三元一次方程组及其解法练习

合集下载

2.5 三元一次方程组及其解法(解析版)

2.5 三元一次方程组及其解法(解析版)

2020-2021学年浙教版七年级下册第2章《二元一次方程组》同步练习【2.5 三元一次方程组及其解法】一、单选题:1.下列方程组中,是三元一次方程组的是( )A. {x +y =0y +z =1z +w =5B. {x +y =0y +2x =1C. {3x +4z =72x +3y =9−z 5x −9y +7z =8D. {x 2−2y =0y +z =3x +y +z =1 【答案】 C【考点】三元一次方程组解法及应用【解析】【解答】解: A.4个未知数,不符合题意;B.2个未知数,不符合题意;C.有三个未知数,每个方程的次数是1,是三元一次方程组,符合题意;D.方程的次数为2,不符合题意;故答案为:C .【分析】利用三元一次方程组的定义判断即可.2.解方程组 {3x −y +2z =32x +y −4z =117x +y −5z =1,若要使计算简便,消元的方法应选取( ) A. 先消去x B. 先消去y C. 先消去z D. 以上说法都不对【答案】 B【考点】三元一次方程组解法及应用【解析】【解答】 y 的系数为1或1,故先消去 y .故B 符合题意.故答案为:B.【分析】经观察发现,3个方程中先消去y ,即可得到一个关于x 、z 的二元一次方程组,再用加减消元法和代入法解方程即可.三元一次方程组的解法,先把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”,把复杂问题转化为简单问题的思想方法.3.已知方程组 {2x −y +z =3①3x +4y −z =8②x +y −2z =−3③,若消去z , 得二元一次方程组不正确的为( )A. {5x +3y =115x −y =3B. {5x +3y =115x +7y =19C. {5x −y =35x +7y =19D. {5x +y =35x +7y =19【答案】 D【考点】三元一次方程组解法及应用【解析】【解答】解:在方程组 {2x −y +z =3①3x +4y −z =8②x +y −2z =−3③中,①+②得 5x +3y =11④ ,①×2+③得 5x −y =3⑤ , ②×2-③得 5x +7y =19⑥ ,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故D 不符合题意.故答案为:D.【分析】利用加减消元法消去z ,把三元一次方程组转化成二元一次方程组.4.如图所示,两个天平都平衡,则三个苹果的重量等于多少个香蕉的重量?答( )个.A. 2B. 3C. 4D. 5【答案】 D【考点】三元一次方程组解法及应用【解析】【解答】解:设一个苹果的重量为x ,一只香蕉的重量为y ,一个三角形的重量为z ,∴2x=5z ,2y=3z ,∴ 2x 5=z =2y 3 ,∴3x=5y ,故答案为:D.【分析】设一个苹果的重量为x ,一只香蕉的重量为y ,一个三角形的重量为z ,利用两个天平建立关于x ,y ,z 的方程组,分别用含x,y 的式子表示出z ,从而可得到x 与y 之间的数量关系.5.三角形的周长为18cm ,第一边与第二边的长度和等于第三边长度的2倍,而它们长度的差等于第三条边长的 13 ,这个三角形的各边长为( ) A. 7、5、8 B. 7、5、6 C. 7、1、9 D. 7、8、4【答案】 B【考点】三元一次方程组解法及应用【解析】【解答】解:设三角形的三边长分别是a 、b 、c 。

三元一次方程20道题带过程

三元一次方程20道题带过程

三元一次方程20道题带过程对于三元一次方程,我们常常需要通过解方程来求得未知数的值。

接下来,我将给你提供20道带有详细过程的三元一次方程题目。

1. 求解方程组:x + y + z = 10x - y + z = 4x + 2y - z = 6解:将方程求解组合消元,得:(2) + (1) -> 2x + 3y = 14(3) - (1) -> y - z = -4(2) - (3) -> 3y + 2z = 2(2) * 3 - (3) * 2 -> 13y = 34解得 y = 34/13将 y = 34/13 代入 (3) 种,得到 z = 4/13将 y、z 值代入 (1),得 x = 48/13解为:x = 48/13,y = 34/13,z = 4/132. 求解方程组:3x + y - z = 3x - 4y - z = 2解:将方程求解组合消元,得:(1) + (2) -> 5x + 2z = 10(3) + (2) -> 4x - 3y = 5(3) - (1) -> 4x - 3y = -3可以观察到 (3) - (1) 与 (3) + (2) 的结果相等,因此方程无唯一解。

3. 求解方程组:x + 2y - z = 62x - y + 2z = 83x + 4y - 3z = 2解:将方程求解组合消元,得:(2) - (1) -> 3x - 3y + 3z = 2(3) - (1) -> 2x + 2y - 2z = -4将得到的结果乘以2,得:2x + 2 = -8 + 4z由此可以得到 x = 20/11,y = -8/11,z = 8/11解为:x = 20/11,y = -8/11,z = 8/114. 求解方程组:2x + y - 3z = 2x - 3y + 2z = -1x - 3y - z = 0解:将方程求解组合消元,得:(2) + (1) -> 3x - 2y - z = 1(3) + (2) -> 2x - 6y + z = -1(3)/2 + (2) -> 3x - 3y = -2(3) + (1) -> 5x - 5y = 1将得到的结果乘以3,得:15x - 15y = 310x - 10y = -2由此可以得到 x = 1,y = 2,z = -1解为:x = 1,y = 2,z = -15. 求解方程组:x - y + z = 13x + 2y - z = 112x - 3y + 2z = 9解:将方程求解组合消元,得:(3) + (2) -> 5x - y + 3z = 203(1) + (2) -> 3x + y = 14将 (3) - 2(1),得:5x - y + 3z - 2x + 2y - 2z = 20 - 23x + y = 18可以观察到 (3) - 2(1) 与 3(1) + (2) 的结果相等,因此方程无唯一解。

