九年级第三次模拟考试数学附答案

合集下载

2023年江苏省扬州市中考三模数学试题(含答案)

2023年江苏省扬州市中考三模数学试题(含答案)

扬州九年级第三次模拟考试数学试卷一、选择题(每题3分,共24分)1.如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2的值等于( )A .0.3B .C .0.03D .3.据报道,2023年1月研究人员通过研究获得了XBB.1.5病毒毒株,该毒株体积很小,呈颗粒圆形或椭圆形,直径大概为,已知,则用科学记数法表示为()A .B .C .D .4.如图所示几何体是由一个球体和一个圆柱组成的,它从上面看到的形状图是()A .B .C .D .5.如图,,,,则的度数是()A .30°B .40°C .50°D .80°6.已知是整数,当的值是( )A .5B .6C .7D .87.如图,在菱形纸片中,,,分别剪出扇形和,恰好能作为一个锥圆的侧面和底面.若点在上,则的最大值是()0.3±0.03±85nm 91nm 10m -=85nm 60.8510m -⨯70.8510m-⨯88.510m-⨯98510m-⨯a b ∥380∠=︒1220∠-∠=︒1∠x x -x ABCD 6AB =60ABC ∠=︒ABC O O BD BDA .B .C .D .8.如图,点与点关于原点对称.,,,、是的三等分点.反比例函数()的图象经过点,.若的面积为3,则的值为()A .4B .5C .6D .7二、填空题(每题3分共30分)9.若式子在实数范围内有意义,则的取值范围是______.10.因式分解______.11.若一组数据2,3,4,5,7的方差是,另一组数据11,12,13,14,15的方差是,则______(填“>”“<”或“=”).12.一个圆锥的侧面展开图时一个圆心角为216°、半径为的扇形,这个圆锥的底面圆半径为______.13.如图,一副直角三角板(,)按如图所示的位置摆放,如果,那么的度数为______.14.规定一种新的运算:,求的解是______.15.如图,点、、在上,的半径为3,,则的长为______.1-2-1+2+A B 90ACB ∠=︒AC BC =45CAD ∠=︒A E DF ky x=0k >A E ACE △k 1x x-x 4a a 3-=21S 22S 21S 22S 15cm cm 30ACB ∠=︒45BED ∠=︒AC DE ∥EBC ∠*2a b a b =--211*132x x-+=A B C O O AOC ABC ∠=∠AC16.已知,点,,在反比例函数(为常数,)的图像上,则,,的大小关系是______.(用“>”连接)17.如图,点在双曲线()上,点在双曲线(),点在轴的正半轴上,若、、、构成的四边形为正方形,则对角线的长是______.18.如图,在中,,点是的外心,连接并延长交边于点,,,则的值为______.三、解答题(本大题共有10小题,共96分)19.(8分)计算:(1);(2).20.(8分)解不等式组,并写出该不等式组的整数解.21.(8分)树人学校想了解学生家长对“双减”政策的认知情况,随机抽取了部分学生家长进行调查,将抽查的数据结果进行统计,并绘制两幅不完整的统计图(:不太了解,0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -ky x=k 0k >1y 2y 3y ()5,D m -30y x =-0x <B 12y x=0x <A y A B C D AC ABC △ABC ACB ∠=∠O ABC △CO AB P 3AP =4BP =cos ABC ∠0112452-++︒--53222x x x x +⎛⎫+-÷⎪--⎝⎭()4132235x x x ->-⎧⎪⎨-≤⎪⎩A:基本了解,:比较了解,:非常了解).请根据图中提供的信息回答以下问题:(1)请直接写出这次被调查的学生家长共有______人;(2)请补全条形统计图;(3)试求出扇形统计图中“比较了解”部分所对的圆心角度数;(4)该学校共有6800名学生家长,估计对“双减”政策了解程度为“非常了解”的学生家长大约有多少?22.(8分)把算珠放在计数器的3根插棒上可以构成一个数,例如:如图摆放的算珠表示数210.(1)若将一颗算珠任意摆放在这3根插棒上,则构成的数是三位数的概率是______;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这3根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.23.(10分)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?24.