_学年高中数学阶段质量评估3北师大版选修2_2
最新北师大版高中数学高中数学选修2-2第四章《定积分》检测题(包含答案解析)

一、选择题1.如图所示的阴影部分是由x 轴,直线1x =及曲线1x y e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在阴影部分的概率是( )A .1eB .11e - C .11e-D .21e e -- 2.定积分= A .B .C .D .3.已知1a xdx =⎰, 12b x dx =⎰, 1c xdx =⎰,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<4.若正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心)的侧棱长为3,侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .223D .4235.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 6.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .2 7.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .508.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .239.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-10.已知125113,log ,log 3,a a x dx m a n p a-====⎰,则 ( ) A .m n p << B .m p n <<C .p m n <<D .p n m <<11.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2312.已知t >0,若(2x ﹣2)dx=8,则t=( ) A .1B .﹣2C .﹣2或4D .4二、填空题13.02114edx x dx x-+-=⎰⎰______________.14.质点运动的速度()2183/v t t m s =-,则质点由开始运动到停止运动所走过的路程是______. 15.(222sin 4x x dx --=⎰______.16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________.17.若二项式2651()5x x +的展开式中的常数项为m ,则21(2)d mx x x -=⎰_________.18.()12111x dx ---=⎰__________.19.定积分()12xx e dx +=⎰__________.20.曲线与直线所围成的封闭图形的面积为____________.三、解答题21.函数()ln ,kf x x k R x=+∈.若曲线()y f x =在点()(),e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数).22.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.23.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-. ①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 24.如图:已知2y ax bx =+通过点(1,2),与22y x x =-+有一个交点横坐标为1x ,且0,1a a <≠-.(1)求2y ax bx =+与22y x x =-+所围的面积S 与a 的函数关系; (2)当,a b 为何值时,S 取得最小值.25.已知函数()xae f x x x=+.(1)若函数()f x 的图象在(1,(1))f 处的切线经过点(0,1)-,求a 的值;(2)是否存在负整数a ,使函数()f x 的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由;(3)设0a >,求证:函数()f x 既有极大值,又有极小值 26.已知21()3sin cos cos 2f x x x x =-+ . (Ⅰ)写出()f x 的最小正周期T ; (Ⅱ)求由555()(0),0(0),(10),666y f x x y x x y πππ=≤≤=≤≤=-≤≤ 以及10(0)2x y =-≤≤ 围成的平面图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由几何概型可知,所求概率为.考点:几何概型、定积分.2.B解析:B【解析】 由题意得,故选B.3.C解析:C【解析】因为1113212312000000111122,,|223333a xdx x b x dx x c xdx x =========⎰⎰,所以b ac <<,故选C.解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离22d a =,由勾股定理可得22221()()(3)22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .5.A解析:A 【解析】试题分析:'0x x y e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程6.C解析:C 【解析】 由函数的图像可知,需满足或,所以点的运动轨迹与两坐标轴围成的图形是边长为2的正方形,其面积为4.7.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.解析:B 【解析】试题分析:由题意得,因为幂函数a y x =图像过点(2,4)P ,所以42α=,解得2α=,所以幂函数2yx ,则阴影部分的面积为22320018|33S x dx x ===⎰,故选B.考点:幂函数的解析式;定积分的应用.9.B解析:B 【详解】因为233003|,mm t dt t m ==⎰所以()3121lnx x f x x m x >⎧=⎨+≤⎩,,, ()ln 1f e e ==,()()()31210f f e f m ∴==+=,解得2m =. 故选:B.10.B解析:B 【解析】1235211132,log 2,log 3,12a x dx x m n p -===∴===-⎰5211log 2log ,log 31,22m n p ====m p n ∴<<故选B11.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.12.D解析:D 【解析】∵(x 2﹣2x )′=2x ﹣2,∴若2(22)(2)tt x dx x x -=-⎰=t 2﹣2t=8,又t >0,解得t=4.选D.二、填空题13.【分析】根据以及定积分的几何意义可得答案【详解】因为表示的是圆在x 轴及其上方的面积所以所以=故答案为:【点睛】本题考查了定积分的计算考查了定积分的几何意义属于基础题 解析:21π+【分析】根据1(ln )x x'=以及定积分的几何意义可得答案. 【详解】11edx x⎰=ln 1e x ln ln1101e =-=-=,因为224x dx --⎰表示的是圆224x y +=在x 轴及其上方的面积,所以224x dx --⎰21222ππ=⨯⨯=,所以11edx x ⎰224x dx -+-⎰=12π+. 故答案为:21π+.【点睛】本题考查了定积分的计算,考查了定积分的几何意义,属于基础题.14.108m 【分析】令速度为0求出t 的值0和6求出速度函数在上的定积分即可【详解】由得或当时质点运动的路程为故答案为:108m 【点睛】本题主要考查了定积分定积分在物理中的应用属于中档题解析:108m. 【分析】令速度为0求出t 的值 0和6,求出速度函数在[0,6]上的定积分即可. 【详解】由21830t t -=,得0t =或6t =, 当[0,6]t ∈时,质点运动的路程为()()662233201839696108S t t dt tt=-=-=-+⨯=⎰,故答案为:108m 【点睛】本题主要考查了定积分,定积分在物理中的应用,属于中档题.15.【分析】根据定积分的四则运算和几何意义求定积分【详解】因为故答案为2π【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分属于基础题 解析:2π【分析】根据定积分的四则运算和几何意义求定积分. 【详解】因为(222222sin sin 022x dx xdx ππ---+=+=+=⎰⎰⎰故答案为2π. 【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分,属于基础题.