高考导数(洛必达法则)

合集下载

《高等数学B》第四章中值定理及导数的应用第2节洛必达法则

《高等数学B》第四章中值定理及导数的应用第2节洛必达法则

《高等数学B》第四章中值定理及导数的应用第2节洛必达法则洛必达法则(L'Hôpital's rule)是一种常用于求解极限的方法,该方法是由法国数学家Guillaume de l'Hôpital在1696年提出的。

洛必达法则适用于形如$\frac{0}{0}$或$\frac{\infty}{\infty}$的极限。

具体来说,如果对于函数$f(x)$和$g(x)$,当$x \to a$时,$f(x)$和$g(x)$分别趋于0或无穷大,且$f'(x)$和$g'(x)$都存在(其中$f'(x)$和$g'(x)$分别表示$f(x)$和$g(x)$的导数),则有:$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}\frac{f'(x)}{g'(x)}$$其中,等式右边的极限表示对$\frac{f'(x)}{g'(x)}$求导后再取$x \to a$的极限。

这个法则的推导基于泰勒展开的思想。

我们知道,对于充分光滑(即具有连续的导数)的函数,它在其中一点周围可以用泰勒级数展开。

假设$f(x)$和$g(x)$在$a$的邻域内都可展开,则有:$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 +\cdots$$$$g(x) = g(a) + g'(a)(x-a) + \frac{1}{2}g''(a)(x-a)^2 +\cdots$$根据极限的定义,我们希望求解的极限是$x \to a$时的极限,因此可以将$x-a$看作一个无穷小量。

我们忽略展开式中的高阶无穷小量,得到:$$\lim_{x \to a} \frac{f(x)}{g(x)} \approx \lim_{x \to a}\frac{f(a) + f'(a)(x-a)}{g(a) + g'(a)(x-a)}$$将$a$代入极限中,我们可以得到:$$\lim_{x \to a} \frac{f(a)}{g(a)}$$上述结果是前提条件$f(a)=g(a)=0$下的结果,而当$f(a) \neq 0$或$g(a) \neq 0$时,我们可以对$\frac{f(x)}{g(x)}$做除法的等价变形,具体来说,我们可以将除法变化为乘法,然后再求极限。

高考培优点 洛必达法则

高考培优点 洛必达法则

跟踪训练 1 若∀x∈[1,+∞),不等式 ln x≤mx-1x恒成立,求实数 m 的 取值范围.
当x=1时,不等式恒成立,m∈R;
当 x>1 时,m≥xx2l-n x1恒成立,
令 h(x)=xx2l-n x1,x>1,

h′(x)=ln
x+1x2-1-2x·xln x2-12
x=x2-x2lxn2-x-1ln2
4.若条件符合,洛必达法则可连续多次使用,直到求出极限为止.
lim
x→a
gfxx=lxi→ma
gf′′xx=lxi→ma
gf″″xx,如满足条件,可继续使用洛必达法则.
0 题型一 用洛必达法则处理 型函数
0
例 1 设函数 f(x)=2+sincoxs x.如果对任何 x≥0,都有 f(x)≤ax,求 a 的取值 范围.
思维升华


用洛必达法则处理∞型函数的步骤:(1)分离变量;(2)出现∞型式子;(3)运
用洛必达法则求值.
跟踪训练2 已知函数f(x)=2ax3+x.当x∈(1,+∞)时,恒有f(x)>x3-a, 求a的取值范围.
当x∈(1,+∞)时,f(x)>x3-a恒成立,
即2ax3+x>x3-a恒成立,
12
且 h(x)>h(0)=0,所以 g′(x)=hxx2>0,
从而 g(x)=ex-x 1在(0,+∞)上单调递增,
所以 a≤lim x→0
ex-1 x.
由洛必达法则得lim x→0
g(x)=lim x→0
ex-x 1=lxi→m0
e1x=1,
即当x→0时,g(x)→1,所以g(x)>1,即有a≤1.

