(完整版)中考数学二次函数复习资料

合集下载

二次函数复习全部讲义(完整资料).doc

二次函数复习全部讲义(完整资料).doc

【最新整理,下载后即可编辑】二次函数性质二次函数的图象与性质的是二次函数重点内容,而与二次函数的图象与性质密切相关,是图象的开口方向、对称轴、顶点坐标、增减范围、对称性。

这些内容是中考二次函数重点考查内容,关于这些知识点的考查常以下面的题型出现。

一、确定抛物线的开口方向、顶点坐标例1、对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,二、求抛物线的对称轴例2、二次函数322-+=x x y 的图象的对称轴是直线 。

三、求二次函数的最值例3、若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A.有最大值4m B.有最大值4m - C.有最小值4m D.有最小值4m- 四、根据图象判断系数的符号例4、已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <0五、比较函数值的大小例5、若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y << 六、二次函数的平移例6、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A. 2(1)3y x =---B. 2(1)3y x =-+-C. 2(1)3y x =--+D. 2(1)3y x =-++例7将抛物线23x y =绕原点按顺时针方向旋转180°后,再分别向下、向右平移1个单位,此时该抛物线的解析式为( )A.1)1(32---=x yB. 1)1(32-+-=x yC.1)1(32+--=x yD. 1)1(32++-=x y例8在直角坐标平面内,二次函数图象的顶点为A(1,-4)且过B(3,0).(1) 求该二次函数解析式;(2) 将该函数向右平移几个单位,可使得平移后所得图象经过原点,并直接写出平移后所得图象与x 轴的另一个交点的坐标.(1)把二次函数2339424y x x =-++代成2()y a x h k =-+的形式. (2)写出抛物线2339424y x x =-++的顶点坐标和对称轴,并说明该抛物线是由哪一条形如2y ax =的抛物线经过怎样的变换得到的?(3)如果抛物线2339424y x x =-++中,x 的取值范围是03x ≤≤,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).七、求代数式的值例9、已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( )A .2006 B .2007C .2008D .2009八、求与坐标轴的交点坐标例10、抛物线 y=x 2+x-4与y 轴的交点坐标为 . 例11、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标是 。

中考数学复习专项知识总结—二次函数(中考必备)

中考数学复习专项知识总结—二次函数(中考必备)

中考数学复习专项知识总结—二次函数(中考必备)1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。

其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。

2、二次函数的图象是一条抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。

3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;(2)抛物线与x轴的交点和一元二次方程的根的关系1、通过对实际问题的分析,体会二次函数的意义。

2、会用描点法画出二次函数的图象,通过图象了解二次函数的性质。

3、会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。

4、会利用二次函数的图象求一元二次方程的近似解。

1、二次函数的基本概念。

2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。

3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。

4、二次函数图象的平移。

5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。

1、下列各点中,在函数y =-x 2图象上的点是( )A 、(-2,4)B 、(2,-4)C 、(-4,2)D 、(4,-2)2、二次函数y =(3m -2)x 2+mx +1的图象开口向上,则m 的取值范围是 。

3、抛物线21(3)52y x =---的开口方向 ,对称轴是 ,顶点坐标是 ,与x 轴的交点个数是 个。

4、二次函数21522y x x =+-的图象的顶点坐标是 。

5、二次函数y =2(x -1)2+5图象的对称轴和顶点P 的坐标分别是( ) A 、直线x =-1,P(-1,5) B 、直线x =-1,P(1,5) C 、直线x =1,P(1,5) D 、直线x =1,P(-1,5) 6、把抛物线y =-4x 2向上平移2个单位,再向左平移3个单位,得到的抛物线是( )A 、y =-4(x +3)2+2B 、y =-4(x +3)2-2C 、y =-4(x -3)2+2D 、y =-4(x -3)2-27、在平面直角坐标系中,将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点变为( )A 、(0,0)B 、(1,-2)C 、(0,-1)D 、(-2,1)8、二次函数y=(x-1)2+2的最小值是()A、2B、1C、-1D、-29、已知二次函数y=3x2+2x+a与x轴没有交点,则a的取值范围是。

中考二次函数专题复习(完整资料).doc

中考二次函数专题复习(完整资料).doc

此文档下载后即可编辑中考二次函数专题复习知识点归纳:一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax=的性质:2. 2y ax c=+的性质:上加下减。