(10分)在中,,是的中点,是的中点,过点作交的延长线于点.(1)求证:;(2)证明四边形是菱形.25.(10分)已知:为的直径,为圆心,点为圆上一点,过点作的切线交的延长线于点,点为上一点,且,连接交于点.B C D Rt ABC △90BAC ∠=︒D BC E AD A AF BC ∥BE F AEF DEB ≌△△ADCF BD O O A B O DA F C O AB AC =BC AD E(1)如图1,求证:;(2)如图2,点为内部一点,连接,.若,的半径为10,,求的长.26.(10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形.(1)的周长为______;(2)如图,点、分别是与竖格线和横格线的交点,画出点关于过点竖格线的对称点;(3)请在图中画出的角平分线.27.(12分)(1)【基础巩固】如图1,内接于,若,弦______;(2)【问题探究】如图2,四边形内接于,若,,点为弧上一动点(不与点,点重合).求证:;(3)【解决问题】如图3,一块空地由三条直路(线段、、)和一条道路劣弧围成,已知千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?求其最大值;若不存在,说明理由.ABF ABC ∠=∠H O OH CH 90OHC HCA ∠=∠=︒O 6OH =DA ABC △ABC △D P AB P D Q ABC △BE ABC △O 60C ∠=︒AB =r =ABCD O 60ADC ∠=︒AD DC =B AC A C AB BC BD +=AD AB BC CDCM DM ==60DMC ∠=︒ CD M C D PP CDDM MC CP PD DMCP28.(12分)在平面直角坐标系中,已知抛物线()与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:______,______,______;(2)如图1,直线交轴于点,若,求抛物线的解析式;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;②设(),请直接写出的最大值.2446y ax ax a =++-0a >x A B A B y C D 6a =A B C D A B D DC x E 4tan 3AED ∠=N OC P P x Q AN F F FH DE ⊥H P t f FP FH =+t f 5t m -<≤0m <f初三数学三模答案一、选择题1.C 2.A 3.C 4.C 5.C 6.A 7.B 8.A二.填空题9. 10. 11.> 12.9 13.15° 14. 15.16. 171819.(本题满分8分)(1)2 (2)20.(本题满分8分)解不等式①得:解不等式②得:不等式组的解集是:整数解是:3,421.(本题满分8分)(1)这次抽样调查的家长有(人);(2)表示“基本了解”的人数为:(人),表示“非常了解”的人数为:(人)图略(3)“比较了解”部分所对应的圆心角是:(4)(人)22.(本题满分8分)(1)(2)画树状图如下:共有9种等可能的结果,其中构成的数是三位数且是回文数的结果有2种,∴构成的数是三位数且是回文数的概率为.23.(本题满分10分)解:设该景点在设施改造后平均每天用水吨,则在改造前平均每天用水吨,根据题意,得.0x ≠()()2121a a a +-57x =123y y y >>3x -2x >4x ≤24x <≤510%50÷=5030%15⨯=505152010---=2036014450⨯=︒︒106800136050⨯=1329x 2x 202052x x-=解得.经检验:是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.24.(本题满分10分)(1)∵,∴,∵是的中点,是边上的中线,∴,,在和中,,∴;(2)由(1)知,,则.∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形.25.(本题满分10分)(1)证明:∵为的直径,∴,∴,∵是的切线,∴,∴,∴,∵,∴,∵,∴;(2)解:连接,∵,∴,∴,∵,∴,∴,即,∴,∵,∴,∴,∵,的半径为10,∴,,∴.26.