坐标平面上的直线的知识点及拓展
平面直角坐标系知识点总结归纳

平面直角坐标系知识点总结归纳平面直角坐标系是分析平面上点的位置和运动的基本工具之一、它由两条相互垂直的数轴(通常称为x轴和y轴)组成,在规定的单位长度上构成一个矩形坐标系。
该坐标系可以用来描述平面内的点的位置以及它们之间的关系。
以下是平面直角坐标系的一些重要知识点:1.坐标轴:平面直角坐标系包括两条垂直于彼此的直线,称为坐标轴。
其中一条被标记为x轴,另一条被标记为y轴。
2.原点:平面直角坐标系的交点称为原点,通常标记为O。
3.坐标:平面直角坐标系中的每个点都可以用一对有序实数(x,y)来表示,其中x表示在x轴上的位置,y表示在y轴上的位置。
这对实数称为坐标。
例如,点(3,4)表示位于x轴上3个单位和y轴上4个单位的点。
4.象限:平面直角坐标系将平面分为四个象限。
第一象限位于x轴和y轴的正方向上,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向上,第四象限位于x轴的正方向和y轴的负方向。
象限用于确定坐标点的相对位置和符号。
5.距离:在平面直角坐标系中,可以使用勾股定理计算两点之间的距离。
两点之间的距离公式为:d=√((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)是两点的坐标。
6.斜率:斜率用于描述直线的倾斜程度。
在平面直角坐标系中,可以使用两点间的坐标来计算斜率。
斜率公式为:m=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两点。
7. 截距:截距是指直线与y轴的交点。
在平面直角坐标系中,斜率截距公式为:y = mx + b,其中m是斜率,b是截距。
8.正交性:平面直角坐标系的x轴和y轴相互垂直,也就是说它们的夹角为90度。
这种相互垂直的性质被称为正交性。
9.平移:平面直角坐标系中的点可以通过平移来改变它们的位置。
平移是指沿着x轴和y轴移动一定的距离,而不改变它们之间的相对位置。
10.缩放:可以通过缩放来改变坐标系的单位长度。
有关平面直角坐标系的知识点及考点归纳

数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。
初中数学知识点归纳平面直角坐标系

初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
l八年级上册数学第十一章知识点

l八年级上册数学第十一章知识点八年级上册数学第十一章知识点八年级上册数学第十一章主要讲述了平面直角坐标系、平面图形的性质以及对称性等内容,以下是本章的具体知识点。
一、平面直角坐标系平面直角坐标系是用两条数轴来确定平面上任一点的位置关系,称为点的坐标。
其中,横坐标表示在横轴上的距离,纵坐标表示在纵轴上的距离。
坐标轴上的交点被称为原点,坐标轴正方向由左往右、由下往上标出。
二、平面图形的性质1. 直线的性质:直线是由无数个点组成,图中的点有无数个,且在直线上。
除此之外,它是平面中最短的路径,两点都在这个路径上。
2. 角的性质:角是两个不同的线段之间的空间,其中两端点相交的点被称为角的顶点。
根据顶点不同,角可分为锐角、直角、钝角等。
3. 三角形的性质:三角形是由三个线段组成的图形,共有三个顶点和三个内角,角度之和为180度。
可分类为等边三角形、等腰三角形、直角三角形等。
4. 四边形的性质:四边形是由四个线段组成的图形,共有四个顶点和四个内角,角度之和为360度。
可分类为平行四边形、矩形、正方形等。
5. 圆的性质:圆是由所有围绕圆心等距离的点组成的图形。
圆心是圆上最中间的点,直径是连接圆上任意两点的线段的长度。
该图形特点是半径相等。
三、对称性对称性是指一个图形绕某一直线或点旋转、翻折或滑动后,它和原来的图形完全重合。
一般有以下两种类型:1. 线对称性:指线对称轴上的任意一个点与该图形对称轴另一侧的一个点相互对称,如镜子对称。
2. 点对称性:指点对称中心与图形上任意一点的交点与该图形对称中心的另一点相互对称,如旋转对称。
以上是本章的主要知识点,掌握这些知识点,将对接下来的学习有很大的帮助。
11.5坐标平面上的直线拓展(几何对称)

x 3 y (1) 因此直线 l2 的方程为 2 3 4 (1) 即l : x y2 0 2
例3.已知直线 l1 : x 7 y 4 0, l : x 2 y 1 0 求直线 l1 关于 l 对称的直线 l2 的方程. 分析:(2)可以发现 l 是 l1 , l2 交角的角平分线
① PP ' l ② 线段 PP '被 l 所平分 将上述条件代数化,即有: ① PP ' dl 0
② 设 PP '的中点为 M ,则 M 在 l上.