()2y a x h =-的性质: 左加右减。

()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.。

初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。

二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。

一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。

2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。

3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。

5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。

二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。

2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。

3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。

三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。

2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。

3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。

中考数学《二次函数》复习资料

中考数学《二次函数》复习资料
(1)写出抛物线的开口方向、对称轴和顶点坐标;
(2)求抛物线与x轴、y轴的交点坐标;
(3)画出草图
(4)观察草图,指出x为何值时,y>0,y=0,y<0.
14、如图,已知二次函数
的图象经过A(2,0)、B(0,-6)两点。
(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与 轴交于点C,求点C的坐标
A. x=-2 B.x=2 C. x=-4 D. x=4
5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()
A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
6.二次函数y=ax2+bx+c的图象如图所示,则点在第__象限( )
A.一B.二C.三D.四
(三)、二次函数解析式的表示方法
1.一般式: ( , , 为常数, );
2.顶点式: ( , , 为常数, );
3.两根式: ( , , 是抛物线与 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
8.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.
9、二次函数 的对称轴是.
10二次函数 的图象的顶点是,当x时,y随x的增大而减小.
11抛物线 的顶点横坐标是-2,则 =.
12、抛物线 的顶Байду номын сангаас是 ,则 、c的值是多少?

初中数学:二次函数复习资料.doc

初中数学:二次函数复习资料.doc

二次函数考点一、二次函数的概念和图像(3~8分)1、二次函数的概念一般地,如果y = ax2 +hx-}-c{a,h,c是常数,a H 0),那么y叫做x的二次函数。

y二ax1 +/zx + c(d,b,c是常数,a丰0)叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于x = -—对称的曲线,这条曲线叫抛物线。

2a抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系屮描出顶点M,并用虚线画出对称轴(2)求抛物线y = ax2 + + c与坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C 的对称点Do将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点吋,描出抛物线与y轴的交点C及对称点Do 由C、M、D三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

考点二、二次函数的解析式(10〜16分)二次函数的解析式有三种形式:(1)一般式:y = ax2 -^-bx + c(a,b,c是常数,a 工0)(2)顶点式:y = a(x-疔 + k(a,h,k是常数,QH O)(3)当抛物线y = ax2 +/zx + c与x轴有交点吋,即对应二次好方程ca? + /?% + c = 0 有实根兀]和兀2存在时,根据二次三项式的分解因式ax2 +bx-^-c = a(x-Xj)(%-x2)»二次函数y = ax2+bx + c可转化为两根式y = a(x- x})(x-x2) o如果没有交点,则不能这样表示。

考点三、二次函数的最值(10分)如果自变量的取值范围是全体实数,那么幣数在顶点处取得最大值(或最小值),即当"丄时,2a 4ac-b2 ""4a如果自变量的取值范围是%! <x<x 9,那么,首先要看-2是否在自变量取值范围2ah4ac — b 厶x }<x<x 2内,若在此范围内,则当x=- —时,y 最罕二";若不在此范围内,则厶 2d ・础4a需要考虑函数在西<x<x 2范围内的增减性,如杲在此范围内,y 随X 的增人而增人,则当x = x 2时,y 垠夬=ax; + bx 2 + c ,当x = 时,y 最小=axf +bx } + c ;如果在此范围内,y 掖小二 ax ; + bx 2 + c o考点四、二次函数的性质1、二次函数的性质二次函数y = ax 2 + 加+ c (a,b,c 是常数,d 工 0) a>0a<0(1) 抛物线开口向上,并向上无限延伸; b b (2) 对称轴是— 顶点坐标是(―匕, 2a 2a4ac-b 2- ); 4a性质,(3) 在对称轴的左侧,即当xv-仝时,y 随x2a的增大而减小;在对称轴的右侧,即当x>Bt, y 随X 的增大而增大,简记左减右 2a增;图像y 随x 的增大而减小,则当x = x x 时,儿戈大=aX \ +加1 + C , 当兀=尢2时,(6~14 分)函数(1) 抛物线开口向下,并向下无限延伸;b . b(2) 对称轴是*=——,顶点坐标是(——, 2a 2a4ac-b 2); 4ab (3) ------------------------------------- 在对称轴的左侧,即当x< --------------------------- 时,y 随x 2a 的增大而增大;在对称轴的右侧,即当x>时,y 随x 的增大而减小,简记左增 2a 右减;(4)抛物线有最低点,当x= ------ 时,y 有最小 (4)抛物线有最高点,当x= ----------- 时,y 有最2a 2ci居4ac-b2「士4ac-b 2值' 歹最小值=7"—人值' 歹最大值=7"—(1) 函数ox 2 +to+c (Jt 中°、b 、c 是常数,口曲0)叫做的二次函数.(2) 利用配方,可以把二次函数表示成y=a (x+—)2+ 4aC ~b2或『=心2a4a-h )2+k 的形式(3) 二次函数的图象是抛物线,当。