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.【解析】解答:由Tr+1=⋅⋅()r=令12−3r=0得r=4∴m=()2⋅=3则==(x3−x2)=(×33−32)−(−1)=故答案为: 解析:23【解析】 解答:由T r +1=6rC⋅62x 5r-⎛⎫⎪ ⎪⎝⎭⋅(1x)r =6123r 65x 5rrC --⎛⎫ ⎪ ⎪⎝⎭.令12−3r =0,得r =4. ∴m =(5)2⋅46C =3. 则()212d mxx x -⎰=()3212d x x x -⎰=(13x 3−x 2)31 =(13×33−32)−(1 3−1)=23.故答案为:23. 18.【解析】由定积分的几何意义由微积分基本定理:有定积分的运算法则可得: 解析:22π-【解析】由定积分的几何意义,211122ππ-=⨯⨯=,由微积分基本定理:11111|2dx x --==⎰,有定积分的运算法则可得:)11122dx π-=-⎰.19.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.20.【解析】【分析】确定被积函数与被积区间利用用定积分表示面积即可求得结论【详解】曲线y=sinx 与直线x=0x=π4y=0所围成的封闭图形的面积为0π4sinxdx=-cosx|0π4=1-22故答案 解析:【解析】 【分析】确定被积函数与被积区间,利用用定积分表示面积,即可求得结论. 【详解】 曲线与直线所围成的封闭图形的面积为,故答案为.【点睛】本题主要考查利用定积分求面积,意在考查对基础知识掌握的熟练程度,属于基础题.三、解答题21. 故()f x 的单调递减区间为()0,e ,极小值为2. 【解析】试题分析:(1)由切线与20x -=垂直,可知切的斜率为0,对()f x 求导,()0f e '=,代入可求得k 。
高中数学北师大版选修2-3阶段质量检测(三) 统计案例 Word版含解析

阶段质量检测(三)统计案例[考试时间:分钟试卷总分:分]第Ⅰ卷(选择题)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).(全国新课标)在一组样本数据(,),(,),…,(,)(≥,,,…,不全相等)的散点图中,若所有样本点(,)(=,…,)都在直线=+上,则这组样本数据的样本相关系数为( ).-...已知与之间的一组数据:则与的线性回归方程=+必过点( ).() .().() .().下列现象的相关程度最高的是( ).某商店的职工人数与商品销售额之间的相关系数为.流通费用率与商业利润之间的相关系数为-.商品销售额与商业利润之间的相关系数为.商品销售额与流通费用率之间的相关系数为-.已知某车间加工零件的个数与所花费时间()之间的线性回归方程为=+,则加工个零件大约需要( ).....设两个变量和之间具有线性相关关系,它们的相关系数是,关于的回归直线的斜率是,纵轴上的截距是,那么必有( ).与的符号相同.与的符号相同.与的符号相反.与的符号相反.以下关于线性回归的判断,正确的个数是( )①若散点图中的所有点都在一条直线附近,则这条直线的方程为回归方程②散点图中的绝大多数点都线性相关,个别特殊点不影响线性回归,如图中的,,点③已知线性回归方程为=-+,则=时,的估计值为④线性回归方程的意义是它反映了样本整体的变化趋势.....某考察团对全国大城市的职工人均工资水平(千元)与居民人均消费水平(千元)进行统计调查,与具有相关关系,回归方程为=+.若某城市居民人均消费水平为千元,估计该城市人均消费额占人均工资收入的百分比为( ).....两个相关变量满足如下关系:则两变量的回归方程为( ).=+.=-.=+.=+.若线性回归方程中的回归系数=时,则相关系数为( ).=.=-.=.无法确定.某工厂为预测某种产品的回收率,需要研究它和原料有效成分含量之间的相关关系,现取了组观察值.计算知=,=,=,=,则对的线性回归方程是( ).=+.=-+.=+.=-答题栏第Ⅱ卷(非选择题)二、填空题(本大题共小题,每小题分,共分,请把正确的答案填在题中的横线上).为了判断高中三年级学生选修文科是否与性别有关,现随机抽取名学生,得到如下×列联表:。
北师大版高中数学选修2-3阶段质量评估1.docx

高中数学学习材料唐玲出品第一章一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法()A.13种B.16种C.24种D.48种解析:应用分类加法计数原理,不同走法共有8+3+2=13种.答案: A2.某单位有15名员工,其中男性10人,女性5人,现需要从中选出6名员工组成考察团外出参观学习,如果按性别同比例选取,则此考察团的组成方法种数是() A.C310B.C410C25C.C515D.A410A25解析:由题意知,要从男性10人中选取4人,女性5人中选取2人,故有C410C25种组团方法.答案: B3.组合数方程5C5n+C4n=C3n的解是()A.6 B.5C.5或1 D.以上都不对解析:代入法,经验证选B.答案: B4.6个人排队,其中甲、乙、丙3人两两不相邻的排法有()A.30种B.144种C.5种D.4种解析:分两步完成:第一步,其余3人排列有A33种排法;第二步,从4个可插空档中任选3个给甲、乙、丙3人站有A34种插法.由分步乘法计数原理可知,一共有A33A34=144种.答案: B5.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有() A.60个B.48个C.36个D.24个解析:个位上数字只能从2与4中任选一个,有2种选法,万位上的数字有3种选法,其余位上的数字有6种选法,∴共计2×3×6=36(个).答案: C6.从6个人中选出4人参加数、理、化、英语比赛,每人只能参加其中一项,其中甲、乙两人都不参加英语比赛,则不同的参赛方案的种数共有()A.96 B.180C.240 D.288解析:方法一:分三种情况:①甲,乙都不参加比赛有A44种;②甲、乙只有一人参加比赛有C12·C13·A34种;③甲、乙两人都参加比赛有A23·A24种.故共有A44+C12·C13·A34+A23·A24=240(种).方法二:若不考虑限制条件,从6人中选出4个参加四项比赛,共有A46种参赛方案,而其中甲参加了英语比赛的方案有A35种,乙参加了英语比赛的方案也有A35种.故甲、乙两人都不参加英语比赛的方案种数是A46-2A35=360-120=240(种).答案: C7.在(x2-13x)n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是()A.-7 B.7C.-28 D.28解析:只有第5项的二项式系数最大,则展开式共9项,即n=8,T r+1=C r8(x2)8-r(-13x)r=C r8(-1)r·(12)8-r·x8-43r,当r=6时为常数项,T7=7.答案: B8.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有() A.30种B.36种C.42种D.48种解析:依题意,就乙是否值14日分类:第一类,乙值14日,则满足题意的方法共有C14·C24=24种(注:C14表示从除甲、乙外的4人中任选一人参与14日的值班的方法数;C24表示从余下的4人中任选两人参与15日的值班的方法数);第二类,乙不值14日,则满足题意的方法共有C24·C13=18种(注:C24表示从除甲、乙外的4人中任选两人参与14日的值班的方法数;C13表示从余下的3人中任选一人与乙共同参与15日的值班的方法数).因此,满足题意的方法共有24+18=42种.答案: C9.(4x-2-x)6(x∈R)展开式中的常数项是()A.-20 B.-15C.15 D.20解析:设第r+1项为常数项,C r622x(6-r)(-2-x)r=(-1)r·C r6212x-2rx-rx,∴12x-3rx=0,∴r=4.∴常数项为(-1)4C46=15.答案: C10.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的子集共有()A.10个B.16个C.20个D.32个解析:和为11的数对有(1,10)、(2,9)、(3,8)、(4,7)、(5,6),要使任何两个数的和不等于11,只需从5个数对中分别任取一个数.∴满足条件的子集有C12·C12·C12·C12·C12=32个.答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.从5名运动员中任选4名排在编号为1,2,3,4的四条跑道上(每条跑道只排一名),其中某甲不能排在第1,2跑道上,那么不同的排法一共有____________种.解析:由题意优先考虑甲,分为二类,第一类为甲参加,有C34·C12A33=48种;第二类,甲不参加,有C44A44=24种.故有48+24=72种.答案:7212.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内.