提高精度的方法:改进模型、 优化算法、增加计算资源等
敏感性分析:研究模型参数变化对结果 影响的程度
国际合作:加强与其他国家的合作,共同研究海岸动力学问题 学术交流:举办国际学术会议,促进学术交流与合作 技术共享:共享研究成果和技术,提高海岸动力学的研究水平 人才培养:加强国际人才培养,提高海岸动力学的研究能力
感谢您的观看
汇报人:
海岸动力学PPT课件 大纲
汇报人:
目录
添加目录标题
海岸动力学概述
海岸动力学的基本原 理
海岸动力学的数学模 型与数值模拟
海岸动力学的实际应 用案例
海岸动力学的未来发 展趋势与挑战
添加章节标题
海岸动力学概述
海岸动力学英文PPT课件Coastal Hydrodynamics_6.1

11/32
Chapter 6
Backshore(后滩): The zone of the beach
profile extending landward from the sloping
foreshore to the point of development of
vegetation or change in the physiography
which is named the equilibrium
Chapter 5
On natural beaches the changing waves give
rise to an ever-varying equilibrium which
respond to the ever-changing waves and
currents imposed from the adjacent body of
the water. However, the only way in which
beach profiles can be understood is in terms
breaking waves. In this region, breaking wave
action predominates to intensify the turbulent
intensity of fluid motion, thus putting a large
amount of sediment in suspension.
which a constant wave input is maintained,
the beach profile will reach a steady state
2019年-海岸动力学英文PPT课件Coastal Hydrodynamics_2.2-PPT文档资料-PPT精选文档

the velocity potential be changed?
Chapter 2
Homework
A wave with the period of 5s travels in water of 5m, what is its celerity and what is its length?
2 gktankhh
LgT2 tanh2h 2 L
cgTtanh2h 2 L
17/21
Chapter 2
Dispersion relationship
This relationship shows that the wave length continually decreases with decreasing depth for a constant wave period. That is to say, waves of constant period slow down as they enter shallow water.
The bottom is impermeable. Waves travel in the x-z plane.
2/21
continuity equation
velocity potential
gravity only
zero velocity
Chapter 2
Boundary Value Problem of Wave Motion
13/21
Chapter 2
2. Solution
Coordinates System
14/21
Chapter 2
How to obtain the solution ? L.B.C G.D.E B.B.C
Chapter 2
Homework
A wave with the period of 5s travels in water of 5m, what is its celerity and what is its length?
2 gktankhh
LgT2 tanh2h 2 L
cgTtanh2h 2 L
17/21
Chapter 2
Dispersion relationship
This relationship shows that the wave length continually decreases with decreasing depth for a constant wave period. That is to say, waves of constant period slow down as they enter shallow water.
The bottom is impermeable. Waves travel in the x-z plane.
2/21
continuity equation
velocity potential
gravity only
zero velocity
Chapter 2
Boundary Value Problem of Wave Motion
13/21
Chapter 2
2. Solution
Coordinates System
14/21
Chapter 2
How to obtain the solution ? L.B.C G.D.E B.B.C
海岸动力学英文PPT课件Coastal Hydrodynamics_3.3

3. Wave refraction 4. Wave reflection
5. Wave diffraction 6. Wave breaking
3/34
Chapter 3
1. Conervation of wave equation can be
high steepness values. In spilling breakers the
wave gradually peaks until the crest becomes
unstable and cascades down as “white water”
(bubbles and foam).
12/34
Chapter 3
Limiting wave steepness
For any given water depth and wave period, there is an upper limit to the wave height at which the wave becomes unstable and breaks. The limiting steepness (极限波陡) is
21/34
Chapter 3
Numerical Modeling of Surging Breaker
22/34
Chapter 3
7. Case studies
Damage of Langtongmen Breakwater Caused by No.9119 Typhoon
Three-dimensional Experimental Study on Wave Characteristics in Front of Concave Breakwater
5. Wave diffraction 6. Wave breaking
3/34
Chapter 3
1. Conervation of wave equation can be
high steepness values. In spilling breakers the
wave gradually peaks until the crest becomes
unstable and cascades down as “white water”
(bubbles and foam).
12/34
Chapter 3
Limiting wave steepness
For any given water depth and wave period, there is an upper limit to the wave height at which the wave becomes unstable and breaks. The limiting steepness (极限波陡) is
21/34
Chapter 3
Numerical Modeling of Surging Breaker
22/34
Chapter 3
7. Case studies
Damage of Langtongmen Breakwater Caused by No.9119 Typhoon
Three-dimensional Experimental Study on Wave Characteristics in Front of Concave Breakwater
海岸动力学英文课件CoastalHydrodynam