三元一次方程20道题带过程

三元一次方程20道题带过程

三元一次方程20道题带过程1. 题目:三元一次方程20道题带过程题目一:求解方程组已知方程组:2x + 3y - z = 7 ①3x - 2y + z = 3 ②5x + 4y - 3z = 13 ③解:首先,我们可以使用消元法来求解这个方程组。

通过加减、乘除等运算,将其中一个未知数的系数消去,从而减少未知数的个数。

①乘以3得到:6x + 9y - 3z = 21②乘以2得到:6x - 4y + 2z = 6将上述两个新方程相减,可以消去x:(6x + 9y - 3z) - (6x - 4y + 2z) = 21 - 613y - 5z = 15 ④接下来,我们继续消去z。

将①乘以4得到:8x + 12y - 4z = 28③乘以3得到:15x + 12y - 9z = 39将上述两个新方程相减,可以消去y:(8x + 12y - 4z) - (15x + 12y - 9z) = 28 - 39-7x + 5z = -11 ⑤现在,我们得到了两个二元一次方程,④和⑤。

接下来解这两个方程。

将⑤乘以13得到:-91x + 65z = -143 ⑥将④乘以7得到:91y - 35z = 105 ⑦将⑥和⑦相加,可以消去z:(-91x + 65z) + (91y - 35z) = -143 + 105-91x + 91y = -38可得到新的方程:x - y = 38/91 ⑧最后,我们可以通过代入法求解方程组。

将⑧代入到④或⑤中,可以求出y和z的值。

然后再代入到①、②、③中,可以求出x的值,从而得到方程组的解。

题目二:求解方程组已知方程组:4x + 2y - 3z = 12 ①6x - 3y + z = 1 ②2x + 4y - z = 5 ③解:首先,我们可以使用消元法来求解这个方程组。

③乘以2得到:4x + 8y - 2z = 10①乘以3得到:12x + 6y - 9z = 36将上述两个新方程相减,可以消去x:(12x + 6y - 9z) - (4x + 8y - 2z) = 36 - 108x - 2y - 7z = 26 ④接下来,我们继续消去y。