高数洛必达法则

高数洛必达法则

与夹逼定理(Squeeze Theorem)结合使用,可以 求解一些复杂的不定式极限
问题。
与单调有界定理(Monotone Bounded Theorem)相关联, 可用于判断数列或函数的收敛
性。
02
洛必达法则证明过程
构造函数法证明
构造函数
01
通过构造一个与原函数在某点处切线斜率相同的辅助函数,将
适用范围及条件
适用于0/0型和∞/∞型的不定式极限。
使用条件:当x趋向于某一值时(可以是无穷大),函数f(x)与g(x)都趋向于0或者无穷大,且两者的导函数存在且比值为常(Taylor's Theorem)有密切关系,洛必 达法则是泰勒公式在求解极限
时的特殊应用。
变量替换法
在某些情况下,通过变量替换可以简化极限的计算过程。
05
洛必达法则拓展与延伸
多元函数洛必达法则
多元函数洛必达法则的定 义
对于多元函数,当其在某点的偏导数存在且 连续时,该点处的极限值可以通过洛必达法 则求解。
多元函数洛必达法则的应用 条件
要求函数在考察点处偏导数存在且连续,同时需要 满足一定的限制条件,如分母不为零等。
高数洛必达法则
• 洛必达法则基本概念 • 洛必达法则证明过程 • 洛必达法则应用举例 • 洛必达法则注意事项 • 洛必达法则拓展与延伸
01
洛必达法则基本概念
洛必达法则定义
洛必达法则(L'Hôpital's Rule)是微 积分学中的一个重要定理,用于求解 不定式极限。
该法则以法国数学家纪尧姆·弗朗索瓦· 安托万·德·洛必达命名。
解不等式
将不等式转化为函数值比较问题,利用洛必 达法则求解函数的极值点,进而确定不等式 的解集。

洛必达法则解高中导数问题

洛必达法则解高中导数问题

洛必达法则解高中导数问题在高中教学内容中,导数占据着重要的地位,并且通常在数学考试中以压轴题目出现,另外还是学生以后学习微积分的基础。

合理应用导数可以拓宽解决中学问题的视野,可以说导数是解决数学问题的有力工具。

而在运用导数解决问题的时候通过引入洛必达法则可以有效提高解题效率。

本文结合相关教学经验,分析洛必达法则在高中数学导数教学中的应用。

在高中数学教学内容中,有关导数有着较为详细的介绍,并详细论述导数的概念与几何意义,通过函数的变化率刻画函数变化的趋势。

导数教学内容是对函数性质与图像的总结与延伸,是研究函数、几何问题、证明不等式的重要工具,并且,通过导数可以实现生活中最优化问题的解答。

而应用洛必达法则可以对部分导数问题进行进一步的简化。

1应用洛必达法则的注意事项作为高中数学导数学习中的一个重要板块,洛必达法则能够有效减轻学生解决极限问题的压力,帮助他们以较为简便的方法对相关导数问题求解,大大降低了求解导数的难度,这在一定程度上有利于导数应用的广泛性,帮助学生应用导数解答大量的数学问题。

但是应用洛必达也有一些注意事项,教师在开展教学活动的过程中可以对此进行强调,引导学生在正确的情境之中合理应用洛必达法则,提高自己的解题效率。

如果教师不对应用洛必达法则的注意事项进行强调,学生难免会出现滥用洛必达法则而不自知的情况,这对于学生的解题是不利的。

教师可以从以下几个方面对洛必达法则进行强调:1、洛必达法则只能应用于0/0型或者是无穷大比无穷大型的。

在0/0型中,函数可以从正向趋近于0,也可以从负向趋近于0;在无穷大比无穷大型中,函数可以趋近于正无穷大,也可以趋近于负无穷大。

而在其他条件下,洛必达法则是不适用的。

如果学生在应用洛必达法则前没有对函数的情况进行判断,当然,他们能够应用洛必达的解题思路得出一个答案,但是这个答案是错误的,而这个错误常常不能够被学生所发现。

2、若lim(x从正向趋近于0、从负向趋近于0、趋近于正无穷大、趋近于负无穷大或者取某一个值)f(x)的导数/g(x)的导数不存在,不能够说明若lim (x从正向趋近于0、从负向趋近于0、趋近于正无穷大、趋近于负无穷大或者取某一个值)f(x)/g(x)不存在,只能说明洛必达法则失效。