每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有____________种.(以数字作答)解析: 从10个球中任取3个,有C 310种方法.取出的3个球与其所在盒子的标号不一致的方法有2种.∴共有2C 310=240种方法.答案: 24013.(3x -123x)10的展开式中的有理项有____________项.解析: T r +1=C r 10·(3x )10-r·(-123x )r =(-12)r ·C r 10·x 10-r 3·x -r 3=(-12)r ·C r 10·x 10-2r 3. ∴当r =2,5,8,共3项. 答案: 314.若(2x -3)6=a 0+a 1(x -1)+a 2(x -1)2+…+a 6(x -1)6,则a 1+a 3+a 5=____________. 解析: 令x =2得16=a 0+a 1+a 2+a 3+a 4+a 5+a 6① 令x =0得(-3)6=a 0-a 1+a 2-a 3+a 4-a 5+a 6② ①-②得1-36=2(a 1+a 3+a 5), ∴a 1+a 3+a 5=1-362=-364.答案: -364三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)某单位职工义务献血,在体检合格的人中,O 型血的共有28人,A 型血的共有7人,B 型血的共有9人,AB 型血的有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解析: 从O 型血的人中选1人有28种不同的选法,从A 型血的人中选1人有7种不同的选法,从B 型血的人中选1人有9种不同的选法,从AB 型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这种“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28×7×9×3=5 292种不同的选法.16.(本小题满分12分)把4个男学生和4个女学生平均分成4组,到4辆公共汽车里参加售票体验活动,且把同样两人在不同汽车上服务算作不同情况.(1)有几种不同的分配方法?(2)男学生与女学生分别分组,有几种不同的分配方法?(3)每个小组必须是一个男学生和一个女学生,有几种不同的分配方法?解析: (1)男女合一起共8人,每车2人,可分四步完成,第一辆车有C 28种,第二辆车有C 26种,第三辆车有C 24种,第四辆车有C 22种,共有不同的分法C 28C 26C 24C 22=2 520(种).(2)男女分别分组,4个男的平均分成两组共有C 242=3(种),4个女的分成两组也有C 242=3(种),故分组方法共有3×3=9(种),对于每一种分法上4辆车,又有A 44种上法,因而不同的分配方法为9·A 44=216(种).(3)要求男女各1个,因此先把男学生安排上车共有A 44种方法,同理,女学生也有A 44种方法,男女各1人上车的不同分配方法为A 44A 44=576(种).17.(本小题满分12分)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0, 求(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6.解析: (1)令x =0,则a 0=-1, 令x =1,则a 7+a 6+…+a 1+a 0=27=128 ①∴a 1+a 2+…+a 7=129.(2)令x =-1,则-a 7+a 6-a 5+a 4-a 3+a 2-a 1+a 0 =(-4)7②由①-②2得:a 1+a 3+a 5+a 7=12[128-(-4)7]=8 256. (3)由①+②2得:a 0+a 2+a 4+a 6 =12[(a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0)+(-a 7+a 6-a 5+a 4-a 3+a 2-a 1+a 0)] =12[128+(-4)7]=-8 128. 18.(本小题满分14分)已知(12+2x )n .(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解析: (1)因为C 4n +C 6n =2C 5n ,所以n 2-21n +98=0.解得n =7或n =14.当n =7时,展开式中二项式系数最大的项是T 4和T 5.所以T 4的系数=C 37(12)4×23=352, T 5的系数=C 47(12)3×24=70. 当n =14时,展开式中二项式系数最大的项是T 8. 所以T 8的系数=C 714(12)7×27=3432. (2)因为 C 0n +C 1n +C 2n =79,所以n =12或n =-13(舍去).设T k +1项的系数最大. 因为(12+2x )12=(12)12(1+4x )12,⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1,所以9.4≤k ≤10.4. 又因为0≤k ≤12且k ∈N ,所以k =10.所以展开式中系数最大的项为T 11. T 11=(12)12C 1012410x 10=16 896x 10.)。
最新北师大版高中数学高中数学选修2-2第四章《定积分》测试(含答案解析)(2)

一、选择题1.0xdx +=( )A .2π B .12π+C .4π D .π2.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( ) A .240 B .240-C .60-D .603.定积分2]x dx ⎰的值为( )A .24π- B .2π- C .22π- D .48π-4.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e -- B .1e e -+ C .12e e --- D .12e e -+-5.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞6.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .27.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是AB .2C .π23-D π38.20ln 1()231mx x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,,,且()()10f f e =,则m 的值为( ) A .1B .2C .1-D .2-9.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .32910.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( )A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 2211.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r πB .283r πC .514r πD .42r π12.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.由曲线2y x=与直线1y =x -及1x =所围成的封闭图形的面积为__________. 14.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________.15.1321(tan sin )x x x x dx -++⎰的值为______________________16.()1||214x ex dx -+-=⎰__________________17.已知()[](]221,1,11,1,2x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则()21f x dx -=⎰______.18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.三、解答题21.已知函数f (x )=x 3+32x 2+mx 在x=1处有极小值, g (x )=f (x )﹣23x 3﹣34x 2+x ﹣alnx . (1)求函数f (x )的单调区间;(2)是否存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有1212()()1g x g x x x ->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由.22.