《三元一次方程组及其解法》拔高练习

《三元一次方程组及其解法》拔高练习

三元一次方程组及其解法拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)已知实数x,y,z满足,则代数式3(x﹣z)+1的值是()A.﹣2B.﹣4C.﹣5D.﹣62.(5分)解下面的方程组时,要使解法较为简便,应()A.先消去x B.先消去y C.先消去z D.先消去常数3.(5分)三元一次方程组的解是()A.B.C.D.4.(5分)已知xyz≠0,且,则x:y:z等于()A.3:2:1B.1:2:3C.4:5:3D.3:4:5 5.(5分)三元一次方程组的解是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则=.7.(5分)若方程组的解也是方程3x+ky=10的一个解,则k=.8.(5分)已知三元一次方程组,则x+y+z=.9.(5分)方程组的解是.10.(5分)已知,则x+y+z的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)已知关于x,y的方程组和有相同解,求(﹣a)b 值.12.(10分)解三元一次方程组:13.(10分)【方法体验】已知方程组求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组则3x+y﹣z=.【探究升级】已知方程组求﹣2x+y+4z的值.小明凑出“﹣2x+y+4z=2•(x+2y+3z)+(﹣1)•(4x+3y+2z)=20﹣15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设﹣2x+y+4z=m•(x+2y+3z)+n•(4x+3y+2z),对照方程两边各项的系数可列出方程组,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a﹣b+kc=4,且a+3b+2c=﹣2,当k为时,8a+3b﹣2c为定值,此定值是.(直接写出结果)14.(10分)解方程组:15.(10分)解方程组.三元一次方程组及其解法拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)已知实数x,y,z满足,则代数式3(x﹣z)+1的值是()A.﹣2B.﹣4C.﹣5D.﹣6【分析】将方程组②﹣①得:3x﹣3z=﹣5,整理得:3(x﹣z)=﹣5,把3(x﹣z)=﹣5代入代数式3(x﹣z)+1,即可得到答案.【解答】解:方程组,②﹣①得:3x﹣3z=﹣5,整理得:3(x﹣z)=﹣5,把3(x﹣z)=﹣5代入代数式3(x﹣z)+1得:﹣5+1=﹣4,即代数式3(x﹣z)+1的值是﹣4,故选:B.【点评】本题考查解三元一次方程组,正确掌握加减消元法消去未知数是解决本题的关键.2.(5分)解下面的方程组时,要使解法较为简便,应()A.先消去x B.先消去y C.先消去z D.先消去常数【分析】根据加减消元法的方法结合方程组的特点求解可得.【解答】解:由方程组知①中没有未知数z,只需利用加减法消去②、③中的z求解较为简便,故选:C.【点评】本题主要考查解三元一次方程组,解题的关键是熟练掌握加减消元法适用的方程组.3.(5分)三元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,把③代入①得:y+z=5④,把③代入②得:4y+3z=18⑤,④×4﹣⑤得:z=2,把z=2代入④得:y=3,把y=3,z=2代入③得:x=5,则方程组的解为,故选:A.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.(5分)已知xyz≠0,且,则x:y:z等于()A.3:2:1B.1:2:3C.4:5:3D.3:4:5【分析】由,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【解答】解:∵,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选:B.【点评】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.5.(5分)三元一次方程组的解是()A.B.C.D.【分析】由①+②消去z,②×3+③消去z,组成关于x、y的二元一次方程组,进一步解二元一次方程组,求得答案即可.【解答】解:由①+②,得2x+4y=﹣2,即x+2y=﹣1 ④由②×3+③,得3x+8y=﹣8 ⑤④⑤组成二元一次方程组得解得,代入②得z=﹣2.故原方程组的解为故选:B.【点评】本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.二、填空题(本大题共5小题,共25.0分)6.(5分)已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则=1.【分析】根据已知变形后可得:a+2b=18,3b+c=18,代入可得结论.【解答】解:,②×3﹣①得:9a+27b+3c﹣2a﹣13b﹣3c=216﹣90,7a+14b=126,a+2b=18,①×3﹣②×2得:6a+39b+9c﹣6a﹣18b﹣2c=270﹣144=3b+c=18,∴.故答案为:1.【点评】本题考查了解三元方程组和求分式的值,利用了整体代入的数学思想,其技巧性较强,其中把已知等式进行适当的变形是解本题的关键.7.(5分)若方程组的解也是方程3x+ky=10的一个解,则k=﹣.【分析】由题意求得x,y的值,再代入3x+ky=10中,求得k的值.【解答】解:由题意得组,解得,代入3x+ky=10,得9﹣2k=10,解得k=﹣.故本题答案为:﹣.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.8.(5分)已知三元一次方程组,则x+y+z=11.【分析】根据题目中的方程的特点和所求的式子,将方程组中的三个方程相加,整理即可求得所求式子的值.【解答】解:,①+②+③,得2x+2y+2z=22,故答案为:11.【点评】本题考查解三元一次方程组,解答本题的关键是明确解三元一次方程组的方法,利用方程的思想解答.9.(5分)方程组的解是.【分析】①+②得出3x+y=1④,③﹣②求x,把x=1代入④求出y,把x=1,y=﹣2代入①求出z即可.【解答】解:①+②得:3x+y=1④,③﹣②得:x=1,把x=1代入④得:3+y=1,解得:y=﹣2,把x=1,y=﹣2代入①得:1﹣4+z=0,解得:z=3,所以原方程组的解为,故答案为:.【点评】本题考查了解三元一次方程组,能把三元一次方程转化成二元一次方程组或一元一次方程是解此题的关键.10.(5分)已知,则x+y+z的值为10.【分析】方程组三方程相加即可求出所求.【解答】解:,①+②+③得:2(x+y+z)=20,故答案为:10【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.三、解答题(本大题共5小题,共50.0分)11.(10分)已知关于x,y的方程组和有相同解,求(﹣a)b 值.【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b 的方程组即可得出a,b的值.【解答】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.12.(10分)解三元一次方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:①+②得:2y=﹣5﹣1,解得:y=﹣3,②+③得:2x=﹣1+15,解得:x=7,把x=7,y=﹣3代入①得:﹣3+z﹣7=﹣5,解得:z=5,方程组的解为:.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(10分)【方法体验】已知方程组求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组则3x+y﹣z=5.【探究升级】已知方程组求﹣2x+y+4z的值.小明凑出“﹣2x+y+4z=2•(x+2y+3z)+(﹣1)•(4x+3y+2z)=20﹣15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设﹣2x+y+4z=m•(x+2y+3z)+n•(4x+3y+2z),对照方程两边各项的系数可列出方程组,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(﹣)(4x+3y+2z)【巩固运用】已知2a﹣b+kc=4,且a+3b+2c=﹣2,当k为﹣2时,8a+3b﹣2c为定值,此定值是8.(直接写出结果)【分析】【方法迁移】将两个方程直接相减即可求得(3x+y﹣z)的值;【探究升级】根据提示将方程两边各项的系数列出方程组,解答即可;【巩固运用】根据提示将方程两边各项的系数列出方程组,解答即可;【解答】解:【方法迁移】将中的两个方程相减得到:﹣3x﹣y+z=﹣5,则3x+y﹣z=5.故答案是:5;【探究升级】设2x+5y+8z=m(x+2y+3z)+n(4x+3y+2z)由题意得:解得:∴2x+5y+8z=(x+2y+3z)﹣(4x+3y+2z)故答案为:,﹣【巩固运用】设8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)∴解得∴8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)=3×4+2×(﹣2)=8故答案为﹣2,8【点评】本题考查了三元一次方程组的解法,二元一次方程组的解法,阅读理解题目的意思是本题的关键.14.(10分)解方程组:【分析】根据三元一次方程组的解法即可求出答案.【解答】解:把①代入②得,y=3,将y=3代入③得,x=5将x=5,y=3代入②得,z=9∴方程组的解为【点评】本题考查方程组的解法,解题的关键是熟练运用方程组的解法,本题属于基础题型.15.(10分)解方程组.【分析】先将三元一次方程化为二元一次方程组,再化为一元一次方程即可解答本题.【解答】解:①+②,得4x+8z=12④②×2+③,得8x+9z=17⑤④×2﹣⑤,得7z=7解得,z=1,将z=1代入④,得x=1,将x=1,z=1代入①,得y=2.故原方程组的解是.【点评】本题考查解三元一次方程组,解题的关键是明确消元的数学思想,会解三元一次方程组.。

