导数结合洛必达法则巧解高考压轴题ppt课件

合集下载

高数第三章第二节洛必达法则31页PPT

高数第三章第二节洛必达法则31页PPT


0
例8. 求 limxnlnx(n0).
x 0
解: 原式

lim
x0
ln x xn
1

lim
x0
n
x
xn1
lim ( xn) 0 x0 n
0型
机动 目录 上页 下页 返回 结束
0
00
通分
0
取倒数
取对数

0
转化

转化
转化
1

0
例9. 求 lim (sexctaxn).
原式

lim
x
nxn1
ex
xlimn(n21e)xxn2
xl imnne!x 0
机动 目录 上页 下页 返回 结束
例6. 求xl im exnx (n0,0).
(2) n 不为正整数的情形.
存在正整数 k , 使当 x > 1 时,
xk x n xk1
机动 目录 上页 下页 返回 结束
习题解答 P139 1题(7)、(6)
2 用洛必达法则求下列极限 :
lntan7x (1) lim
x0 lntan2x
(2) lx iamxxmnaam(a0)
解 (1)式 x l i0m 7tsae2 77 x n cx2tsae2 22 x n cx
0型 0
解 原式 lx i0m taxxn3xlxim0se3c2xx21 xlimlx0i tm 0a32nxs22ex2c6xxtanxse213xc lxi m01t axtnxa2n x13 .
1 3
说明:
1) 例3 , 例4 表明 x 时 ,
ln x,

高等数学PPT教学课件2_7洛必达法则

高等数学PPT教学课件2_7洛必达法则

nxn1
ex
lim
x
n(n 1)xn2
2 e x
lim
x
n!
n e x
0
13
例7.
求 lim
x
xn ex
(n 0 , 0).
(2) n 不为正整数的情形.
存在正整数 k , 使当 x > 1 时,
xk xn xk1
从而 由(1)
f (x)
0型
0
F
1 2 ( x)
F
(
x)
lim
xa
f
1 2 ( x)
f
( x)

lim
xa


f (x) 2
F (x)
F ( x) f (x)

lim xa
f (x) 2 F (x)
lim
xa
F ( x) f (x)
1 lim f (x) lim F(x) xa F (x) xa f (x)
xk ex

xn ex

xk 1 ex
lim
x
xk ex

lim
x
xk 1 ex
0

lim
x
xn ex

0
用夹逼准则
14
说明:
1) 例6 , 例7 表明 x 时,
ln x,
ex ( 0)
后者比前者趋于 更快 .
例6.
lim

ln x xn
从而
lim f (x) lim f (x) xa F (x) xa F(x)
12
例6. 求

(完整word版)导数结合洛必达法则巧解高考压轴题

(完整word版)导数结合洛必达法则巧解高考压轴题
7 当2π4π2π2π33kxk(kZ)时,1cos2x,即()0fx. 因此()fx在每一个区间2π2π2π2π33kk,(kZ)是增函数, ()fx在每一个区间2π4π2π2π33kk,(kZ)是减函数. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数 sin()2cosxfxaxx 若0x,则aR; 若0x,则sin2cosxaxx等价于sin(2cos)xaxx,即sin()(2cos)xgxxx 则222cos2sinsincos'()(2cos)xxxxxxgxxx. 记()2cos2sinsincoshxxxxxxx, 2'()2cos2sin2coscos212sincos212sin2sin2sin(sin)hxxxxxxxxxxxxxxx 因此,当(0,)x时,'()0hx,()hx在(0,)上单调递减,且(0)0h,故'()0gx,所以()gx在(0,)上单调递减, 而000sincos1lim()limlim(2cos)2+cossin3xxxxxgxxxxxx. 另一方面,当[,)x时,sin111()(2cos)3xgxxxx,因此13a.
6 0001lim()limlim11xxxxxeegxx, 即当0x时,()1gx 所以()1gx,即有1a. 综上所述,当1a,0x时,()0fx成立. (全国大纲理)设函数()1xfxe. (Ⅰ)证明:当1x时,()1xfxx; (Ⅱ)设当0x时,()1xfxax,求a的取值范围. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数 由题设0x,此时()0fx. ①当0a时,若1xa,则01xax,()1xfxax不成立; ②当0a时,当0x时,()1xfxax,即11xxeax; 若0x,则aR; 若0x,则11xxeax等价于111xexax,即1xxxxeeaxex. 记1()xxxxeegxxex,则2222221'()=(2)()()xxxxxxxxexeeegxexexexxex. 记2()2xxhxexe,则'()2xxhxexe,''()+20xxhxee. 因此,'()2xxhxexe在(0),上单调递增,且'(0)0h,所以'()0hx, 即()hx在(0),上单调递增,且(0)0h,所以()0hx. 因此2'()=()0()xxegxhxxex,所以()gx在(0),上单调递增. 由洛必达法则有 000011lim()limlimlim122xxxxxxxxxxxxxxxeexeexegxxexexeexe,即当0x时, 1()2gx,即有1()2gx,所以12a.综上所述,a的取值范围是1(,]2. (全国2理)设函数sin()2cosxfxx. (Ⅰ)求()fx的单调区间; (Ⅱ)如果对任何0x≥,都有()fxax≤,求a的取值范围. 解:(Ⅰ)22(2cos)cossin(sin)2cos1()(2cos)(2cos)xxxxxfxxx. 当2π2π2π2π33kxk(kZ)时,1cos2x,即()0fx;