(本题满分10分)(1)的周长(2)如图,点即为所求;(3)如图,线段即为所求.2x =2x =AF BC ∥AFE DBE ∠=∠E AD AD BC AE DE=BD CD =AFE △DBE △AFE DBEFEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFE DBE ≌△△AFE DBE ≌△△AF DB =DB DC =AFCD =AF BC ∥ADCF 90BAC ∠=︒D BC E AD 12AD DC BC ==ADCF BD O 90BAD ∠=︒90D ABD ︒∠+∠=FB O 90FBD ∠=︒90FBA ABD ︒∠+∠=FBA D ∠=∠AB AC =C ABC ∠=∠C D ∠=∠ABF ABC ∠=∠OC 90OHC HCA ∠=∠=︒AC OH ∥ACO COH ∠=∠OB OC =OBC OCB ∠=∠ABC CBO ACB OCB ∠+∠=∠+∠ABD ACO ∠=∠ABD COH ∠=∠90H BAD ︒∠=∠=ABD HOC ∽△△2AB BDOH OC==6OH=O 212AB OH ==20BD =16DA ==ABC △549=++=Q BE27.(本题满分12分)(1)2(2)证明:在上取点,使,连接,,∵,,∴为等边三角形,∴,,∵四边形为圆的内接四边形,∴,∴,∵,∴,∴,∴,∴为等边三角形,∴,,∴,∴,∴,∴;(3)解:存在.∵千米,∴当取得最大值时,四边形的周长最大,连接,过点作于点,设,∵,,,∴,∴,∴,∴,BD E BE BC =EC AC AD CD =60ADC ∠=︒ADC △DC AC =60DCA ∠=︒ABCD O 180ABC ADC ︒∠+∠=120ABC ︒∠=AD CD = AD CD=ABD CBD ∠=∠60CBD ∠=︒BEC △BC CE =60BCE ∠=︒BCA ECD ∠=∠()SAS ACB DCE ≌△△AB DE =DB DE BE AB BC =+=+CM DM ==DP CP +DMCP PM O OHDM ⊥H OH x =DM CM =OM OM =DO CO =()SSS DOM COM ≌△△1302DMO CMO DMC ︒∠=∠=∠=HM=DH =-∵,∴,∴或(舍去),∴,∴,∴、、、四点共圆,∴,由(2)可知,故当是直径时,最大值为2,∵四边形的周长,∴四边形的周长的最大值为:即四条慢跑道总长度(即四边形的周长)的最大值为.28.(本题满分12分)(1)、、的坐标分别为、、;(2),令,则,则点,函数的对称轴为,故点的坐标为,由点、的坐标得,直线的表达式为:,令,则,故点,则,,解得:,∴抛物线的表达式为:.(3)①如图,作与的延长线交于点,由(2)知,抛物线的表达式为:,故点、的坐标分别为、,则点,由点、的坐标得,直线的表达式为:;设点,则点;则,222DH OH OD +=)2221x +=12x =1x =12OH =1OM =D P C M 120DPC ︒∠=DP CP PM +=PM PD PC +DMCP DM CM PC PD PD PC =+++=++DMCP 2+DMCP 2+A B D ()3,0-()1,0-()2,6--2446y ax ax a =++-0x =46y a =-()0,46C a -2x =-D ()2,6--C D CD 246y ax a =+-0y =32x a =-32,0E a ⎛⎫- ⎪⎝⎭32OE a =-644332OC a tan AED OE a -∠===-23a =22810333y x x =+-PF ED J 22810333y x x =+-A C ()5,0-100,3⎛⎫- ⎪⎝⎭50,3N ⎛⎫- ⎪⎝⎭A N AN 1533y x =--22810,333P t t t ⎛⎫+- ⎪⎝⎭15,33F t t ⎛⎫-- ⎪⎝⎭225333PF t t =--+由点、的坐标得,直线的表达式为:,则点,故,∵,轴,故,,∴,故,则,;②(且);∴当时,;当时,. 5,02E ⎛⎫ ⎪⎝⎭C CE 41033y x =-410,33J t t ⎛⎫- ⎪⎝⎭5533FJ t =-+FH DE ⊥JF y ∥90FHJ EOC ︒∠=∠=FJH ECO ∠=∠FJH ECO ∽△△FH FJ OE CE =1OE FH FJ t CE=⨯=-+()2225283143333f PF FH t t t t t =+=--++-+=--+()2228226433333f t t t =--+=-++5t m -<≤0m <53m -<<-2max 28433f m m =--+30m -≤<max 263f =。

九年级中考第三次模拟联考数学试题(解析版)

九年级中考第三次模拟联考数学试题(解析版)