导数洛必达法则7种例题

导数洛必达法则7种例题

导数洛必达法则7种例题1、一次函数的导数洛必达法则:设y=f(x)为某函数,当x的变化量Δx趋近于零时,函数y的变化量Δy满足下式:$$\lim \limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=f'(x)$$2、几何意义:对于一元函数f(x),函数图像的斜率正好就是f'(x),而且x位置上的斜率正好等于f(x)的导数。

3、函数的连续性的应用:若二元函数F(x,y)满足一定的条件,关于x 的变量中存在某函数f(x),且f(x)的可导性有保证,则f(x)具有极限函数f'(x),由此可得:$$F(x, y) ~ \underset {y \to f(x)} \toL f'(x)$$4、极限符号的应用:在求出某函数f(x).f'(x)的极限值时,由于x变化量趋近于零,因此可将其表示为极限符号:$$f'(x)=\lim_{\Deltax\to 0}\frac{f\left(x+\Delta x\right)-f\left(x\right)}{\Delta x}$$5、二元函数的导数:F(x,y)为定义在⊿内的连续的二元函数,它满足有限差分式,对于常数C,则有:$$\frac{\partial F}{\partialx}=\lim_{\Delta x\to 0}\frac{F(x+\Delta x,y)-F(x-\Delta x,y)}{2\Deltax}=C$$6、定义极限的应用:假设F(x,y)为可导函数,其极限能够有意义:$$\frac{\partial F}{\partial x}=\lim_{\Delta x\to 0}\frac{F(x+\Delta x,y)-F(x-\Delta x, y)}{2\Delta x}=F'(x,y)$$7、其他函数求导数:若函数f(x)为多元函数,只要逐步求导就能求出任意次偏导数,对f(x)如此:$$\frac {\partial^2 f}{\partialx^2}=\lim_{\Delta x\to 0}\frac{f\left(x+\Delta x\right)+f\left(x-\Deltax\right)-2f\left(x\right)}{\Delta x^2}$$。

洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)