新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件

新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件

注意:lim6x 2 为已定式,不能再用洛必达法则。
x1 6 x
例5.若f(x0 )
2
,求lim h0
f(x0

2h) 5h
f(x0

h)
解析:l i m h0
f(
x0

2 h ) 5h
f
( x0

h)

lim 2f(x0
h0

2
h ) 5
f( x0

h)

3 5
f( x0
2a
g(3) 9a 1 0
①若g(1) a 1 0 a 1 时,
g(t)
则 g(t) 在 [1,3]必有唯一零点t0
所以 y(t) 在[1, t0 ] 减,[t0 ,3]增
1 t0 3
又y(1) 0 ,所以 y(t0 ) 0不适合。
②若g(1) a 1 0 a 1时,
若 x (0,),则
ax 1 0 ax 1 x f (x)

a

1 1 ex

1 x

xex ex 1 x(ex 1)

h(x)恒成立。
下面求 h(x),x (0,) 的最小值或最小极限值。
用导数法判断单调性难以解决,所以猜测最小
极限值点在0或 位置,由洛必达法则:
g(x) xe x 2e x x 2 0(x 0)
因为 g(x) xex ex 1 ,g (x) xe x 0
所以 g(x) 在(0,) 增
g(x) g(0) 0 所以 g(x) 在(0,)增
g(x) g(0) 0 h(x) 1

导数结合洛必达法则巧解高考压轴题精选推荐PPT

导数结合洛必达法则巧解高考压轴题精选推荐PPT

x1
x1 1 x2
x1 1 x2
x1 2x
即当 x 1 时, g(x) 0 ,即当 x 0 ,且 x 1 时, g(x) 0 .
因为 k g(x) 恒成立,所以 k 0 .综上所述,当 x 0 ,且 x 1 时, f (x) ln x k 成立, k 的取值范围为 (,0] .
x 1 x
4.运用洛必达和导数解 新课标理
设函数 f (x) ex 1 x ax2 . (Ⅰ)若 a 0 ,求 f (x) 的单调区间;
(Ⅱ)当 x 0 时, f (x) 0 ,求 a 的取值范围.
4.运用洛必达和导数解 新课标理
应用洛必达法则和导数
(Ⅱ)当 x 0 时, f (x) 0 ,即 ex 1 x ax2.
求 a 的取值范围.
全国1理
设函数 f (x) ex ex . (Ⅰ)证明: f (x) 的导数 f (x) ≥ 2 ; (Ⅱ)若对所有 x ≥ 0 都有 f (x) ≥ ax ,
求 a 的取值范围.
全国2理
设函数 f (x) sin x . 2 cos x
(Ⅰ)求 f (x) 的单调区间;
1 1 x2
h(x )
0,与题设矛盾.综上可得, k
的取值范围为 (,0] .
新课标理的常规解法
注:分三种情况讨论:① k 0 ;② 0 k 1;③ k 1 不易想到. 尤其是② 0 k 1时,许多考生都停留在此层面,举反例 x (1, 1 )
1 k
更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段 公认的难点,即便通过训练也很难提升.
明理由.
新课标理
设函数 f ( x) 运用洛必达和导数解 年新课标理 = ex 1 x ax2 .

《洛必达法则》课件

《洛必达法则》课件
简化求导后的表达式,得出所 求的极限值。Байду номын сангаас
洛必达法则的证明过程
01 利用导数的定义和性质,证明洛必达法则在一定 条件下成立。
02
通过反证法,证明洛必达法则的正确性。
03 利用数学归纳法,证明洛必达法则在更广泛的情 况下成立。
03
洛必达法则的实例解析
洛必达法则在极限计算中的应用
总结词
洛必达法则是计算极限的重要工具,尤其在处理复杂函数或不定式时,通过求导简化计 算过程,得到极限值。
洛必达法则与其他方法的比较
01
02
03
与其他求极限的方法相 比,洛必达法则是比较
直接和简便的。
对于一些特殊问题,其 他方法可能更加适用, 例如泰勒级数、等价无
穷小等。
在使用洛必达法则时, 需要注意与其他方法的 结合使用,以便更好地
解决问题。
05
洛必达法则的习题与解 析
基础题目解析
总结词
掌握洛必达法则的基本应用
洛必达法则的推导过程
导数的定义和性质
导数的定义
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
导数的性质
导数具有连续性、可加性、可乘性和 链式法则等性质。
洛必达法则的推导步骤
确定函数在所求点处的导数是 否存在。
对函数进行变形,使其满足洛 必达法则的形式。
利用导数的性质和极限的运算 法则,对分子和分母分别求导 。
详细描述
通过解析基础题目,了解洛必达法则的基本形式和适用条件,掌握如何利用洛 必达法则求解简单函数的极限。
进阶题目解析
总结词
提升对复杂函数极限的求解能力
详细描述
解析进阶题目,学会处理含有参数、复合函数、幂指函数等复杂情况的极限问题,进一步掌握洛必达法则的应用 技巧。

洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)

导数结合洛必达法例巧解高考压轴题之五兆芳芳创作
一.洛必达法例: 法例 1.


(2)
(3)
,那么
=
. 法例 2.

(2)
利用洛必达法例求未定式的极限是微分学中的重点之一,在解题





○1
○2
○3
不满足三个前提条件时,就不克不及用洛必达法例,这时称洛必达法例不适用,应从另外途径求极限.
○4若条件合适,洛必达法例可连续多次使用,直到求出极限为止.
二.高考例题讲授
1.
2.
5.
a的取值规模.
总结:通过以上例题的阐发,我们不难发明应用洛必达法例解决的问题应满足:
1.能够别离变量;
2.用导数能够确定别离变量后另一侧所得新函数的单调性;
3..。

4.2 洛必达法则 课件 《高等数学》(高教版)

4.2 洛必达法则 课件 《高等数学》(高教版)

(2)在点的某(去心)邻域内可导,且

(3)
存在(或无穷大).

例2 求下列函数的极限. 解:
随堂练习
计算下列函数的极限.
4.2 洛必达法则 二、其它未定式的极限
除了上述“ ”和“ ”型未定式外,还有“ ”,“ ”,“ ”,“ ”,“ ”等五种未定式型.一般总可将其化 为“ ”型或“ ”型未定式,然后再应用洛必达法则.
例1 求下列函数的极限. 解:
解:
解:(5)对
两边同时取对数,得
4.2 洛必达法则 一、“ ”型与“ ”型未定式的极限
定理1 如果函数 与 满足条件:
(2)在点的某(去心)邻域内可导,且

(3)

存在(或无穷大).