(完整word版)初三数学二次函数知识点总结及经典习题含答案

(完整word版)初三数学二次函数知识点总结及经典习题含答案

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根..② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+B. 22(1)y x =--C. 221y x =-+D. 221y x =--3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =--B. 22y x x =-++C. 22y x x =--或22y x x =-++D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

(完整版)史上最全初三数学二次函数知识点归纳总结,推荐文档

(完整版)史上最全初三数学二次函数知识点归纳总结,推荐文档

A.(2,-2) D.(-1,-3)
B.(1,-2)
C.(1,-3)
2.已知二次函数 y ax2 bx c 的图象如图所示,则下列结论正确的是( C )
A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<0
(2) b 和 a 共同决定抛物线对称轴的位置.由于抛物线 y ax2 bx c 的对称轴
是直线
x b ,故:① b 0 时,对称轴为 y 轴;② b 0 (即 a 、 b 同号)时,
2a
a
对称轴在 y 轴左侧;③ b 0 (即 a 、 b 异号)时,对称轴在 y 轴右侧.
a
(3) c 的大小决定抛物线 y ax2 bx c 与 y 轴交点的位置.
一个交点;③方程组无解时 l 与 G 没有交点.
(6)抛物线与 x 轴两交点之间的距离:若抛物线 y ax2 bx c 与 x 轴两交点
为 Ax1,0,Bx2,0,由于 x1、 x2 是方程 ax2 bx c 0 的两个根,故
第二部分 典型习题
1.抛物线 y=x2+2x-2 的顶点坐标是 ( D )
交点的纵坐标相等,设纵坐标为 k ,则横坐标是 ax2 bx c k 的两个实 数根.
(5)一次函数 y kx nk 0的图像 l 与二次函数 y ax2 bx ca 0的图像
G 的交点,由方程组
y kx n 的解的数目来确定:①方程组有两
y ax 2 bx c
组不同的解时 l 与 G 有两个交点; ②方程组只有一组解时 l 与 G 只有
ah 2 bh c ). (3)抛物线与 x 轴的交点
二次函数 y ax2 bx c 的图像与 x 轴的两个交点的横坐标 x1、 x2 ,是对 应一元二次方程 ax2 bx c 0 的两个实数根.抛物线与 x 轴的交点情况可 以由对应的一元二次方程的根的判别式判定: ①有两个交点 0 抛物线与 x 轴相交; ②有一个交点(顶点在 x 轴上) 0 抛物线与 x 轴相切; ③没有交点 0 抛物线与 x 轴相离. (4)平行于 x 轴的直线与抛物线的交点 同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年数学中考复习十二 ——《二次函数》【考点聚焦】(九下第26章P 4)1.明确二次函数的图象及相关概念,会用描点法画出二次函数的图象.并熟练掌握2.会用配方法、公式法确定开口方向、对称轴、顶点坐标,并能解决简单问题.会利用二次函数的图象求一元二次方程的近似解.3.会结合函数、数形结合、转化、方程等数学思想方法解决二次函数与实际相联系的问题,会判断实际问题中的函数关系及函数解析式与图象之间的关系,能解决较复杂的函数、方程、不等式等综合运.................用.的应用题. 4.考查的热点:待定系数法确定二次函数的解析式,二次函数图象、性质和应用.考查的题型:填空题、选择题,也有解答题,常与几何、方程、不等式等知识相联系作为压轴题.【考点链接】1.二次函数的解析式:(1)二次函数解析式的一般式(通式): ,化为顶点式为: ,其中二次项系数是 ,一次项系数为 ,常数项为 ;它的顶点坐标为( , ),对称轴为 。

(2)二次函数解析式的顶点式(通式): ,顶点坐标为( , )对称轴是 。

化为一般式: ,(一般式与顶点式可以互相转化) (3)二次函数解析式的交点式: 。

此时抛物线的对称轴为 。

其中,(x 1,0)(x 2,0)是抛物线与X 轴的交点坐标。

与一般式的关系:: , 显然,与X 轴没有交点的抛物线不能用此解析式表示的。

22a >03. 二次函数y=ax +bx+c 中a ,b ,c 的符号与图像性质的关系:(1)a 的符号与开口方向:a 0⇔开口方向向 ; a 0⇔开口方向向 ; (2)a 、b 的符号与对称轴x = -ab 2位置:在Y 轴的左侧 ⇔a 、b ; 在Y 轴的右侧 ⇔a 、b ; Y 轴 ⇔b 0(3)c 的符号与抛物线和y 轴的交点位置: 点(0,c )在Y 轴正半轴 ⇔c 0;点(0,c )在原点⇔c 0;点(0,c )在Y 轴负半轴 ⇔c 0;4.抛物线y=ax 2+bx+c 与X 轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系:抛物线y=ax 2 +bx+c (a ≠0)与x 轴交点有三种情况:当二次函数y=ax 2 +bx+c 的图象与x 轴有交点时,即:当y=0时,一元二次方程ax 2 +bx+c=0的解就是抛物线与x 轴交点的横坐标。