义务教育基础课程初中教学资料九年级数学学科试题(试卷满分:150分考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. -2的相反数是()A. 1B. 2C. -1D. -2【答案】B【解析】-2的相反数是2,故选B.2. 下列各式计算正确的是()A. B. C. D.【答案】C【解析】A. ,故不正确;B. ,故不正确;C. ,故正确;D. ,故不正确;故选C.3. 如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A. B. C. D.【答案】C【解析】从上边看从上边看第一层是一个小正方形,第二层是第一层正上一个小正方形,右边一个小正方形.故选C.4. 下列图形中,是轴对称图形但不是中心对称图形的是()A. 等边三角形B. 正六边形C. 正方形D. 圆【答案】A【解析】等边三角形是轴对称图形;正六边形、正方形、圆既是轴对称图形又是中心对称图形.故选A.5. 某同学一周中每天体育运动时间(单位:分钟)分别为:35,40,45,40,55,40,48,这组数据的中位数是()A. 35B. 40C. 45D. 55【答案】B【解析】试题分析:∵这组数据40出现的次数最多,出现了3次,∴这组数据的众数是40;故选B.考点:众数.6. 输入一组数据,按下列程序进行计算(x+8)2﹣826,输出结果如表:分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A. 20.5<x<20.6B. 20.6<x<20.7C. 20.7<x<20.8D. 20.8<x<20.9【答案】C【解析】∵当x=20.7时,(x+8)2﹣826=-2.31;当x=20.8时,(x+8)2﹣826=3044;∴(x+8)2﹣826=0的一个正数解x的大致范围为20.7<x<20.8 .故选C.7. 若关于x的一元二次方程kx2﹣2x﹣1=0没有实数根,则k的取值范围是()A. k>﹣1B. k>﹣1且k≠0C. k>1D. k<﹣1【答案】D【解析】试题分析:方程有两个不相等的实数根,则△>0,即可得k≠0,△=4+4k>0解得k>﹣1且k≠0.故选D.考点:根的判别式.8. 如图,正方形ABCD的边长为3,将等腰直角三角板的45°角的顶点放在B处,两边与CD及其延长线交于E、F,若CE=1,则BF的长为()A. B. C. D.【答案】B【解析】作FH⊥BE于点H.∴△BCE∽△FHE,,,.∵BC=3,CE=1,设,则.,,解之得.故选B.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9. 分解因式:2x2﹣8=____.【答案】2(x+2)(x-2)【解析】试题分析:观察原式,找到公因式2,提出后利用公式法即可得出答案.原式2x2﹣8=2(-4)=2(x+2)(x﹣2).考点:因式分解-提公因式法.10. 据中新社报道:2017年我国粮食产量将达到61 000 000 000千克,用科学记数法表示这个粮食产量为_____千克.【答案】【解析】61000000000=6.1×1010.11. 二次根式有意义的条件是_____.【答案】x≤1【解析】由题意得,12. 若一个多边形的内角和比外角和大360°,则这个多边形的边数为_____.【答案】10【解析】试题解析:设多边形的边数是n,根据题意得,(n-2)•180°-360°=360°,解得n=6.考点:多边形内角与外角.13. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是______.【答案】【解析】如图,有5种不同取法;故概率为.14. 点A(a,b)是一次函数y=x﹣1与反比例函数y=的交点,则a2b﹣ab2=_____.【答案】4【解析】把点A(a,b)代入y=x﹣1得,a-b=1;把点A(a,b)代入y=得,ab=4;∴a2b﹣ab2=ab(a-b)=4×1=4.15. 圆锥的母线长为11cm,侧面积为55πcm2,圆锥的底面圆的半径为_____.【答案】5【解析】由圆锥的侧面展开图面积公式得:55π÷π÷11=5.16. 如图,G为△ABC的重心,DE过点G,且DE∥BC,交AB、AC,分别于D、E两点,则△ADE与△ABC的面积之比为_____.【答案】【解析】∵G为△ABC的重心,.∵DE∥BC,∴△ADE∽△ABC,.17. 如图,直线与x轴、y 轴分别交于点A 和点B ,点C在直线AB上,且点C 的纵坐标为一1 ,点D 在反比例函数y=的图象上,CD平行于y轴,△OCD的面积S=,则k的值为_____.【答案】5【解析】;∵把y=-1代入直线,,∴x=2,∴点C(2,−1),∵CD平行于y轴,∴O到CD的距离是2,设D(2,y),则DC=y+1∵S△OCD=12×2×(y+1)=,∴y=,∴D(2,)∵点D在反比例函数y=的图象上∴k=xy=2×=518. 如图,Rt△ABC中,∠C=90°,AC=BC=5,若P为平面内一点,且AP=, BP=,则CP=_____.【答案】5或【解析】如图1,旋转△ACP至△BCF处,连接PF. 设PF=x.由勾股定理得解之得.如图2,作BF⊥AP交AP的延长线于点F. 同理可得.