如图所示,抛物线21y x =-与x 轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD 作为工业用地,其中A 、B 在抛物线上,C 、D 在x 轴上 已知工业用地每单位面积价值为3a 元()0a >,其它的三个边角地块每单位面积价值a 元.(Ⅰ)求等待开垦土地的面积;(Ⅱ)如何确定点C 的位置,才能使得整块土地总价值最大. 23.已知函数()xf x xea -=-有两个零点1x , 2x .(1)求实数a 的取值范围; (2)求证: 122x x +>. 24.已知()xkx bf x e +=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值; (Ⅱ)求1x xdx e ⎰. 25.计算下列定积分 (1) ()12xx e dx +⎰(2)2442cos tan 2x x dx ππ-⎛⎫+ ⎪⎝⎭⎰ (3)214x dx --26.已知()1313d 26x ax a b x a -⎰++-=+,且()()33d tf t x ax a b x ⎰=++-为偶函数,求a ,b .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】22200112xdx x ==⎰ 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.2.D解析:D 【解析】试题分析:242a =-=-,62122x x ⎛⎫- ⎪⎝⎭的通项为()()662112366112222rrrrr r rC x x C x----⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭,1230,4r r -==,系数为()244612602C ⎛⎫-= ⎪⎝⎭.考点:定积分、二项式定理.3.B解析:B 【解析】试题分析:由定积分的几何意义有2204(2)x dx --⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故220[4(2)]x x dx ---⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.4.D解析:D 【解析】试题分析:根据题意画出区域,作图如下,由{x xy e y e-==解得交点为(0,1),∴所求面积为:()()1101|2x x x x S e e dx e e e e --=-=+=+-⎰ 考点:定积分及其应用5.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果.【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b ,设abt ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.6.C解析:C 【解析】f ′(x )=6x 2−18x +12,令f ′(x )=0得x 2−3x +2=0,解得x =1,或x =2. ∴当x <1或x >2时,f ′(x )>0,当1<x <2时,f ′(x )<0,∴f (x )在(−∞,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增, ∴当x =1时,f (x )取得极大值f (1)=5−a , 当x =2时,f (x )取得极小值f (2)=4−a ,∵f (x )只有两个零点,∴5−a =0或4−a =0,即a =5或a =4. 本题选择C 选项.7.D解析:D 【解析】曲线()sin 0πy x x =≤≤与直线12y =的两个交点坐标分别为(π6,12),(5π6,12),则封闭图形的面积为5π5π66ππ6611πsin cos |223x dx x x ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭⎰ 本题选择D 选项.点睛:(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加. (2)根据定积分的几何意义可利用面积求定积分.(3)若y =f (x )为奇函数,则()()0aaf x dx a ->⎰ =0.8.B解析:B 【详解】因为2333|,mmt dt t m ==⎰所以()3121lnx x f x x m x >⎧=⎨+≤⎩,,, ()ln 1f e e ==,()()()31210f f e f m ∴==+=,解得2m =. 故选:B.9.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.10.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰, 故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D 【解析】因为4328W r W r V ππ'=⇒==,所以42W r π=,应选答案D . 点睛:观察和类比题设中的函数关系,本题也可以这样解答:34418824W r dr r r πππ=⎰=⨯=,应选答案D . 12.B解析:B 【解析】由题意得0y '≥1,03⎛⎫- ⎪⎝⎭在区间恒成立,即210(3)ln x a a ≥-1,03⎛⎫- ⎪⎝⎭在区间恒成立,当1a > 时2min (3)0a x a <⇒≤ ,舍;当01a << 时2min 111(3)3=1933a x a a ,>⇒≥⨯∴≤< ,选B.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.二、填空题13.【分析】转化为定积分求解【详解】如图:曲线与直线及所围成的封闭图形的为曲边形因为曲线与直线及的交点分别为且所以由曲线与直线及所围成的封闭图形的面积为【点睛】本题考查定积分的意义及计算 解析:12ln 22-【分析】 转化为定积分求解. 【详解】 如图:,曲线2y x=与直线1y =x -及1x =所围成的封闭图形的为曲边形ABC , 因为ABC ABCD ACD S S S =- , 曲线2y x=与直线1y =x -及1x =的交点分别为(1,2),(2,1) 且212ABCD S dx x =⎰,21(1)ACD S x dx =-⎰,所以,()22222111121(1)2ln 2ABCS dx x dx x x x x ⎛⎫=--=-- ⎪⎝⎭⎰⎰ ()221112ln 22ln122112ln 2222⎡⎤⎛⎫⎛⎫=--⨯--⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.由曲线2y x =与直线1y =x -及1x =所围成的封闭图形的面积为12ln 22-. 【点睛】本题考查定积分的意义及计算.14.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 15.0【解析】因为f(x)=x3+tanx+x2sinx−1⩽x ⩽1所以f(−x)=−x3−tanx−x2sinx=−f(x)所以f(x)为奇函数解析:0 【解析】因为f (x )=x 3+tanx +x 2sinx ,−1⩽x ⩽1所以f (−x )=−x 3−tanx −x 2sinx =−f (x ), 所以f (x )为奇函数,21310x tanx x sinx dx -⎛⎫∴++= ⎪⎝⎭⎰.16.【解析】由定积分的几何意义知:是如图所示的阴影部分曲边梯形的面积其中故故故故答案为 解析:22233e π+-+【解析】11221424x dx x dx --=-⎰⎰,由定积分的几何意义知:1204x dx -⎰是如图所示的阴影部分曲边梯形OABC 的面积,其中()1,3,30B BOC ∠=,故221242433x dx x dx π--=-=+11101022|22xx x e dx e dx e e -===-⎰⎰,故(121242233xe x dx e π--=+-⎰22233e π+-17.【解析】由题意可得答案:【点睛】求定积分的题型一种是:几何方法求面积一般是圆第二种是:求用被积函数的原函数用积分公式第三种是:利用奇函数关于原点对称区间的积分为0本题考查了第一种和第二种 解析:π423+ 【解析】由题意可得()22221111(1)f x dx x dx x dx --=-+-=⎰⎰2214()|2323x x ππ+-=+,答案:423π+. 【点睛】求定积分的题型,一种是:几何方法求面积,一般是圆.第二种是:求用被积函数的原函数,用积分公式,第三种是:利用奇函数关于原点对称区间的积分为0.本题考查了第一种和第二种.18.3【解析】由题意得即则解析:3【解析】由题意,得()()()()21222221220101111||2x dx x dx xdx x x x x -=-+-=-+-=⎰⎰⎰,即57622a a a +==,则468633a a a a ++==.