三元一次方程组解法总结与练习

三元一次方程组解法总结与练习

三元一次方程组解法总结与练习三元一次方程组一、三元一次方程组之特殊型类型一:有表达式,用代入法型. 例1:①⎧x +y +z =12⎪解方程组⎨x +2y +5z =22②⎪x =4y ③⎩分析:方程③是关于x 的表达式,因此确定“消x ”的目标。

类型二:缺某元,消某元型. 针对上例进而分析,方程组中的方程③里缺z, 因此利用①、②消z, 也能达到消元构成二元一次方程组的目的。

类型三:轮换方程组,求和作差型.分析:通过观察发现每个方程未知项的系数和相①⎧2x +y +z =15等;每一个未知数的系数之和也相等,即系数和相⎪例2:解方程组⎨x +2y +z =16②等。

具备这种特征的方程组,我们给它定义为“轮⎪x +y +2z =17③⎩换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。

⎧x +y =20, ⎪典型例题举例:解方程组⎨y +z =19,⎪x +z =21. ⎩⎧x :y :z =1:2:7⎩2x -y +3z =21①② ③分析:观察此方程组的特点是未知项间存在着比例关系,把比例式化成关系式求解类型四:遇比例式找关系式,遇比设元型. 例3:解方程组⎨①②⎧x +y +z =111①⎪典型例题举例:解方程组⎨y :x =3:2②⎪y :z =5:4③⎩二、三元一次方程组之一般型⎧3x -y +z =4, ⎪例4:解方程组⎨x +y +z =6,⎪2x +3y -z =12. ⎩①② ③分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:(一)消元的选择1. 选择同一个未知项系数相同或互为相反数的那个未知数消元;2. 选择同一个未知项系数最小公倍数最小的那个未知数消元。

(二)方程式的选择采取用不同符号标明所用方程,体现出两次消元的过程选择。

⎧3x -y +=4⎪解方程组:⎨x +y +=6⎪2x +3y -=12⎩典型例题举例①∨②∆③∨∆⎧2x +4 y +3z =9, ⎪⎪解方程组⎨3x -2 y +5z =11,⎪y ⎪ +7z =13. ⎩5x -6①∨②∨③∆∆分析:通过比较发现未知项y 的系数的最小公倍数最小,因此确定消y 。

人教版七年级数学下册 8-4 三元一次方程组的解法(同步练习)

人教版七年级数学下册 8-4 三元一次方程组的解法(同步练习)