(1)b 2-4ac 0 ⇔方程有两个不相等的实数根⇔抛物线与X 轴有两个不同的交点; (2)b 2-4ac 0 ⇔方程没有实数根 ⇔抛物线与X 轴没有交点(3)b 2-4ac 0 ⇔方程有两个相等的实数根 ⇔抛物线与X 轴只有一个交点; 5.点与二次函数图象的关系:(1)点A ()o y x ,0在函数y=ax 2 +bx+c (a ≠0)的图像上.则有 .(2)求一次函数()0≠+=k n kx y 的图像与二次函数()02≠++=a c bx ax y 的图像的交点,解方程组 . 6.与其它函数的关系:【基础练习】1.若222--=m x )m (y 是二次函数,则m = . 2.抛物线()22-=x y 的顶点坐标是 .3.二次函数y =x 2+2x -3的图象的对称轴是直线 。

4.抛物线 y =x 2+x -4与y 轴的交点坐标为 .5.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .6. 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .7. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解式 .8.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是9.已知函数的图象不经过第二象限,且图象经过(2,-5),请你写出一个同时满足条件的函数解析式 10.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)11.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y12.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程2ax bx c ++=A . B . C D .【典例赏析】例1已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++形式,并画出这个函数的图像。

⑵ 根据图像回答:当1﹤ y ≤5时,对应的自变量x 的取值范围。

⑶ 函数的图象与x 轴的交点为A 、B ,此抛物线上一点P,使∆P AB 的面积等于8,求点P 的坐标。

DCBA【中考演练】第一节二次函数及其图像一、选择题(30分)1.对于抛物线y=-2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)2.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2 C.y=2(x-2)2-2 D.y=2(x + 2)2 + 23.已知抛物线21y x x=--与x轴的一个交点为(0)m,,则代数式m2-m+2009的值为()A.2007 B.2008 C.2009 D.20104.有下列函数:①y = - 3x;②y = x – 1:③y = –x1(x < 0);④y = x2 + 2x + 1.其中当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有()A.①②B.①④C.②③D.③④5.已知二次函数cbxaxy++=2的图象过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数cbxaxy++=2的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.若一次函数(1)y m x m=++的图象过第一、三、四象限,则函数2y mx mx=-()A.有最大值4mB.有最大值4m-C.有最小值4mD.有最小值4m-7.二次函数的图象如图所示,则下列结论正确的是()A. B.C. D.8.函数2y ax=与(0,0)y ax b a b=+>>在同一坐标系中的大致图象是()9.二次函数2(0)y ax bx c a=++≠的图象如图所示,则下列说法不正确的是()A.240b ac->B.0a>C.0c>D.02ba-<10.已知:二次函数()220y ax bx a b a=+++≠的图像为下列图像之一,则a的值为()A.-1 B. 1 C. -3 D. -4二、填空题(45分)11.抛物线y=2(x-2)2+3的对称轴为直线________。

12. 二次函数y=x2+10x-5的最小值为.13.抛物线228y x x m=++与x轴只有一个公共点,则m的值为.14.抛物线y=ax2 +bx+c的对称轴是直线1=x,且经过点P(3,0),则cba+-的值为15.已知抛物线y=x2-2x-3上的点P(2-,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标.16.在同一坐标平面内,下列4个函数①22(1)1y x=+-,②223y x=+,③221y x=--,2112y x=-的图象不可能...由函数221y x=+的图象通过平移变换、轴对称变换得到的函数是(填序号).17.抛物线322--=xxy与x轴分别交于A、B两点,则AB的长为________.18.已知二次函数y1=ax2 +bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值是.19.李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图像经过第一象限;乙:它的图像也经过第二象限;丙:在第一象限内函数值y随x增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式.2根据表格上的信息回答问题:该二次函数y ax bx c=++在3x=,y=.三、解答题(40分)21.二次函数的图象经过点(03)A-,,(23)B-,,(10)C-,.(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移个单位,使得该图象的顶点在原点.22.如图,直线mxy+=和抛物线cbxxy++=2都经过点A(1,0),B(3,2).⑴求m的值和抛物线的解析式;⑵求不等式mxcbxx+>++2的解集.(直接写出答案)23.如右图,抛物线nxxy++-=52经过点)0,1(A,与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是等腰三角形,试求点P的坐标.第18题。

相关文档
最新文档