二、典型例题
例1.求点 P(3,5) 关于直线 l : x 3 y 2 0 对称的 点 P ' 的坐标.
x3 y5 解:设 P '( x, y), PP ' 的中点 M ( , ) 2 2 d (3,1) ,于是有:
3 ( x 3) 1 ( y 5) 0 1 3 ( x 3) ( y 5) 2 0 2 2 x 5 解得 y 1 因此点 P ' 的坐标为 (5, 1)
l
二、典型例题
练习: 求点 M 2,3关于l : 2 x y 3 0对称点坐标.
二、典型例题
练习: 求 直 线 l : 2x y 3 0 关 于 x y 1 0 对 称 的 直线的方程.
几个特例
( 1)直线 ax by c 0 关于原点对称的直线方 程为
为
ax by c 0
.
.
.
(2) 直线 ax by c 0关于 x 轴对称的直线方程
二、典型例题
例 2.求直线 l : 2 x y 6 0关于 M 2,3对称 的直线的方程.
《平面直角坐标系》平面直角坐标系知识点及题型总结

《平⾯直⾓坐标系》平⾯直⾓坐标系知识点及题型总结第六章平⾯直⾓坐标系知识点及题型总结⼀、主要知识点(⼀)有序数对:有顺序的两个数a与b组成的数对,记作(a ,b);注意:a、b的先后顺序对位置的影响。
(⼆)平⾯直⾓坐标系1、历史:法国数学家笛卡⼉最早引⼊坐标系,⽤代数⽅法研究⼏何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标⽅法的简单应⽤1、⽤坐标表⽰地理位置;2、⽤坐标表⽰平移。
⼆、平⾏于坐标轴的直线的点的坐标特点:平⾏于x轴(或横轴)的直线上的点的纵坐标相同;平⾏于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的⾓平分线上的点的坐标特点:第⼀、三象限⾓平分线上的点的横纵坐标相同;第⼆、四象限⾓平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利⽤平⾯直⾓坐标系绘制区域内⼀些点分布情况平⾯图过程如下:建⽴坐标系,选择⼀个适当的参照点为原点,确定x轴、y轴的正⽅向;根据具体问题确定适当的⽐例尺,在坐标轴上标出单位长度;在坐标平⾯内画出这些点,写出各点的坐标和各个地点的名称。
七、⽤坐标表⽰平移:见下图知识⼀、坐标系的理解例1、平⾯内点的坐标是()A ⼀个点B ⼀个图形C ⼀个数D ⼀个有序数对1.在平⾯内要确定⼀个点的位置,⼀般需要________个数据;在空间内要确定⼀个点的位置,⼀般需要________个数据.2、在平⾯直⾓坐标系内,下列说法错误的是()A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平⾯内知识⼆、已知坐标系中特殊位置上的点,求点的坐标例1 点P 在x 轴上对应的实数是-3,则点P 的坐标是,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是,例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是。
直线与圆的方程知识点总结

直线与圆的方程知识点总结一、直线的方程1.直线的定义:直线是由一切与它上面两点P、Q相应的全体点构成的集合。
在坐标平面中,直线可以由一般式方程、对称式方程、斜截式方程、截距式方程等多种形式表示。
2.一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
一般式方程表示直线的一种常用形式,它能够直观地反映直线的方向和位置。
3.对称式方程:(x-x1)/(x2-x1)=(y-y1)/(y2-y1),其中(x1,y1)和(x2,y2)为直线上的两个点。
对称式方程通过给出直线上两个点的坐标,从而确定直线的方程。
4. 斜截式方程:y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
斜截式方程将直线的方程转化为了y和x的关系,便于直观地理解直线的特征。
5.截距式方程:x/a+y/b=1,其中a和b为直线与x轴和y轴的截距。
截距式方程能够直观地表达直线与坐标轴的交点,并通过截距反映直线的位置和倾斜情况。
二、圆的方程1.圆的定义:圆是平面上所有到定点的距离等于定长的点的轨迹。