∵∠ACB+∠AFB=180°,∴A,C,B,F共圆,∴∠AFC=∠BFC,∴△CPF≌△CBF(SAS)∴CP=CB=5故答案为:或5.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19. (1)计算:(2)解不等式组:【答案】(1)2;(2).【解析】(1)解:原式=1+3--2+=2(2)解:【答案】,【解析】解: ,21. 为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家.【答案】(1)500,90°;(2)380,补图见解析;(3)合格率排在前两名的是C、D两个厂家【解析】(1)500,90°;(2)380,如图所示;A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家22. 江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在某分期比赛中有A、B、C三组家庭进行比赛:(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.【答案】(1);(2).【解析】试题分析:(1)、根据概率的计算法则得出概率;(2)、设三个爸爸分别为A,B,C,对应的三个妈妈分别为A′,B′,C′,然后根据题意得出概率.试题解析:(1)、∵3组家庭都由爸爸、妈妈和宝宝3人组成,∴选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率=;(2)、设三个爸爸分别为A,B,C,对应的三个妈妈分别为A′,B′,C′,最少正确找对父母其中一人的情况有5种,所以其概率=.考点:概率的计算23. 如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD.求∠BDC的度数.【答案】⑴ 证明见解析;⑵ 90°.【解析】试题分析:(1)、根据旋转图形的性质可得:CD=CE,∠DCE=90°,根据∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,结合已知条件得出三角形全等;(2)、根据全等得出∠BDC=∠E,∠BCD=∠FCE,从而得出∠DCE=90°,然后根据EF∥CD得出∠BDC=90°.试题解析:(1)、∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE,在△BCD和△FCE中, CB=CF∵BCD=∠FCE,CD=CE,CB=CF,∠BCD=∠FCE∴△BCD≌△FCE(SAS).(2)、由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°-∠DCE=90°,∴∠BDC=90°.考点:(1)、旋转图形的性质;(2)、三角形全等的证明与性质.24. 几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:小芳:今天看演出,如果我们每人一张票,会差两张票的钱.小明:过两天就是“儿童节”了,到时票价会打六折,我们每人一张票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴们的人数.【答案】小伙伴们的人数为8人.【解析】解:设票价为x元,由题意得,=+2,解得:x=60,经检验,x=60是原方程的根,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.25. 如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.(1)求证:AB=AC;(2)若,AC=,求△ADE的周长.【答案】(1)证明见解析;(2)12+.【解析】(1)证明:∵AD=DC,∴∠CAD=∠C.∵AC是⊙O的切线,∴∠CAE=90°.∴∠CAD+∠EAD=90°.∵AE是⊙O的直径,∴∠ADE=90°.∴∠E+∠EAD=90°.∴∠CAD=∠E.又∵∠E=∠B,∴∠C=∠B.∴AB=A C.(2)解:过点D作DF⊥AC于点F.①由DA=DC,AC=,可得CF==.②由∠C=∠E,,可得.在Rt△CDF中,求出CD=DA=3(或利用△CDF∽△ADE求).③在Rt△ADE中,利用,求出AE=9.再利用勾股定理得出DE=④△ADE的三边相加得出周长为12+.26. 在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣2),,…,都是梦之点,显然梦之点有无数个.(1)若点 P(3,b)是反比例函数 (n 为常数,n ≠ 0) 的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是,①⊙O上的所有梦之点的坐标为;②已知点 M(m,3),点 Q 是(1)中反比例函数图象上异于点 P 的梦之点,过点Q 的直线 l 与 y 轴交于点 A,tan∠OAQ= 1.