第8章二元一次方程组*8.4三元一次方程组的解法班级:姓名:知识点1三元一次方程组的概念及解1.写一个三元一次方程组,使它的解为x=1,y=1,z=1,这个三元一次方程组为.2.以下方程中,属于三元一次方程组的是()A.ìíîïï2x +3y =4,2y +z =5,x 2+y =1 B.ìíîïïïï1x +1y +1z =16,3x -4y =3,x +z =2C.ìíîïïx +y +z =2,x -2y =3,y -6z =9D.ìíîïïx -y =2,2x -3y =4,2x -2y =43.三元一次方程组{x +y =1,y +z =5,z +x =6的解是()A.{x =1,y =0,z =5 B.{x =1,y =2,z =4C.{x =1,y =0,z =4D.{x =4,y =1,z =0知识点2解三元一次方程组4.解方程组ìíîïïïïx +y -z =11,①y +z -x =5,②z +x -y =1,③若要使运算简便,消元的方法应选()A.先消去xB.先消去yC.先消去zD.以上说法都不对5.解下列三元一次方程组:(1)ìíîïïy =2x -7,5x +3y +2z =2,3x -4z =4;(2)ìíîïïx +y +z =12,x +2y +5z =22,x =4y .6.解下列三元一次方程组:(1)ìíîïï3x -y +z =4,2x +3y -z =12,x +y +z =6;(2)ìíîïï2x +4y +3z =9,3x -2y +5z =11,5x -6y +7z =13;(3)ìíîïïïï4x +9y =12,3y -2z =1,7x +5z =434;(4)ìíîïï3x -y +2z =3,2x +y -3z =11,x +y +z =12.7.解方程组ìíîïï2x +3y +z =6,x -y +2z =-1,x +2y -z =5.8.解方程组ìíîïï3x +y -4z =13,5x -y +3z =5,x +y -z =3.9.解方程组:(1)ìíîïïïï2x +6y +3z =6,①3x +15y +7z =6,②4x -9y +4z =9;③(2)ìíîïïïïx +2y +3z =4,①3x +y +2z =5,②2x +3y +z =6.③知识点3解三元一次方程组的应用10.方程组{3x +5y =6,6x +15y =16的解也是方程3x+ky=10的解,则()A.k=6B.k=10C.k=9D.k=11011.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的值为()A.3B.-3C.-4D.412.李红在做这样一个题目:在等式y=ax 2+bx+c 中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y 等于多少?她想,在求y 值之前应先求a,b,c 的值,你认为她的想法对吗?你能帮她求出a,b,c 的值吗?知识点4列三元一次方程组解应用题13.有铅笔、练习本、圆珠笔三种学习用品,若购买铅笔3支、练习本7本、圆珠笔1支共需3.15元;若购买铅笔4支、练习本8本、圆珠笔2支共需4.2元,那么,购买铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元14.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花、12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花、3750朵紫花,则黄花一共用了朵.15.一个三位数,个位与百位上的数的和等于十位上的数,百位上的数的7倍比个位与十位上的数的和大2,个位、十位、百位上的数的和是14,求这个三位数.综合点1根据方程组的特点,灵活选用解法16.解方程组:{x +y =9,y +z =11,x +z =10.17.解方程组:ìíîïïx ∶y =3∶2,y ∶z =5∶4,x +y +z =66.综合点2方程组与其他知识结合18.已知|x-8y|+2(4y-1)2+3|8z-3x|=0,求x+y+z的值.19.已知单项式-ab 11c y+z-x 与12a x+z-yb x+y-zc 5是同类项,求x,y,z 的值.拓展点1利用整体的思想解题20.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元.拓展点2不定方程的整数解21.用100元买15张邮票,其中有4元、8元、10元三种面值,问可以怎么买?(列出三元一次方程组)第8章二元一次方程组*8.4三元一次方程组的解法答案与点拨1.不唯一,如:{x +y +z =3,2x -y =1,3y -z =2.(点拨:根据题意任意写出一个三元一次方程组,满足x=1,y=1,z=1就行,答案不唯一.)2.C3.A(点拨:可利用三元一次方程组解的定义逐个验证.)4.D(点拨:原方程组中,①+②可消去x,z,求出y;①+③可消去y,z,求出x;②+③可消去x,y,求出z;故选D.)5.(1)ìíîïïïïx =2,y =-3,z =12.(2){x =8,y =2,z =2.6.(1){x =2,y =3,z =1.(2)ìíîïïïïx =-1,y =12,z =3.(3)ìíîïïïïïïïïx =-34,y =53,z =2.(4){x =3,y =8,z =1.7.ìíîïï2x +3y +z =6,①x -y +2z =-1,②x +2y -z =5.③③+①得,3x+5y=11.④③×2+②得,3x+3y=9.⑤④-⑤得2y=2,y=1.将y=1代入⑤得,3x=6,x=2.将x=2,y=1代入①得,z=6-2×2-3×1=-1,∴原方程组的解为{x =2,y =1,z =-1.8.ìíîïï3x +y -4z =13,①5x -y +3z =5,②x +y -z =3.③①+②得z=8x-18,②+③×3得y=7-4x.把z=8x-18,y=7-4x,代入③得x=2,则z=-2,y=-1.所以原方程组的解是:{x =2,y =-1,z =-2.9.(1)ìíîïïïïx =5,y =13,z =-2.(2)ìíîïïïïïïïïx =76,y =76,z =16.10.B11.D(点拨:解{3x -y =7,2x +3y =1得:{x =2,y =-1,代入y=kx-9得:-1=2k-9,解得k=4.故选D.)12.她的想法正确.根据题意,得{a +b +c =6,4a +2b +c =21,a -b +c =0,解得{a =4,b =3,c =-1.∴该等式为y=4x 2+3x-1.∴当x=-2时,y=4×4-3×2-1=9,即y=9.13.B14.438015.设此数个位上数字为x,十位为y,百位为z,得{x +z =y,7z -(x +y )=2,x +y +z =14,解得{x =5,y =7,z =2,答:此三位数为275.16.{x =4,y =5,z =6.(点拨:三个方程相加得2x+2y+2z=9+10+11.)17.{x =30,y =20,z =16.18.由已知得{x -8y =0,4y -1=0,8z -3x =0,解之得ìíîïïïïïïïïx =2,y =14,z =34.∴x+y+z=2+14+34=3.19.由已知可得{x +z -y =1,x +y -z =11,y +z -x =5,解之得{x =6,y =8,z =3.20.15021.设4元、8元、10元三种面值邮票的张数分别为x,y,z 张,由题意得{x +y +z =15,4x +8y +10z =100,整理得4y+6z=40,则2y+3z=20,z=20-2y3,所以y=1,4,7,10,对应z=6,4,2,0.代入①求得x=8,7,6,5.所以方程组的解为{x =8,y =1,z =6;{x =7,y =4,z =4;{x =6,y =7,z =2;{x =5,y =10,z =0.也就是买8张4元,1张8元,6张10元或买7张4元,4张8元,4张10元或买6张4元,7张8元,2张10元或买5张4元,10张8元.。

8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)

8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)