在坐标平面中,圆可以由一般式方程、截距式方程、标准方程等多种形式表示。
2.一般式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
一般式方程为圆的一种常用形式,能够直观地描述圆的位置和形状。
3.截距式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
截距式方程通过圆的截距反映了圆的位置和形状。
4.标准方程:x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
通过圆的标准方程,可以直观地反映圆的位置、形状以及与坐标轴的交点等信息。
5. 圆的三角方程:由半径与直径、半径与斜边等关系来定义圆的方程,例如sinθ = r/l,其中θ为圆心角的弧度,l为圆弧的长度。
圆的三角方程常用于解决涉及圆的三角学问题。
高一数学必修:直线与方程(知识点)

α0°。
则直线的l 与x l 做直线的倾斜角。
当直线轴平行或重合时,我们规定它的倾斜角为倾斜角的取值2.确定一条直线的条件:直线上的一点和这个直线的倾斜角可以惟一确定一条直线。
3.确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角。
4.坡度(倾斜程度):日常生活中,我们用“升高量与前进量的比”表示倾斜面的“坡度”(倾斜程度),即α的正切值叫做这条直线的斜率5.斜率:一条直线的倾斜角,我们用斜率表示直线的倾斜程度。
斜率常用表示,小写字母k注意:倾斜角是90°的直线没有斜率。
的直线的斜率公式(,),(,)6.经过两点≠P x y P x y x x 11122212()为l 1与l 2l l 1k 1=k 2l 1和l 2注意:若直线可能重合时,我们得到⇔∥2或重合8.如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于1⊥2⇔12=--1,那么它们互相垂直,即l l k k 15二、直线的方程(个)-0==0,l l 与x l 的倾斜角为0°时,tan0°=0,即k=0y -y 0=k (x -x 01.直线的点斜式方程(简称点斜式):)【当直线,这是直线轴平行或重合,的方程就是y y y y 或0】注意:直线的点斜式方程仅适用于有斜率的情形,所以在求直线的方程时,应先讨论直线有无斜率。
0,y l x a l 与x 截距:我们把直线轴交点,0()的横坐标a 叫做直线在轴上的截距。
我们把直线与轴交点b () l 在y 的纵坐标b 叫做直线轴上的截距。
注意:截距不是距离,截距是数。
2.直线的斜截式方程(简称斜截式):=+y kx b 注意:直线的斜截式方程仅适用于有斜率的直线。
注意:①直线的两点式方程不适用于没有斜率或斜率为0的直线。
一、直线的倾斜角与斜率1.倾斜角:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的夹角α叫高一数学必修:直线与方程(知识点)②若P x y P x y ,,,111222()()中有=x x 12或=y y 12时,直线PP 12没有两点式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标平面上的直线的知识点及拓展1、已知直线1l :0111=++c y b x a ;直线2l :0222=++c y b x a(1)如何判定两条直线位置关系? 判定方程组⎩⎨⎧=++=++00222111c y b x a c y b x a 解的情况 (2)1l //2l ⇔ 1221b a b a =,12211221c b c b c a c a ≠≠或(3)求1l 与2l 的夹角α的公式:222221212121cos b a b a b b a a+++=α;角α的范围: ⎥⎦⎤⎢⎣⎡2,0π; (4)⇔⊥21l l 02121=+b b a a2、已知直线l :0=++c by ax ,点()00,y x P 是直线l 外一点,则点P 到直线l3、已知直线1l :01=++c by ax ;直线2l :02=++c by ax ,则1l // 或重合2l ,且1l 与2l 之间的距离公式为2221b a c c d +-=第2部分:拓展知识1.直线方程的应用例1 已知等腰直角ABC ∆的斜边AB 所在的直线为350x y -+=,直角顶点为(4,1)C -,求两条直角边所在的直线方程。