若在⊙ O 上存在一点 N,使得直线MN ∥ l,求出 m 的取值范围.【答案】 (1);(2) ①(1,1)或(-1,-1);②m的取值范围为-5≤m≤-1.(2)①(1)由梦之点坐标特点可得b=2,再将P坐标代入中,即可求得n的值;【解析】试题分析:设⊙O上梦之点坐标是(a,a),由圆的半径是得:则a=1或a=-1,所以⊙O上所有梦之点坐标是(1,1)或(-1,-1);②由(1)可得,异于点P 的梦之点是(-2,-2),设直线MN为y=-x+b,求得m的取值范围;当直线MN为y=x+b时,求得m的取值范围;试题解析:解:(1) ∵P(2,b)是梦之点∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2) ①∵⊙O的半径是设⊙O上梦之点坐标是(a,a)∴∴a=1或a=-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点是(-2,-2)∵tan∠OAQ=1∴∠OAQ==45°由已知MN∥l或MN⊥l,如图所示:∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN 记为,其中为切点,为直线与y轴的交点。

九年级中考数学第三次模拟试卷1(含参考答案与解析)

九年级中考数学第三次模拟试卷1(含参考答案与解析)

九年级中考数学第三次模拟试卷1一.选择题(共6小题,满分18分,每小题3分)1.下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.﹣1的倒数是﹣12.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.3.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°4.一组数据40、10、80、20、70、30、50、90、70.若这组数据的平均数为m,众数为n,中位数为p,则m、n、p之间的大小关系为()A.m=n=p B.p<m<n C.p<n<m D.n<m<p5.如图,直线AB∥CD,∠1=60°,∠2=50°,则∠E=()A.80°B.60°C.70°D.50°6.如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒二.填空题(共6小题,满分18分,每小题3分)7.计算:(﹣1)0+()﹣1=.8.2008年9月27日,神舟七号航天员翟志刚完成中国历史上第一次太空行走,他相对地球行走了5 100 000米路程,用科学记数法表示为.9.关于x的一元二次方程x2﹣2x+m﹣3=0有两个实数根,则m的取值范围是.10.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.11.如图,△ABO中,AO=AB,点B(10,0),点A在第一象限,C,D分别为OB、OA的中点,且CD=6.5,则A点坐标为.12.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.三.解答题(共5小题,满分30分,每小题6分)13.解方程:=214.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个直角三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是5.15.先化简(1﹣)÷,然后从不等式2x﹣6<0的非负整数解中选取一个合适的解代入求值.16.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.17.小明家将于5月1日进行自驾游,由于交通便利,准备将行程分为上午和下午.上午的备选地点为:A﹣鼋头渚、B﹣常州淹城春秋乐园、C﹣苏州乐园,下午的备选地点为:D﹣常州恐龙园、E﹣无锡动物园.(1)请用画树状图或列表的方法分析并写出小明家所有可能的游玩方式(用字母表示即可);(2)求小明家恰好在同一城市游玩的概率.四.解答题(共4小题,满分32分,每小题8分)18.现代营养学家用身体质量指数判断人体的健康状况,这个指数等于人体质量(千克)与人体身高(米)平方的商,一个健康人的身体质量指数在20~25之间,身体质量指数低于18,属于不健康的瘦;身体质量指数高于30,属于不健康的胖.(1)A同志的体重为90千克,身高为1.6米,A属于哪种类型的人?(2)B同志的体重在65~70之间,经测定该同志的身体质量指数为23,请估算B同志的身高.19.