第八章 二元一次方程组*8.4 三元一次方程组的解法基础过关全练知识点1 三元一次方程(组)1.(2023河北唐山遵化期中)下列是三元一次方程组的是( )A.2x=5x2+y=7x+y+z=6-y+z=-22y+z=9=-3C.x+y-z=7xyz=1x-3y=4 D.x+y=2y+z=1x+z=9知识点2 三元一次方程组的解法2.(2021四川遂宁安居期中)解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,以下解法不正确的是( )A.由①②消去z,再由①③消去zB.由①③消去z,再由②③消去zC.由①③消去y,再由①②消去yD.由①②消去z,再由①③消去y3.(2023云南昆明十中期中)解方程组2x-y+3z=1,3x+y-7z=2,5x-y+3z=3,若要使运算简便,则消元时最好( )A.先消去xB.先消去yC.先消去zD.先消常数项4.(2023天津南开期末)已知2x+3y=z,3x+4y=2z+6中的x,y满足x+y=3,则z 的值为( )A.9B.-3C.12D.不确定5.【新考法】请认真观察,动脑筋想一想,图中“?”表示的数是( )A.420B.240C.160D.706.在等式y=ax2+bx+c中,当x=0时,y=-5;当x=2时,y=3;当x=-2时,y=11,则a= ,b= ,c= .7.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,则这个三位数是 .8.解方程组:(1)2x-3y+4z=12, x-y+3z=4,4x+y-3z=-2.(2)【一题多解】x+y=27,①y+z=33,②z+x=30.③9.【新独家原创】一只蜘蛛有8条腿,一只蜻蜓有6条腿和2对翅膀,一只小鸟有2条腿和1对翅膀.现在这三种动物共有14只,共有70条腿和17对翅膀,则每种动物各有几只?10.小明从家到学校的路程为3.3千米,且从家到学校分别为一段上坡路,一段平路和一段下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校要用一个小时,从学校到家要用44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米.能力提升全练11.(2023浙江杭州拱墅期中,15,★★☆)若关于x,y的方程组3x+5y=m+2,2x+3y=m满足x、y的和等于3,则m= .12.(2022湖北武汉汉阳期末,14,★★☆)某联赛中A,B,C,D,E五支球队的积分和胜负情况如下表:队名比赛场次胜场平场负场积分A1684428B16016016C16012412D16286aE16b82c从中可知a= ,b= ,c= .13.(2023四川资阳安岳期中,13,★★☆)有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件共需63元;购买甲4件、乙10件、丙1件共需84元,则购买甲、乙、丙各一件共需 元.14.(2022广东深圳龙岗月考,27,★★☆)A、B、C三个阀门,同时开放,1小时可注满水池.只开放A、C两个阀门,1.5小时可注满水池.只开放B、C两个阀门,2小时可注满水池.问:只开放A、B两个阀门,需多少时间才能注满水池?素养探究全练15.【运算能力】阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:x=1,y=8是方程3x+y=11的一组“好解”;x=1, y=2, z=3是方程组3x+2y+z=10,x+y+z=6的一组“好解”.(1)求方程x+2y=5的所有“好解”.(2)关于x,y,k的方程组x+y+k=15,x+5y+3k=27有“好解”吗?若有,请求出对应的所有“好解”;若没有,请说明理由.答案全解全析基础过关全练1.DA选项,第二个方程中x2的次数是2;B选项,第一个方程中分母含有未知数;C选项,第二个方程中xyz的次数是3;D选项,方程组中含有三个未知数,且含未知数的项的次数都是1,故D选项中的方程组是三元一次方程组.故选D.2.D解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,利用加减法消去同一个未知数,组成二元一次方程组,故解法不正确的是由①②消去z,再由①③消去y.故选D.3.B观察各方程未知数x,y,z的系数发现:未知数y的系数要么相等,要么互为相反数,所以要使运算简便,那么消元时最好先消去y,故选B.4.B由题意,得2x+3y=z①,3x+4y=2z+6②, x+y=3③,①×2-②,得x+2y=-6④,④-③,得y=-9.把y=-9代入③,得x-9=3,解得x=12.