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.【解析】由解得或∴曲线及直线的交点为和因此曲线及直线所围成的封闭图形的面积是故答案为点睛:本题考查了曲线围成的图形的面积着重考查了定积分的几何意义和定积分计算公式等知识属于基础题;用定积分求平面图形解析:43【解析】由2 2y x y x⎧=⎨=⎩,解得0 0x y =⎧⎨=⎩或2 4x y =⎧⎨=⎩,∴曲线2y x =及直线2y x =的交点为()0,0O 和()2,4A 因此,曲线2y x =及直线2y x =所围成的封闭图形的面积是()222320014233S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰,故答案为43.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.三、解答题21.(1)单调增区间为(﹣∞,﹣2),(1,+∞),单调减区间为(﹣2,1);(2)7a≤-2【解析】试题分析:(1)由极值定义得f′(1)=6+m=0,解得m值,再求导函数零点,列表分析导函数符号变化规律,确定单调区间(2)先等价转化不等式:设0<x1<x2,g(x1)﹣x1<g (x2)﹣x2.再构造函数h(x)=g(x)﹣x,转化为h(x)在(0,+∞)为增函数,利用导数研究h(x)导函数恒非负的条件,即得a的取值范围试题解:(1)∵f(x)=x3+x2+mx,∴f′(x)=3x2+3x+m,∵f(x)=x3+x2+mx在x=1处有极小值,∴f′(1)=6+m=0,得m=﹣6.∴f(x)=x3+x2﹣6x,则f′(x)=3(x2+x﹣2)=3(x﹣1)(x+2).∴当x∈(﹣∞,﹣2)∪(1,+∞)时,f′(x)>0,当x∈(﹣2,1)时,f′(x)<0,则f(x)的单调增区间为(﹣∞,﹣2),(1,+∞),单调减区间为(﹣2,1);(2)g(x)=f(x)﹣x3﹣x2+x﹣alnx=x3+x2﹣6x﹣x3﹣x2+x﹣alnx=﹣5x﹣alnx.假设存在实数a使得对任意的 x1,x2∈(0,+∞),且x1≠x2,有>1恒成立,不妨设0<x1<x2,只要g(x1)﹣g(x2)<x1﹣x2,即:g(x1)﹣x1<g(x2)﹣x2.令h(x)=g(x)﹣x,只要 h(x)在(0,+∞)为增函数即可.又函数h(x)=g(x)﹣x=,则h′(x)==.要使h'(x)≥0在(0,+∞)上恒成立,则需2x3+3x2﹣12x﹣2a≥0在(0,+∞)上恒成立,即2a≤2x3+3x2﹣12x.令t(x)=2x3+3x2﹣12x,则t′(x)=6x2+6x﹣12=6(x+2)(x﹣1).∴当x∈(0,1)时,t(x)单调递减,当x∈(1,+∞)时,t(x)单调递增,则t(x)min=t(1)=﹣7.∴2a≤﹣7,得a.∴存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有>1恒成立. 22.(1)43;(2)点C 的坐标为.【详解】试题分析:(1)由于等待开垦土地是由曲线21y x =-与x 轴围成的,求出曲线与x 轴的交点坐标,再用定积分就可求出此块土地的面积;(2)既然要确定点C 的位置,使得整块土地总价值最大,那我们只需先设出点C 的坐标为(x ,0),然后含x 的代数式表示出矩形地块ABCD ,进而结合(1)的结果就可表示出其它的三个边角地块的面积,从而就能将整块土地总价值表示成为x 的函数,再利用导数求此函数的最大值即可. 试题(1)由于曲线21y x =-与x 轴的交点坐标为(-1,0)和(1,0),所以所求面积S=1231114(1)()|133x dx x x --=-=-⎰,故等待开垦土地的面积为43(2)设点C 的坐标为(,0)x ,则点B 2(,1)x x -其中01x <<, ∴22(1)ABCD S x x =- ∴土地总价值由2'4(13y a x =-)=0得33(33x x ==-或者舍去)并且当303x <<时,3'0,1'03y x y ><<<当时,故当33x =时,y 取得最大值. 答:当点C 的坐标为时,整个地块的总价值最大.考点:1.定积分;2.函数的最值. 23.(1)10,e ⎛⎫ ⎪⎝⎭;(2)见解析. 【解析】试题分析: (1)函数()xf x xe a -=-的定义域为R ,因为()x f x xe a -=-有两个零点1x , 2x ,所以函数()xxg x e =与函数y a =有两个不同的交点,根据导数的性质,可知当(),1x ∈-∞时, ()g x 单调递增;当()1,x ∈+∞时, ()g x 单调递减,所以()()max 11g x g e ==,并且当()1,x ∈+∞, ()0g x >,于是可得函数()x xg x e=的图象大致,然后再利用数形结合,可得函数()xxg x e =与函数y a =有两个不同的交点时, a 的取值范围;(2)由已知()()12f x f x =,即1212x x x x e e =,∴ 2121x x x e e x =,∴ 2121x x xe x -=,两边同取以e 为底的对数,得2211lnx x x x -=,要证明122x x +>,则只需证明2122111ln 2x x x x x x -<+,即21221111ln 21x x x x x x -<+,不妨设12x x <,令21xt x =,则()1,t ∈+∞, 即证11ln 12t t t -<+对()1,t ∈+∞恒成立,令()11ln 21t g t t t -=-+,然后再根据导数在函数单调性中的应用即可求出结果. 试题(1)函数()xf x xe a -=-的定义域为R ,因为()xf x xea -=-有两个零点1x , 2x ,所以函数()xxg x e =与函数y a =有两个不同的交点, ()1'x x g x e -=,令()1'0xxg x e -==, 解得1x =,当(),1x ∈-∞时, ()'0g x >, ()g x 单调递增;当()1,x ∈+∞时, ()'0g x <, ()g x 单调递减,所以()()max 11g x g e==, 并且当()1,x ∈+∞, ()0g x >,于是()xxg x e =的图象大致为:函数()x x g x e =与函数y a =有两个不同的交点时, a 的取值范围是10,e ⎛⎫⎪⎝⎭.(2)由已知()()12f x f x =,即1212x x x x e e =,∴ 2121x x x e e x =,∴ 2121x x xe x -=,两边同取以e 为底的对数,得2211lnx x x x -=, 要证明122x x +>,则只需证明2122111ln 2x x x x x x -<+,即21221111ln 21x x x x x x -<+, 不妨设12x x <,令21x t x =,则()1,t ∈+∞, 即证11ln 12t t t -<+对()1,t ∈+∞恒成立, 令()11ln 21t g t t t -=-+,则()()()()()()()22222221411221'021212121t t t t t g t t t t t t t t t +---+=-===>++++, ∴()g t 在区间()1,+∞单调递增, ∴()()10g t g >=,即11ln 021t t t -->+, 11ln 12t t t -<+,从而122x x +>成立. 24.(Ⅰ)1b =,2k =;(Ⅱ)21e-. 【解析】 试题分析:(Ⅰ)求出函数的的导函数;根据题意知()()011{{011f k b f b =-=⇒==',可解得1b =,2k =;(Ⅱ)根据微积分的基本定理设()x x kx k b xf x e e--'+==,解得1k =-,1b =-,得()1x x f x e --=,从而求得1112|10x x x x dx e e e --==-⎰. 试题解:()()()2x xx x x k e kx b ekx b kx k b f x e e e'⋅-++-+-⎛⎫== ⎪⎝⎭'=. (Ⅰ)依题意:()()011{{011f k b f b =-=⇒==',解得1b =,2k =;(Ⅱ)设()x xkx k b xf x e e--'+==,则1{0k k b -=-=,解得1k =-,1b =-,即()1xx f x e --=, ∴1112|10x x x x dx e e e --==-⎰. 考点:导数的几何意义;微积分的基本定理. 25.(1) e (2) 2π(3)23π+【解析】 【分析】(1)由微积分基本定理求解定积分即可;(2)由微积分基本定理结合奇函数的性质可得定积分的值; (3)由定积分的几何意义将原问题转化为求解面积的问题即可. 【详解】(1)由微积分基本定理可得:()12xx e dx +⎰()()()210|101x xe e e =+=+-+=.