例1 求下列函数的极限. 解:
随堂练习
计算下列函数的极限.
4.2 洛必达法则 一、“ ”型与“ ”型未定式的极限
定理2 如果函数 与 满足条件:
4.2 洛必达法则
4.2 洛必达法则
在学习无穷小量阶的比较时,我们已经遇到过两个无穷小 量之比的极限,这种极限可能存在,也可能不存在,通常把两 个无穷小量之比或两个无穷大量之比统称为未定式,分别简记 为“ ”型或“ ”型.未定式的极限不能直接利用“商的极限 等于极限的商”这一运算法则来求.洛必达(L' Hospital)法则 是以导数为工具来研究未定式极限的重要方法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) lim f (x) lim g(x) 0 ;
xa
xa
(2)在 (a,b) 内, f (x) 和 g(x) 都存在,且 g(x) 0 ; (3) lim f (x) A ( A 可为实数,也可以是 ).
xa g(x)
则 lim f (x) lim f (x) A . xa g(x) xa g(x)
3
1. 新课标高考命题趋势
近年来的高考数学试题逐步做到科学化、规范化, 坚持了稳中求改、稳中创新的原则,充分发挥数学 作为基础学科的作用,既重视考查中学数学基础知 识的掌握程度,又注重考查进入高校继续学习的潜 能。为此,高考数学试题常与大学数学知识有机接 轨,以高等数学为背景的命题形式成为了热点.
虽然这些压轴题可以用分类讨论的方法求解,但 这种方法往往讨论多样、过于繁杂,学生掌握起 来非常困难.研究发现利用分离参数的方法不能
解决这部分问题的原因是出现了 0 ”型的式子, 0
而这就是大学数学中的不定式问题,解决这类问 题的有效方法就是洛必达法则.
6
补充知识:洛必达法则及其解法
7
洛必达法则
洛必达法则:设函数 f (x) 、 g (x) 满足:
x 1 x (Ⅰ)略解得 a 1, b 1.
(Ⅱ)方法一:分类讨论
由(Ⅰ)知
f
(x)
ln x x 1
1 x
,所以
f
(x)
(
ln x x 1
k) x
1 1 x2
(2 ln
x
(k
1)(x2 x
1) )
.
考虑函数 h(x)
2 ln x
(k
1)( x 2 x
1)
(x
0) ,则 h '(x)
(k
1)(x2 1) 2x x2
1 k
更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段 公认的难点,即便通过训练也很难提升.
12
运用洛必达和导数解2011年新课标理
当 x 0 ,且 x 1时, f (x) ln x k ,即 ln x 1 ln x k , x 1 x x 1 x x 1 x
也即 k
x ln x x 1
=
(1 x2 )2 x(1+x2 )2
0,
从而 h(x) 在 (0, ) 上单调递增,且 h(1) 0 ,因此当 x (0,1) 时,h(x) 0 ,当 x (1, )
时,h(x) 0 ;当 x (0,1) 时,g '(x) 0 ,当 x (1, ) 时,g '(x) 0 ,所以 g(x) 在 (0,1)
9
1.2011新课标理的常规解法
已知函数 f (x) a ln x b ,曲线 y f (x) 在点 (1, f (1)) 处的切线方程为 x 2 y 3 0 . x 1 x
(Ⅰ)求 a 、 b 的值; ( Ⅱ)如果当 x 0 ,且 x 1时, f (x) ln x k , 求 k 的取值范围.
因为 k g(x) 恒成立,所以 k 0 .综上所述,当 x 0 ,且 x 1时, f (x) ln x k 成立, k 的取值范围为 (,0] .
h(x)
0
,与题设矛盾.
( iii ) 当 k 1 时 , h '(x) 0 , 而 h(1) 0 , 故 当 x (1, ) 时 , h(x ) 0, 可 得
1 1 x2
h(x )
0,与题设矛盾.综上可得, k 的取值范围为 (,0] .
11
1.2011新课标理的常规解法
注:分三种情况讨论:① k 0 ;② 0 k 1;③ k 1 不易想到. 尤其是② 0 k 1时,许多考生都停留在此层面,举反例 x (1, 1 )
致亲爱的同学们
天空的幸福是穿一身蓝 森林的幸福是披一身绿 阳光的幸福是如钻石般耀眼 老师的幸福是因为认识了你们
愿你们努力进取,永不言败
1
导数结合学洛必达书法则巧解 高海考压轴山题 无有 —涯—高考专项路研究 苦勤 作 为 授课人:高艺美 舟 径 授课时间: 2015.09.22
2
引入:新课标高考命题趋势及方法
1 x
x ln x x 1
2x ln x 1 x2
1,记
g(x)
2x ln x 1 x2
1,
x
0 ,且
x
1

g
'( x)
2( x 2
1) ln x 2(1 (1 x2 )2
x2)
=
2(x2 1) (1 x2 )2
(ln
x
1 x2
x2
) 1

记 h(x)
ln
x
1 x2
x2 1
,则
h
'(
x)
1 x
4x + (1+x2 )2
上单调递减,在 (1, ) 上单调递增.
13
运用洛必达和导数解2011年新课标理
由洛必达法则有
lim
x1
g(x)
lim(
x1
2x ln x 1 x2
1)
1
lim
x1
2x ln x 1 x2
1
lim
x1
2ln x 2x
2
0

即当 x 1时, g(x) 0 ,即当 x 0 ,且 x 1时, g(x) 0 .
x
1时,
f
(x)
( ln x x 1
k) x
0 ,即
f
(x)
ln x x 1
k x

(ii)当 0 k 1时,由于当 x (1, 1 ) 时, (k 1)(x2 1) 2x 0,故 h '(x) 0 ,而 1 k
h(1)
0
,故当
x
(1, 1 1 k
)
时,
h(x)
0
,可得
1 1 x2
4
2.分类讨论和假设反证
河南省的高考试卷的压轴题都是导数应用问题, 其中求参数的取值范围就是一类重点考查的题 型.这类题目容易让学生想到用分离参数的方 法,一部分题用这种方法很凑效,另一部分题在 高中范围内用分离参数的方法却不能顺利解决, 高中阶段解决它只有华山一条路——分类讨论 的方法.
5
3.洛必达法则
.
10
1.2011新课标理的常规解法
(i)当 k
0 时,由 h '(x)
k(x2
1) (x x2
1)2
知,当
x
1时, h '(x)
0 .因为
h(1)
0

ቤተ መጻሕፍቲ ባይዱ
所以当
x (0,1)
时,
h(x)
0
,可得 1 1 x2
h(x)
0
;当
x (1, ) 时,
h(x)
0
,可

1 1 x2
h(x)
0
,从而当
x
0且
8
1.2011河南新课标理
已 知 函 数 f (x) a ln x b , 曲 线 y f (x) 在 点 x 1 x
(1, f (1)) 处的切线方程为 x 2 y 3 0 .
(Ⅰ)求 a 、 b 的值; ( Ⅱ)如果当 x 0 ,且 x 1时, f (x) ln x k ,
x 1 x 求 k 的取值范围.
相关文档
最新文档