把x=12,y=-9代入①,得z=2×12+3×(-9)=-3.5.B设题图中一个篮球表示的数是x,一顶帽子表示的数是y,一双鞋表示的数是z,依题意得x-3y+z=30②,2x-3z=20③,①+②,得2x+3z=140④,③+④,得4x=160,解得x=40,把x=40代入③得2×40-3z=20,解得z=20,把x=40,z=20代入①得40+3y+2×20=110,解得y=10,则方程组的解为x=40, y=10, z=20.故x+yz=40+10×20=240.故选B.6.3;-2;-5解析 根据题意,得c=-5,①4a+2b+c=3,②4a-2b+c=11,③②-③,得4b=-8,解得b=-2,把b=-2,c=-5代入②得4a-4-5=3,解得a=3,∴a=3,b=-2,c=-5.7.275解析 设这个三位数个位上的数字为x,十位上的数字为y,百位上的数字为z.根据题意得x+z=y①,7z=x+y+2②,x+y+z=14③,把①代入③得2y=14,解得y=7,把y=7代入①得x+z=7④,把y=7代入②得7z=x+9⑤,④+⑤得8z=16,解得z=2,把z=2代入④得x+2=7,解得x=5,∴这个三位数为2×100+7×10+5=275.8.解析 (1)x -y +3z =4②,4x +y -3z =-2③,②+③,得5x=2,解得x=25,①+③×3,得14x-5z=6④,把x=25代入④得285-5z=6,解得z=-225.把x=25,z =―225代入②得25―y ―625=4,解得y=-9625.所以原方程组的解为x =25,y =-9625,z =-225.(2)解法一:由①+②+③得2x+2y+2z=90,即x+y+z=45,④④-①,得z=18,④-②,得x=12,④-③,得y=15,所以原方程组的解为x =12,y =15,z =18.解法二:由①+②-③得2y=30,解得y=15,由①+③-②得2x=24,解得x=12,由②+③-①得2z=36,解得z=18,所以原方程组的解为x =12,y =15,z =18.解法三:由①得x=27-y,④把④代入③,得z+27-y=30,即z-y=3,⑤由②与⑤组成方程组,得y +z =33,z -y =3,解得y =15,z =18,把y=15代入④,得x=12,所以原方程组的解为x =12,y =15,z =18.9.解析 设蜘蛛有x 只,蜻蜓有y 只,小鸟有z 只,由题意得x +y +z =14,8x +6y +2z =70,2y +z =17,解得x =3,y =6,z =5.答:蜘蛛3只,蜻蜓6只,小鸟5只.10.解析 设小明家到学校上坡路是x 千米,平路是y 千米,下坡路是z 千米.+y +z =3.3,+y 4+z 5=1,+y 4+x5=4460,解得x =2.25,y =0.8,z =0.25.答:上坡路是2.25千米,平路是0.8千米,下坡路是0.25千米.能力提升全练11.5解析 由题意,得3x +5y =m +2①,2x +3y =m ②,x +y =3③,由①-②得x+2y=2④,联立③④得方程组x +y =3③,x +2y =2④,解得x =4,y =-1,把x =4,y =-1代入②得m=2×4+3×(-1)=5.12.14;6;26解析 设胜一场得x 分,平一场得y 分,负一场得z 分,∴8x+4y+4z=28,16y=16,12y+4z=12,∴x=3,y=1,z=0.a=2x+8y+6z=14,b=16-8-2=6,c=6x+8y+2z=26.故答案为14;6;26.13.21解析 设甲的单价为x元,乙的单价为y元,丙的单价为z元,根据题意,得3x+7y+z=63①, 4x+10y+z=84②,②-①得x+3y=21,∴3x+9y=63,由②得x+(3x+9y)+y+z=84,∴x+63+y+z=84,∴x+y+z=21.14.解析 设单独开放A、B、C三个阀门,分别需要x、y、z小时才能注满水池,易知x,y,z都不为0,+1+×1=1, +×1.5=1, +×2=1,∴1x =12,1y=13,1z=16,∴1x+1y=56,∴开放A、B两个阀门需要的时间为+=1÷56=65(小时),∴开放A、B两个阀门,需65小时才能注满水池.素养探究全练15.解析 (1)当y=0时,x=5;当y=1时,x=3;当y=2时,x=1,所以方程x+2y=5的所有“好解”为x =5,y =0,x =3,y =1,x =1,y =2.(2)有.x +y +k =15,①x +5y +3k =27.②②-①,得4y+2k=12,则k=6-2y.①×3-②,得2x-2y=18,则x=9+y.∵x,y,k 为非负整数,∴当y=0时,x=9,k=6;当y=1时,x=10,k=4;当y=2时,x=11,k=2;当y=3时,x=12,k=0,∴关于x,y,k 的方程组x +y +k =15,x +5y +3k =27的“好解”为x =9,y =0,k =6,x =10,y =1,k =4,x =11,y =2,k =2,x =12,y =3,k =0.。