(2)由奇函数的性质可得:44tan 0xdx ππ-=⎰,由微积分基本定理可得:()()24444442cos 1cos sin |2xdx x dx x x ππππππ---=+=+⎰⎰442πππ⎛⎛=+--=+ ⎝⎭⎝⎭, 则42422x costanx dx ππ-⎛⎫+ ⎪⎝⎭⎰244442cos tan 22x dx xdx πππππ--=+=⎰⎰ (3)由定积分的几何意义可知,1-表示如图所示的阴影部分的面积,该图形可分解为一个扇形与两个三角形,故:1-2160221223603ππ⎛=⨯⨯+⨯⨯=+ ⎝【点睛】(1)一定要注意重视定积分性质在求值中的应用;(2)区别定积分与曲边梯形面积间的关系,定积分可正、可负、也可以为0,是曲边梯形面积的代数和,但曲边梯形面积非负. 26.a =-3,b =-9 【解析】 【分析】利用微积分基本定理得a,b 的方程组求解即可. 【详解】因为f(x)=3x +ax 为奇函数,所以()131x ax dx 0+=-⎰.所以()131x ax 3a b dx -⎰++-()()11311x ax dx 3a b dx +---=+⎰⎰()103a b x |1-=+-=6a -2b ,所以6a -2b =2a +6,即2a -b=3.①又()()()4422x a t at f t x 3a b x 3a b t 04242t ⎡⎤⎢⎥⎣⎦=++-=++-为偶函数, 所以3a -b =0,② 由①②得:a =-3,b =-9. 【点睛】本题考查微积分基本定理,准确计算是关键,是基础题.。
2021-2022年高中数学 第三章 阶段质量检测 北师大版选修2-2

一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=2x-sin x在(-∞,+∞)上( )A.是增函数B.是减函数C.有最大值D.有最小值解析:∵f′(x)=2-cos x>0,∴f(x)在(-∞,+∞)上为增函数.答案:A2.定义在闭区间[a,b]上的连续函数y=f(x)有唯一的极值点x=x0,且y=f(x0),则下列说法正确的是( )极小值A.函数f(x)有最小值f(x0)B.函数f(x)有最小值,但不一定是f(x0)C.函数f(x)的最大值也可能是f(x0)D.函数f(x)不一定有最小值解析:闭区间上的唯一的极值点也是最值点.答案:A3.已知函数y=f(x),其导函数y=f′(x)的图像如图所示,则y=f(x)( )A.在(-∞,0)上为减少的B .在x =0处取极小值C .在(4,+∞)上为减少的D .在x =2处取极大值解析:在(-∞,0)上,f ′(x )>0,故f (x )在(-∞,0)上为增函数,A 错;在x =0处,导数由正变负,f (x )由增变减,故在x =0处取极大值,B 错;在(4,+∞)上,f ′(x )<0,f (x )为减函数,C 对;在x =2处取极小值,D 错.答案:C4.函数f (x )=13x 3+ax +1在(-∞,-1)上为增加的,在(-1,1)上为减少的,则f (1)=( )A.73 B .1C.13D .-1解析:∵f ′(x )=x 2+a ,又f ′(-1)=0,∴a =-1,f (1)=13-1+1=13.答案:C5.函数f (x )=x +2cos x 在⎣⎢⎡⎦⎥⎤0,π2上取最大值时的x 值为( ) A .0 B.π6C.π3D.π2解析:由f ′(x )=1-2·sin x =0,得sin x =12,又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以x =π6,当x ∈⎣⎢⎡⎦⎥⎤0,π6时,f ′(x )>0;当x ∈⎣⎢⎡⎦⎥⎤π6,π2时,f ′(x )<0,故x =π6时取得最大值.答案:B6.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( )A .0≤a ≤21B .a =0或a =7C .a <0或a >21D .a =0或a =21解析:f ′(x )=3x 2+2ax +7a ,当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数不存在极值点.答案:A7.已知函数f (x )=x 2(ax +b )(a ,b ∈R)在x =2时有极值,其图像在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为( )A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞)解析:∵f (x )=ax 3+bx 2,∴f ′(x )=3ax 2+2bx ,∴⎩⎨⎧3a ×22+2b ×2=0,3a +2b =-3,即⎩⎨⎧a =1,b =-3,令f ′(x )=3x 2-6x <0,则0<x <2 答案:B8.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .[0,1)B .(0,1)C .(-1,1)D.⎝⎛⎭⎪⎫0,12解析:f ′(x )=3x 2-3a ,由于f (x )在(0,1)内有最小值,故a >0,且f ′(x )=0的解为x 1=a ,x 2=-a ,则a ∈(0,1),∴0<a <1.答案:B9.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3,且产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为( )A .15件B .20件C .25件D .30件解析:设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知k =250 000,则a2x=250 000,所以a=500 x.总利润y=500x-275x3-1 200(x>0),y′=250x-225x2,由y′=0,得x=25,x∈(0,25)时,y′>0,x∈(25,+∞)时,y′<0,所以x=25时,y取最大值.答案:C10.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是( )A.(-2,2) B.[-2,2]C.(-∞,-1) D.(1,+∞)解析:f′(x)=3x2-3,由f′(x)=0得x=±1,当x<-1时,f′(x)>0,当-1<x<1时,f′(x)<0,当x>1时,f′(x)>0,∴f(-1)为极大值,f(1)为极小值,由题意得f(1)<0<f(-1),即-2+a<0<2+a,∴-2<a<2.答案:A二、填空题(本大题共4小题,每小题5分,共20分.请把正确的答案填在题中的横线上)11.函数y=2x3-6x2+11的单调递减区间为________.解析:y′=6x2-12x,令6x2-12x<0,得0<x<2.答案:(0,2)12.函数f(x)=a sin x+13sin 3x在x=π3处有极值,则a的值是________.解析:因为f(x)=a sin x+13sin 3x,则f′(x)=a cos x+cos 3x.函数f(x)在x=π3处有极值,所以f′⎝⎛⎭⎪⎫π3=a cos π3+cos⎝⎛⎭⎪⎫3×π3=0,解得a=2.答案:213.函数f(x)=x3-3x2+6x-2,x∈[-1,1]的最大值为________,最小值为________.解析:∵f′(x)=3x2-6x+6=3[(x-1)2+1]>0,∴函数f(x)在[-1,1]上为增函数,故最大值为f(1)=2,最小值为f(-1)=-12.答案:2 -1214.已知函数f(x)=2ln x+ax2(a>0).若当x∈(0,+∞)时,f(x)≥2恒成立,则实数a的取值范围是________.解析:f(x)≥2即a≥2x2-2x2ln x.令g(x)=2x2-2x2ln x,则g′(x)=2x(1-2ln x).由g′(x)=0得x=e 12,0(舍去),且0<x<e 12时,g′(x)>0;当x>e 12时g′(x)<0,∴x=e 12时g(x)取最大值g(e12)=e,∴a≥e.答案:[e,+∞)三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设x=1与x=2是函数f(x)=a ln x+bx2+x的两个极值点.(1)试确定常数a和b的值;(2)试判断在x=1,x=2处函数f(x)取得极大值还是极小值,并说明理由.解:f ′(x )=a x+2bx +1.(1)因为f ′(1)=f ′(2)=0,所以⎩⎨⎧a +2b +1=0,a2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23,b =-16,经检验,a =-23,b =-16满足题意.(2)由(1)知,f ′(x )=-23x -1-13x +1=-x -1x -23x.∴当x ∈(0,1)时,f ′(x )<0; 当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0, 故在x =1处函数取得极小值f (1)=56,在x =2处函数取得极大值f (2)=43-23ln 2.16.