Nearshore circulation
The horizontal movement of water caused by tides, which can be either towards or away from the shore
Tidal streams
A narrow channel where strong Tidal currents meet, often resulting in turbulence and mixing
The study of coastal dynamics covers a wide range of topics, including wave dynamics, sedimentation transport, coastal erosion and retention, delta formation and evolution, island evolution, and the impact of human activities on coastal environments
The Physical Foundations of Coastal Dynamics
The vertical range of water level changes caused by the gravitational attraction of the moon and sun on the Earth's oceans
Description
01
A simplified model that considers only one spatial dimension, commonly representing the shoreline as a single point
The horizontal movement of water caused by tides, which can be either towards or away from the shore
Tidal streams
A narrow channel where strong Tidal currents meet, often resulting in turbulence and mixing
The study of coastal dynamics covers a wide range of topics, including wave dynamics, sedimentation transport, coastal erosion and retention, delta formation and evolution, island evolution, and the impact of human activities on coastal environments
The Physical Foundations of Coastal Dynamics
The vertical range of water level changes caused by the gravitational attraction of the moon and sun on the Earth's oceans
Description
01
A simplified model that considers only one spatial dimension, commonly representing the shoreline as a single point
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p g z g H co k h sz h ck o x s t 2co ks hh
The pressure equation contains two terms: the hydrostatic pressure (静水压强)
& the dynamic pressure (动水压强)
z
zh
0
1
g t
z0
K.F.S.B.C. L.B.C.
t
z
z0
x ,z ,t x c,zt
5/31
Chapter 2
2. Solution
D LGB F BDB S CECB
C
Velocity Potential
a c gc oko h s k s h z h h sikn x (t)
Velocity components decrease exponentially
with depth.
14/31
Chapter 2
Water particle velocities in a progressive wave
15/31
Chapter 2
Acceleration components
24/31
accelerations.
16/31
Chapter 2
Water particle trajectory
The displacement of the water particle can be found by integrating the velocity with respect to time.
12/31
Chapter 2
Velocity components The velocity components can be found by substituting the solution of velocity potential into the definition of potential function.
ekh/2 ekh/2
1
small kh
1
kh kh
8/31
Chapter 2
Regions for valid approximation:
If the largest error incurred by using the asymptotes rather than the actual value of the function is restricted within 5%, then limits for three regions are denoted as:
19/31
Chapter 2
In shallow water, the orbital semi-axes reduce
to
A HT g
4 h
B H 1 z0 2 h
The horizontal excursion of a water particle is
a constant distance from the surface to the
The acceleration components are as follows.
d u uH 2co k(z s h )sikn x (t)
dt t 2 sik n)h h(
d w w H 2sik n (z h h )co k s x t)(
in different de来自ths21/31Chapter 2
The ball makes no net advance in the direction of wave motion.
The reason lies in that the ball moves roughly in a circular path with a diameter approximately equal to the wave height. After each wave passes, the ball returns to nearly its original position.
the shallow water kh 10
intermediate depth 10kh
the deep water
kh
9/31
Chapter 2
Dispersion relationship for deep water waves: A deep water wave is a wave whose wavelength is very small compared with the water depth.
acoks x(t)
6/31
Chapter 2
Dispersion relationship
Substituting the velocity potential and the
surface elevation into the K.F.S.B.C yields
2 gktankhh
LgT2 tanh2h 2 L
The horizontal velocity component has the same phase as the elevation of the free surface.
The horizontal and vertical components are 90º out of phase.
cgTtanh2h 2 L
7/31
Chapter 2
Dispersion relationship in shallow & deep water
Asymptotic forms of hyperbolic functions:
function
coshkh
sinhkh tanhkh
large kh
The dispersion relationship is:
2 gk2h
or
11/31
c gh
Chapter 2
3. Characteristics Water particle velocity components Water particle trajectory Pressure field Energy and energy propagation
u H co k (z s h h )co k s x t)( x T sik n )h h(
w H sik n (z h h )sikn x ( t) z T sik n)h h(
13/31
Chapter 2
Velocity components are harmonic functions of x and t.
of small amplitude waves 4. Standing waves
2/31
Chapter 2
Summary of the two-dimensional periodic water wave boundary value problem
G.D.E.
2 0
hz, x
The dispersion relationship is:
2 0
gk
or
L0
g T2
2
1.56T2
or
10/31
c0
gT
2
Chapter 2
Dispersion relationship for shallow water waves: A shallow water wave is a wave whose wavelength is very large compared with the water depth.
bottom. The vertical excursion increases
linearly with elevation, being zero at the
bottom and being H on the surface.
20/31
Chapter 2
Water particle orbits
3/31
Chapter 2
1. Linearization Suppose that the wave is a small amplitude
wave, namely H<<L or H<<h. Use the Taylor series expansion to relate the
boundary conditions at the unknown elevation to the still water level. Take the pressure on the free surface to be zero.
18/31
Chapter 2
In deep water, the wave orbits become true circles with radius of
AB Hekz0 2
The orbits decay in diameter exponentially with depth. The rate of decrease is dependent on the value of wave number.
dt t 2 sik n)h h(
The maximum vertical accelerations occur as the
horizontal velocities are extremes and the same is
true for the vertical velocities and the horizontal