三元一次方程组的解法基础练习

三元一次方程组的解法基础练习

三元一次方程组1 .在方程5x—2y + z = 3 中,若x =一1, y =一2,贝U z = ______________ ,2 •已知单项式—8产+y一一 b12 c x+y+z与2a4b2x_y + 3z c6,则x 二—, z_ x+ y— z= 113 •解方程组J y + z —x= 5 贝U x = ______ ,y = __________ ,z = ___________ .z+ x — y= 14.已知代数式ax2+ bx+ c,当x二一1时,其值为4;当x = 1时,其值为8;当x = 2时,其值为25;则当x = 3时,其值为 ____________ .5.已知「x—3y+ 2z= 0 _________ ,则x : y : z = .一3x—3y —4z= 0x+ y — z= 11fy+ z — x= 5j z+ x — y=15x -3y 4z = 136•把三元一次方程组2x・7y-3z=19,消去未知数乙得到二元一次方程组—。

解得原方程组的解为___________________________ 。

3x 2y _z =182x y =107.三元一次方程组x-v,z-4的解是o3x -y -z = 08.卜列方程中,三兀一次方程共有)x y z , 3 ,(1)x+y+z=3 ; (2) x • y • z=3;(3) 1 ; (4) 13 x y z(A)1 个;(B)2 个;(C)3 个;(D)4 个。

x y _z =89.方程组y • z =1 的解是()x -z = -2x = 7x =5 x =2 X - -11(A) y - -8; (B) y =1 ; (C) y -3; (D) y = 10 oz =9 z = 2 z -3 z = -9x =110. y=0是下面哪一个方程组的解()s - -2 (…一810 v =8 s工3(B) t 二-210v =310s =3(C) t 一83(D)103x =11 x =11 (A) y =11 ; (B) y - -11 ;z - -11 z =11 13•解下列方程组:x y = 3(1) y z =4z x = 5x 一11(C) y = 11 ; (D)以上都不对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选学2.5 三元一次方程组及其解法
A 组
1.运用加减法解方程⎩⎪⎨⎪⎧11x +3z =9,3x +2y +z =8,2x -6y +4z =5,
较简单的方法是(C )
A. 先消去x ,再解⎩
⎪⎨⎪⎧22y +2z =61,66y -38z =-37 B. 先消去z ,再解⎩
⎪⎨⎪⎧2x -6y =-15,38x +18y =21 C. 先消去y ,再解⎩
⎪⎨⎪⎧11x +7z =29,11x +3z =9 D. 三个方程相加再除以2,得8x -2y +4z =11再解
2.已知a +b =16,b +c =12,c +a =10,则a +b +c 的值为(A )
A. 19
B. 38
C. 14
D. 22
3.有甲、乙、丙三种商品,如果购买3件甲商品,2件乙商品,1件丙商品共需315元;购买1件甲商品,2件乙商品,3件丙商品共需285元,那么购买甲、乙、丙三种商品各一件共需(C )
A. 50元
B. 100元
C. 150元
D. 200元
4.三元一次方程组⎩⎪⎨⎪⎧a +b +c =12,2a +b -c =3,a -b +c =2的解为⎩⎪⎨⎪⎧a =53,b =5,c =163
.
5.已知a ,b ,c 是有理数,观察表中的运算,在空格内填上相应的数.
6.解下列方程组:
(1)⎩⎪⎨⎪⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③
【解】 ②-③,得x +3z =5.④
④-①,得2z =2, ∴z =1. 把z =1代入①,得x +1-3=0,
∴x =2.
把⎩
⎪⎨⎪⎧x =2,z =1代入③,得y =4. ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =4,z =1.
(2)⎩⎪⎨⎪⎧x 2=y 3=z 5,①x -2y +3z =33.②
【解】 设x 2=y 3=z 5
=k , 则x =2k ,y =3k ,z =5k .③
把③代入②,得2k -6k +15k =33,解得k =3.
把k =3代入③,得到原方程组的解为⎩⎪⎨⎪⎧x =6,y =9,z =15.
7.已知|x -z +4|+|z -2y +1|+|x +y -z +1|=0,求x +y +z 的值.
【解】 由题意,得⎩⎪⎨⎪⎧x -z +4=0,①z -2y +1=0,②x +y -z +1=0,③
③-①,得y =3.
把y =3代入②,得z =5.
把z =5代入①,得x =1.
∴x +y +z =1+3+5=9.
B 组
(第8题)
8.如图,在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数之和都相等,则x ,y 的值分别是(B )
A. x =1,y =-1
B. x =-1,y =1
C. x =2,y =-1
D. x =-2,y =1
【解】 设每行每列及对角线上三个方格中的数之和为m ,由题意,得
⎩⎪⎨⎪⎧2x +3+2=m ,2+(-3)+4y =m ,2x +y +4y =m , 解得⎩⎪⎨⎪⎧x =-1,y =1,m =3.
9.已知x +2y -3z =0,2x +3y +5z =0,则
x +y +z x -y +z 的值为__729__. 【解】 联立⎩⎪⎨⎪⎧x +2y -3z =0,2x +3y +5z =0,得⎩
⎪⎨⎪⎧x =-19z ,y =11z . ∴x +y +z x -y +z =-7z -29z =729
. 10.为确保信息安全,在传输时往往需要加密,发送方发出一组密码a ,b ,c 后,接收方对应收到的密码为A ,B ,C .双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.
(1)当发送方发出一组密码为2,3,5时,接收方收到的密码是多少?
(2)当接收方收到一组密码为2,8,11时,发送方发出的密码是多少?
【解】 (1)当a =2,b =3,c =5时,
A =2a -b =2×2-3=1,
B =2b =2×3=6,
C =b +c =3+5=8.
答:接收方收到的密码是1,6,8.
(2)由题意,得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11,
解得⎩⎪⎨⎪⎧a =3,b =4,c =7.
答:发送方发出的密码是3,4,7.
数学乐园
11.要把一个棱长为6的正方体分割成49个边长为整数的小正方体(小正方体大小可以不等),应如何分割?并画图示意.
【解】 ①设切出棱长为5的正方体1个,棱长为1的正方体48个.
∵48+53≠63,∴不能分割出棱长为5的正方体.
②设分割出棱长为4的正方体1个,棱长为2的正方体b 个,棱长为1的正方体a 个,则

⎪⎨⎪⎧a +23b +43=63,a +b =48. 解得b =1467
,不合题意,舍去. 即不能分割出棱长为4的正方体.
③设分割出棱长为3的正方体c 个,棱长为2的正方体b 个,棱长为1的正方体a 个,则

⎪⎨⎪⎧a +23b +33c =63,a +b +c =49. 消去a ,得7b +26c =167.
(第11题解)
∵a ,b ,c 均为正整数,
∴c =4,b =9,a =36.
∴可分割成棱长分别为1,2和3的正方体各36个,9个和4个,共计49个.分割法如解图所示.。

相关文档
最新文档