(本小题满分12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )有极值,求b 的取值范围;(2)若f (x )在x =1处取得极值,且当x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.解:(1)f′(x)=3x2-x+b,则方程f′(x)=0有两个不相等的实根,由Δ>0得1-12b>0即b<112.所以b的取值范围是(-∞,112).(2)∵f(x)在x=1处取得极值,∴f′(1)=0,∴3-1+b=0,得b=-2.则f′(x)=3x2-x-2=(3x+2)(x-1).令f′(x)=0,得x1=-23,x2=1,又f(-1)=12+c,f⎝⎛⎭⎪⎫-23=3827+c,f(1)=-32+c,f(2)=2+c.∴[f(x)]max=2+c<c2,解得c>2或c<-1.∴c的取值范围是(-∞,-1)∪(2,+∞).17.(本小题满分12分)一艘轮船在航行中的燃料费和它的速度的立方成正比.已知速度为10千米/时,燃料费是每小时6元,而其他和速度无关的费用是每小时96元,问:轮船的速度是多少时,航行1千米所需的费用总和最小?解:设速度为v千米/时的燃料费是每小时p元,则p=kv3.又∵6=k·103,∴k=0.006,∴p=0.006v3.设行驶1千米所需的总费用为y元,则y=1v(0.006v3+96)=0.006v2+96v(v>0).∴y′=0.012v-96 v2,由y′=0,得v=20千米/时.又∵当0<v<20时,y′<0;当v>20时,y′>0.∴当速度为20千米/时,航行1千米所需的费用总和最小.18.(本小题满分14分)(xx·安徽高考)设函数f(x)=a e x+1a e x+b(a>0).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=32x,求a,b的值.解:(1)f′(x)=a e x-1a e x,当f′(x)>0,即x>-ln a时,f(x)在(-ln a,+∞)上递增;当f′(x)<0,即x<-ln a时,f(x)在(-∞,-ln a)上递减.①当0<a<1时,-ln a>0,f(x)在(0,-ln a)上递减,在(-ln a,+∞)上递增,从而f(x)在[0,+∞)内的最小值为f(-ln a)=2+b;②当a≥1时,-ln a≤0,f(x)在[0,+∞)上递增,从而f(x)在[0,+∞)内的最小值为f(0)=a+1a+b.(2)依题意f′(2)=a e2-1a e2=32,解得a e2=2或a e2=-12(舍去).所以a=2e2,代入原函数可得2+12+b=3,即b=12.故a=2e2,b=12.34727 87A7 螧x20077 4E6D 乭a32941 80AD 肭 H37491 9273 鉳31155 79B3 禳)z29369 72B9 犹B,。
(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。
高中数学北师大版选修2-2练习章末综合测评3 Word版含答案

章末综合测评(三) 导数应用(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).物体运动的方程为=-,则=时的瞬时速度为( )【解析】∵=′=,∴=时的瞬时速度为=.【答案】.函数()=(-)的单调递增区间是( ).(,).(-∞,).(,+∞).(,)【解析】′()=(-),由′()>,得>,所以函数()的单调递增区间是(,+∞).【答案】.函数()=++有极值的充要条件是( )>≥<≤【解析】′()=+,当=时,′()=>,()单调增加,无极值;当≠时,只需Δ=->,即<即可.【答案】.函数()的导函数′()的图像如图所示,那么()的图像最有可能的是( )图【解析】数形结合可得在(-∞,-),(-,+∞)上,′()<,()是减函数;在(-,-)上,′()>,()是增函数,从而得出结论.【答案】.若函数=(-)的递增区间是,,则的取值范围是( ).-<<><<>【解析】依题意得′=(-)>的解集为,,∴>.【答案】.若函数()在上可导,且满足()-′()>,则( )()>()()<()()=()()=()【解析】由于()>′(),′=<恒成立,因此在上是单调递减函数,∴<,即()>(),故选.【答案】.若函数()=-+++在区间上的最大值为,则它在该区间上的最小值为( ).-.-【解析】∵()′=-++=-(+)(-),所以函数在内单调递减,所以最大值为(-)=+=,∴=,最小值为(-)=-=-.【答案】.函数=-的图像大致是( )【解析】因为′=-,所以令′=- >,得 <,此时原函数是增函数;令′=- <,得 >,此时原函数是减函数,结合余弦函数图像,可得选项正确.【答案】.若()=-+(+)在(-,+∞)上是减函数,则的取值范围是( )【导学号:】。
高中数学 模块综合质量评估 北师大版选修2-2(2021年整理)

2016-2017学年高中数学模块综合质量评估北师大版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学模块综合质量评估北师大版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学模块综合质量评估北师大版选修2-2的全部内容。
模块综合质量评估(考试时间:120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i是虚数单位,若集合S={-1,0,1},则( )A.i∈S B.i2∈SC.i3∈S D.错误!∈S解析:∵i2=-1,而集合S={-1,0,1},∴i2∈S.答案:B2.下列求导运算正确的是()A.错误!′=1+错误!B.(log2x)′=错误!C.(3x)′=3x log3e D.(x2cos x)′=2x sin x解析:∵错误!′=1-错误!,∴A错.(log2x)′=错误!·错误!=错误!,∴B正确.故选B。
答案: B3.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n(n∈N+)个等式应为( )A.9(n+1)+n=10n+9B.9(n-1)+n=10n-9C.9n+(n-1)=10n-9D.9(n-1)+(n-1)=10n-10解析:分别观察乘数规律、加数规律和运算结果的规律,得出猜想结果.答案:B4.由曲线y=错误!与x轴及x=2所围成的图形绕x轴旋转一周后形成的几何体的体积为( )A.πB.2πC.3π D.错误!解析: V=错误!πx d x=π错误!x d x=错误!x2|错误!=2π(如图所示).答案:B5.在用数学归纳法证明“已知f(n)=1+错误!+错误!+…+错误!,求证:f(2n)<n+1”的过程中,由k推导k+1时,原式增加的项数是( )A.1 B.k+1C.2k-1 D.2k解析:f(2k)=1+错误!+错误!+…+错误!,f(2k+1)=1+错误!+错误!+…+错误!+…+错误!,∴f(2k+1)-f(2k)=2k.答案: D6.设曲线y=错误!在点(3,2)处的切线与直线ax+y+1=0垂直,则a等于( )A.2 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 导数应用一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=x 3+ax 2+3x -9,已知f (x )有两个极值点x 1,x 2,则x 1x 2等于( ) A .9 B .-9 C .1D .-1解析: f ′(x )=3x 2+2ax +3,则x 1x 2=1. 答案: C2.函数y =x +e -x的增区间为( ) A .(1,+∞) B .(0,+∞) C .(-∞,0)D .(-∞,1)解析: 由y ′=1-e -x>0解得x >0. 答案: B3.函数f (x )=13x 3+ax +1在(-∞,-1)上为增加的,在(-1,1)上为减少的,则f (1)等于( )A.73 B .1 C.13D .-1解析: ∵f ′(x )=x 2+a , 又f ′(-1)=0,∴a =-1,f (1)=13-1+1=13.答案: C4.已知函数f (x )=ax 3+bx 2+c ,其导函数f ′(x )的图像如图所示,则函数f (x )的极小值是( )A .a +b +cB .8a +4b +cC .3a +2bD .c解析: 由f ′(x )的图像知:x =0是f (x )的极小值点, ∴f (x )min =f (0)=c . 答案: D5.函数y =f (x )在定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图像如图所示.记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为( )A.