270260x y x y +-=--=或分析:作出示意草图,知两条直角边所在的直线的斜率存在,并且与斜边AB 所在直线的夹角为4π。
例2求过点(0,1)-,且被两条平行直线260x y +-=和4250x y +-=截得长为72的线段的直线l 的方程。
34400x y x ++==或分析:作出示意草图,由两平行线之间的距离72d =<知,问题应有两解例3 已知直线l 经过点(2,3)P -,依下列条件求直线l 的方程。
(1)直线l 在两坐标轴上的截距的绝对值相等;3201050x y x y x y +=+-=-+=或或(2)直线l 在x 轴、y 轴上解得的线段分别为OA 、OB 且||||OA OB =。
32010x y x y +=+-=或例4在正方形ABCO 中,O 坐标原点,向量(3,4)OA =,求正方形ABCO 各边所在的直线方程。
OA 430x y -=; OC :340x y +=; CB :43250x y -+=;AB 34250x y +-=。
2.直线的倾斜角和斜率例5直线sin 3y x θ=+的倾斜角的范围是 α∈3[0,][,)44πππ⋃- 例6 已知直线l 方程为0ax by c ++=,若0ac <,0bc >,则此直线l 不经过 (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限。
B 。
例7已知直线l 经过(0,0)P 和(cos ,sin )Q θθ(θ∈([.0))2π-两点,求直线l 的斜率和倾斜角。
例8 研究直线l 的斜率k (0)k ≠的几何意义。
例9已知直线l :1y kx =+与两点(1,5)A -、(4,2)B -,若直线l 与线段AB 相交,求直线l 的斜率k 和倾斜角α的取值范围。
3(,4][,)4k ∈-∞-⋃-+∞;3[0,)(,arctan 4][arctan ,)224ππαπππ∈⋃-⋃-。
3.对称问题(1)中心对称:设点00(,)P x y ,点(,)M m n ,由中点坐标公式可得,点P 关于M 点的对称点(,)P x y ' 的坐标公式为:0022x m x y n y =-⎧⎨=-⎩,即(2,2)P m x n y '--。
例10 求直线1l30y ++=关于点(5,4)M --的对称直线2l50y ++=。
例11 已知直线l 经过点(0,1)P ,若直线l 被直线1l :3100x y -+=和直线2l :280x y +-=截得的线段AB 的中点恰为点P ,求直线l 的方程。
440x y +-=。
(2)轴对称:已知直线l :0ax by c ++=(a 、b 不同时为零)和点00(,)P x y ,则点P 关于直线l 的对称点(,)P x y '的坐标计算公式为: 00022000222()2()a ax by c x x a b b ax by c y y a b ++⎧=-⎪⎪+⎨++⎪=-⎪+⎩。
例12光线从点(4,1)A 射出,经x 轴反射后再经y 轴反射,最后到达点(1,6)B ,求光线经过的路程。
解:点(4,1)A 关于x 轴的对称点为(4,1)A '-,(1,6)B 关于y 轴的对称点为(1,6)B '-。
作出大致草图可知,光线经过的路程为线段A B ''的长,即||A B ''= 例13 已知点(4,1)A 和直线l :210x y --=,动点P 在直线l 上运动。
(1)若点B 的坐标为(1,2)-,求||||PA PB +的最小值;min (||||)||PA PB AB '+=(2)若点B 的坐标为(1,2)--,求||||PA PB -的最大值。
max(||||)||PA PB B A '-= 例14 ABC ∆中顶点A 的坐标为(4,3)A 。
AC 边上的中线所在直线的方程为:413100x y +-=,ABC ∠的平分线所在直线的方程为250x y +-=。
求AC 边所在直线的方程 8200x y -+=。