洛必达法则在高考解答题中的应用(高二下)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。

冲刺高考数学洛必达法则的使用条件与限制

冲刺高考数学洛必达法则的使用条件与限制

冲刺高考数学洛必达法则的使用条件与限制在高考数学的战场上,许多同学都渴望拥有一件强大的“武器”来攻克难题,洛必达法则便是其中之一。

然而,要想正确且有效地运用这一法则,就必须清楚地了解其使用条件与限制,否则可能会陷入误区,导致丢分。

首先,我们来谈谈洛必达法则是什么。

简单来说,洛必达法则是在一定条件下,通过对分子分母分别求导来计算未定式极限的方法。

那么,洛必达法则的使用条件是什么呢?条件一:只有当分式满足“零比零”型或者“无穷比无穷”型的未定式时,才能考虑使用洛必达法则。

这意味着,当我们面对一个极限问题,如果分子和分母都趋近于零或者都趋近于无穷大,才有使用洛必达法则的可能。

条件二:在求导之后,新得到的分式的极限必须存在或者为无穷大。

如果求导后的新分式的极限不存在,那么就不能使用洛必达法则来求解。

条件三:使用洛必达法则时,求导的过程必须是在定义域内可导。

也就是说,分子分母在所讨论的区间内必须是可导的函数。

接下来,我们看看洛必达法则的限制有哪些。

限制一:高考中,洛必达法则并没有被明确列入考纲范围。

这就意味着,如果直接使用洛必达法则来解题,可能会被扣分。

但是,如果我们能够巧妙地利用其思路,通过构造函数等方法来解决问题,往往能够达到事半功倍的效果。

限制二:洛必达法则并不是万能的解题工具。

有些问题可能在使用一次洛必达法则后仍无法得出结论,需要多次使用,但多次使用可能会使问题变得更加复杂,甚至走入死胡同。

限制三:在使用洛必达法则求导的过程中,计算容易出错。

尤其是对于复杂的函数,求导的过程可能会涉及到复合函数求导、乘积求导等多种规则,如果不小心就会出现错误。

为了更好地理解洛必达法则的使用条件与限制,我们来看几个具体的例子。

例 1:求极限$\lim_{x \to 0} \frac{\sin x}{x}$这是一个“零比零”型的未定式,满足洛必达法则的使用条件。

对分子分母分别求导,得到:$\lim_{x \to 0} \frac{\cos x}{1} = 1$例 2:求极限$\lim_{x \to +\infty} \frac{x^2}{e^x}$这是一个“无穷比无穷”型的未定式,使用洛必达法则:$\lim_{x \to +\infty} \frac{2x}{e^x}$再次使用洛必达法则:$\lim_{x \to +\infty} \frac{2}{e^x} = 0$但是,并不是所有的极限问题都能通过洛必达法则轻松解决。

导数洛必达法则公式

导数洛必达法则公式

导数洛必达法则公式
x→a时,limf(x)=0,limf(x)=0;
在点a的某去心邻域内f(x)与f(x)都可导,且f(x)的导数不等于0;
x→a时,lim(f'(x)/f'(x))存有或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
洛必达(l'hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未
定式值的方法。

洛必达法则(定理)设立函数f(x)和f(x)满足用户以下条件
⑴x→a时,limf(x)=0,limf(x)=0;
⑵在点a的某回去心邻域内f(x)与f(x)都可微,且f(x)的导数不等同于0;
⑶x→a时,lim(f'(x)/f'(x))存在或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
注意事项:
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求
极限的方法对学好高等数学具有重要的意义。

洛比达法则用于求分子分母同趋于零的分式
极限。

⑴ 在著手谋音速以前,首先必须检查与否满足用户或型构型,否则误用洛必达法则
可以失效(其实形式分子并不需要为无穷大,只需分母为无穷大即可)。

当不存有时(不
包含情形),就无法用洛必达法则,这时表示洛必达法则不适用于,需从另外途径谋音速。

比如说利用泰勒公式解。

⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分:泰勒展开式 1.2311,1!2!3!!(1)!n n x x x x x x x e e n n θ+=+++++++K 其中(01)θ<<; 2. 231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+K 其中111(1)()(1)!1n n n n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-K ,其中21(1)cos (21)!k k n x R x k θ+=-+; 4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-K 其中2(1)cos (2)!k k n x R x k θ=-; 第三部分:新课标高考命题趋势及方法许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了00”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则. 第四部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x a x af xg x →→==; (2)在()U a o 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim ()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. (2011新)例:已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--.考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =, 所以当(0,1)x ∈时,()0h x >,可得21()01h x x ⋅>-;当(1,)x ∈+∞时,()0h x <,可得 21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x k f x x x>+-; (ii )当01k <<时,由于当1(1,)1x k ∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x k x x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x k f x x x>+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x x g x x =+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.例(2010新):设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21x e x ax --≥等价于21x e x a x --≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1x h x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,20000111lim ()lim lim lim 222x x x x x x x e x e e g x x x →→→→---==== 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立. 自编:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围. 解:应用洛必达法则和导数 当(0,)2x π∈时,原不等式等价于3sin x x a x ->.记3sin ()x x f x x -=,则43sin cos 2'()x x x x f x x--=. 记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-, '''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减, 且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:(1)可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“00”型式子. 2010海南宁夏文(21)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 解:(Ⅱ)应用洛必达法则和导数0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)x x e ax -≥等价于1xe ax -≥,也即1x e a x -≤.记1()x e g x x -=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=. 记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1xh x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增. 由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===,即当0x →时,()1g x →所以()1g x >,即有1a ≤. 综上所述,当1a ≤,0x ≥时,()0f x ≥成立.2010全国大纲理(22)设函数()1xf x e -=-. (Ⅰ)证明:当1x >-时,()1x f x x ≥+;(Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1x f x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x x e ax --≤+;若0x =,则a R ∈; 若0x >,则11xx e ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x x xe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e-=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >. 因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞. (2008)例:设函数sin ()2cos x f x x =+. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. (Ⅱ)应用洛必达法则和导数sin ()2cos x f x ax x =≤+若0x =,则a R ∈;若0x >,则sin 2cos x ax x ≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+ 则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+.记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos212sin cos212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而000sin cos 1lim ()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x→→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。

相关文档
最新文档