⎣⎢⎡⎦⎥⎤-13,1∪[2,3] B.⎣⎢⎡⎦⎥⎤-1,12∪⎣⎢⎡⎦⎥⎤43,83 C.⎣⎢⎡⎦⎥⎤-32,12∪[1,2) D.⎣⎢⎡⎦⎥⎤-32,-13∪⎣⎢⎡⎦⎥⎤12,43∪⎣⎢⎡⎦⎥⎤43,3解析: 由条件f ′(x )≤0知,选择f (x )图像的减区间即为解. 答案: A6.设a ∈R ,若函数y =e x+ax ,x ∈R 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1eD .a <-1e解析: y ′=e x+a ,令y ′=0,得x =ln(-a ),易知x =ln(-a )为函数的极值点,所以ln(-a )>0,解得a <-1,故选A.答案: A7.函数f (x )=x +2cos x 在区间⎣⎢⎡⎦⎥⎤-π2,0上的最小值是( ) A .-π2B .2 C.π6+ 3 D.π3+1 解析: f ′(x )=1-2sin x ,∵x ∈⎣⎢⎡⎦⎥⎤-π2,0,∴f ′(x )>0,∴f (x )min =f ⎝ ⎛⎭⎪⎫-π2=-π2. 答案: A8.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积为最大,则高为( ) A.33cm B.1033 cm C.1633cm D.2033cm 解析: 设圆锥的高为x ,则底面半径为202-x 2,其体积为V =13πx (202-x 2)(0<x <20) V ′=π3(400-3x 2)令V ′=0,解得x 1=2033,x 2=-2033(舍去).当0<x <2033时,V ′>0;当2033<x <20时,V ′<0, 所以当x =2033(cm)时,V 取最大值.答案: D9.已知函数f (x )的导数为f ′(x )=4x 3-4x 且图像过点(0,-5),当函数f (x )取得极大值-5时,x 的值应为( )A .-1B .0C .1D .±1解析: 由题意知f (x )=x 4-2x 2-5, 令f ′(x )=4x 3-4x =0,得x 的值为0,±1.答案: B10.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32解析: 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2, 令f ′(x )=0,得x =0或x =3, 经检验知x =3是函数的一个最小值点, 所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立, 即f (x )≥-9恒成立, 所以3m -272≥-9,解得m ≥32.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 11.函数y =x 3-3x 2+6x -2,x ∈[-1,1]的最大值为_______,最小值为_________. 解析: y ′=3x 2-6x +6=3[(x -1)2+1]>0,所以函数f (x )在[-1,1]上为增函数,最大值为f (1)=2,最小值为f (-1)=-12.答案: 2 -1212.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是________________. 解析: 由原函数有零点,可将问题转化为方程e x-2x +a =0有解问题,即方程a =2x -e x有解.令函数g (x )=2x -e x,则g ′(x )=2-e x,令g ′(x )=0,得x =ln 2,所以g (x )在(-∞,ln 2)上是增函数,在(ln 2,+∞)上是减函数,所以g (x )的最大值为:g (ln 2)=2ln 2-2.因此,a 的取值范围就是函数g (x )的值域,所以,a ∈(-∞,2ln 2-2].答案: (-∞,2ln 2-2]13.函数f (x )=x 3+bx 2+cx +d 图像如图,则函数y =x 2+23bx +c 3的单调递增区间为____.解析: 由f (x )的图像可知:f (x )的减区间为[-2,3]. ∴f ′(x )=0的两根为-2,3, 又∵f ′(x )=3x 2+2bx +c , ∴⎩⎪⎨⎪⎧-2b 3=1c 3=-6,∴⎩⎪⎨⎪⎧b =-32c =-18.∴y =x 2+23bx +c 3=x 2-x -6,其增区间为⎝ ⎛⎭⎪⎫12,+∞.答案: ⎝ ⎛⎭⎪⎫12,+∞ 14.若函数f (x )=-x 3+6x 2+a 的极大值等于13,则实数a =__________. 解析: f ′(x )=-3x 2+12x , 令f ′(x )=0,则x =0或4, 由f ′(x )的图像(如图),可知在x =4处f (x )取得极大值, ∴f (4)=13,即-64+96+a =13, ∴a =-19. 答案: -19三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设函数f (x )=13x 3-x 2-3x +1.求f (x )的单调区间和极值.解析: f ′(x )=x 2-2x -3, 由f ′(x )=0,得x =-1或x =3. 列表如下:∴函数f (x )的极大值为3,极小值为-8,函数f (x )的单调递增区间是(-∞,-1) 和(3,+∞),递减区间是(-1,3).16.(本小题满分12分)已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ). (1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 解析: (1)f ′(x )=3x 2-2ax +b , ∵函数f (x )在x =-1和x =3处取得极值, ∴-1,3是方程3x 2-2ax +b =0的两根.∴⎩⎪⎨⎪⎧-1+3=23a ,-1×3=b3.∴⎩⎪⎨⎪⎧a =3,b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9. 当x 变化时,f ′(x ),f (x )随x 的变化如下表:要使f (x )<2|c |恒成立,只需c +54<2|c |即可,当c ≥0时,c +54<2c , ∴c >54;当c <0时,c +54<-2c ,∴c <-18,∴c ∈(-∞,-18)∪(54,+∞),此即为参数c 的取值范围.17.(本小题满分12分)已知某厂生产x 件产品的成本为C =25 000+200x +140x 2(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品? 解析: (1)设平均成本为y 元,则 y =25 000+200x +140x2x =25 000x +200+x40.y ′=⎝⎛⎭⎪⎫25 000x +200+x 40′=-25 000x 2+140.令y ′=0,得x 1=1 000,x 2=-1 000(舍去).当在x =1 000附近左侧时,y ′<0;在x =1 000附近右侧时,y ′>0,故当x =1 000时,y 取得极小值,由于函数只有一个点使y ′=0,且函数在该点有极小值,那么函数在该点取得最小值.因此,要使平均成本最低,应生产1 000件产品.(2)利润函数为L =500x -⎝⎛⎭⎪⎫25 000+200x +x 240=300x -25 000-x 240,L ′=⎝⎛⎭⎪⎫300x -25 000-x 240′=300-x 20. 令L ′=0,解得x =6 000.当在x =6 000附近左侧时,L ′>0;在x =6 000附近右侧时,L ′<0.故当x =6 000时,L 取得极大值.由于函数只有一个使L ′=0的点,且函数在该点有极大值,那么函数在该点取得最大值.因此,要使利润最大,应生产6 000件产品.18.(本小题满分14分)已知函数f (x )=ax +a x-3ln x . (1)当a =2时,求f (x )的最小值;(2)若f (x )在[1,e]上为单调函数,求实数a 的取值范围. 解析: (1)当a =2时,f (x )=2x +2x-3ln x ,f ′(x )=2-2x 2-3x =2x 2-3x -2x2, 令f ′(x )=0,得x =2或-12(∵x >0,舍去负值),∴当a =2(2)∵f ′(x )=ax 2-3x -ax 2,令h (x )=ax 2-3x -a =a ⎝ ⎛⎭⎪⎫x -32a 2-9+4a 24a ,要使f (x )在[1,e]上为单调函数,只需f ′(x )在(1,e)内满足:f ′(x )≥0或f ′(x )≤0恒成立,且等号只在孤立点取得.∵h (1)=-3<0,∴h (e)=a e 2-3e -a ≤0. ∴a ≤3ee 2-1.①当0≤a≤3ee2-1时,f′(x)≤0恒成立.②当a<0时,x=32a∉[1,e],∴h(x)<0(x∈[1,e]).∴f′(x)<0,符合题意.综上可知,当a≤3ee2-1时,f(x)在[1,e]上为单调函数.。