(3)几个特殊的对称:设直线l 的方程为(,)0f x y =,则(ⅰ)直线l 关于直线x a =对称的直线方程为l ':(2,)0f a x y -=; (ⅱ)直线l 关于直线y b =对称的直线方程为l ':(,2)0f x b y -=;(ⅲ)直线l 关于直线y x =对称的直线方程为1l :(,)0f y x =;(ⅳ)直线l 关于直线y x =-对称的直线方程为2l :(,)0f y x --=;(ⅴ)直线l 关于直线y x b =+对称的直线方程为3l :(,)0f y b x b -+=;(ⅵ)直线l 关于直线y x b =-+对称的直线方程为4l :(,)0f b y b x --=。
例15 (1)直线1l :210x y --=关于直线l :2x =-对称的直线2l 的方程是 290x y ++=(2)直线1l :210x y --=关于直线l :y x =-对称的直线2l 的方程是 ;210x y --=(3)直线1l :210x y --=关于直线l :10x y -+=对称的直线2l 的方程是 240x y -+= 例16 函数sin cos y a x b x =-图像的一条对称轴方程是4x π=,则直线0ax by c -+=的倾斜角为(A )45︒; (B )135︒; (C )60︒; (D )120︒ B 。
4.直线系例 17两条平行直线之间的距离是2,其中一条直线是3450x y -+=,则另一条直线的方程是 。
345034150x y x y --=-+=或例18 对于直线l 上任一点(,)P x y ,点(42,3)Q x y x y ++仍在此直线上,则直线l 的方程是020x y x y +=-=或例19 已知直线1l 和直线2l 的方程分别为1l :1(,)0f x y =,2l :2(,)0f x y =,若直线1l 和直线2l 有交点00(,)P x y ,求证:直线l :12(,)(,)0f x y f x y λ+=必过交点00(,)P x y 。
例20 当a 取不同实数时,直线(1)210a x y a --++=恒过一定点,则这个定点是 (2,3)- 例21根据下列条件,写出直线的一般式方程:(1)经过直线1l :210x y -+=与2l :2210x y +-=的交点且与直线3l :50x y -=垂直;630190x y +-=(2)经过直线1l :10x y -+=与2l :220x y -+=的交点且与直线3l :34120x y +-=平行。
3430x y ++=。
第3部分:基础训练1、已知ABC ∆中, 90=∠BAC ,点B 、C 的坐标分别为()2,4,()8,2,向量()2,3=→d 且→d 与AC 边平行,求ABC ∆的两条直角边所在直线的方程。
(分别用点方向式、点法向式、点斜式、一般式表示) 02032:=+-y x l AC ;01623:=-+y x l AB ;2、若直线的倾斜角α满足1tan ≤α,求α的取值范围;⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,0 3、讨论:直线1l :()02=++-m y x m ;直线2l :063=+++m my x 的位置关系;3≠m 且1-≠m 时,相交;1-=m 时,平行;3=m 时,重合;4、已知ABC ∆的三个顶点坐标分别为()3,1A 、()1,3B 、()0,1-C ,求ABC S ∆; 55、直线l 过点()3,2-P 且与直线1l :023=+-y x 的夹角为3π,求直线l 的方程;02=+x 或013=-+y x 第4部分:高考模拟1.(黄浦2011年4月理科)直线110l y -+=,250l x +=:,则直线1l 与2l 的夹角为= .6p 2.(上海十校2011年第二学期高三第二次联考理科)平面上三条直线210,10,0x y x x ky -+=-=+=,如果这三条直线将平面划分为六部分,则实数k 的取值集合为 .{}0,1,2--3.(闵行2011届文科)经过点(1,0)A 且法向量为(2,1)d =-的直线l 的方程为 . 220x y --=4、(徐汇2011年4月)已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为 1。
5、(徐汇2011年4月文科)在平面直角坐标系xOy 中,O 为坐标原点。
定义11(,)P x y 、22(,)Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-。
已知(1,0)B ,点M 为直线20x y -+=上的动点,则(,)d B M 的最小值为3 。