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.为了配合数学课程改革,某县举行了初三年级“数学知识应用”竞赛(满分100分).为了解初三年级参赛的1万名学生竞赛成绩情况,现从中随机抽取部分学生的竞赛成绩作为一个样本,整理后分成5组,绘制出频数分布直方图.已知图中从左到右的第一、第二、第四、第五小组的频数分别是50,100,200,25,其中第二小组的频率是0.2.(1)求第三小组的频数,并补全频数分布直方图;(2)抽取的样本中,学生竞赛成绩的中位数落在第几小组?(3)若成绩在90分以上(含90分)的学生获优胜奖,请你估计全县初三参赛学生中获优胜奖的人数.21.如图,抛物线y=与x轴交于A,B(点A在点B的左侧)与y轴交于点C,连接AC、BC.过点A作AD∥BC交抛物线于点D(8,10),点P为线段BC下方抛物线上的任意一点,过点P 作PE∥y轴交线段AD于点E.(1)如图1.当PE+AE最大时,分别取线段AE,AC上动点G,H,使GH=5,若点M为GH的中点,点N 为线段CB上一动点,连接EN、MN,求EN+MN的最小值;(2)如图2,点F在线段AD上,且AF:DF=7:3,连接CF,点Q,R分别是PE与线段CF,BC的交点,以RQ为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CK交AD于点K,将△ACK绕点C顺时针旋转75°得到△A′CK′,当矩形RQTS与△A′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.五.解答题(共1小题,满分10分,每小题10分)22.如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED是一个平行四边形,平行四边形对角线AE交BD、CD分别为点G和点H.(1)证明:DG2=FG•BG;(2)若AB=5,BC=6,则线段GH的长度.六.解答题(共1小题,满分12分,每小题12分)23.如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形.△OAB 的外接圆交y轴的正半轴于点C.(1)点B的坐标是,点C的坐标是;(2)过点C的圆的切线交x轴于点D,则图中阴影部分的面积是;(3)若OH⊥AB于点H,点P在线段OH上.点Q在y轴的正半轴上,OQ=PH,PQ与OB交于点M.①当△OPM为等腰三角形时,求点Q的坐标;②探究线段OM长度的最大值是多少,直接写出结论.参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】根据倒数的定义可知.【解答】解:A、负数有倒数,例如﹣1的倒数是﹣1,选项错误;B、正数的倒数不一定比自身小,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、﹣1的倒数是﹣1,正确.故选:D.【点评】本题主要考查了倒数的定义及性质.乘积是1的两个数互为倒数,除0以外的任何数都有倒数,倒数等于它本身的数是±1.2.【分析】分别画出四个选项中简单组合体的三视图即可.【解答】解:A、左视图为,俯视图为,主视图与俯视图不同,故此选项不合题意;B、左视图为,俯视图为,主视图与俯视图相同,故此选项符合题意;C、左视图为,俯视图为,主视图与俯视图不同,故此选项不合题意;D、左视图为,俯视图为,主视图与俯视图不同,故此选项不合题意;故选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图和俯视图的画法.3.【分析】根据特殊角的三角函数值求解.【解答】解:∵sin A=,∠A为锐角,∴∠A=30°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.4.【分析】要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:平均数m=≈51;在这组数据中,70出现的次数最多,故n=70;将这组数据按从大到小的顺序排列(10,20,30,40,50,70,70,80,90),位于中间位置的数为50,故p=50.由上可知:p<m<n,故选:B.【点评】此题考查了平均数、中位数和众数的意义,解题的关键是正确理解各概念的含义.5.【分析】由AB∥CD,根据两直线平行,同位角相等,可得∠2=∠3,又因为对顶角相等,可得∠3=∠4;再根据三角形的内角和为180°,可得∠E的度数.【解答】解:∵AB∥CD,∴∠3=∠2=50°,∴∠4=∠3=50°,∵∠1+∠2+∠E=180°,∴∠E=180°﹣∠1﹣∠4=180°﹣60°﹣50°=70°.故选:C.【点评】此题考查了平行线的性质:两直线平行,同位角相等.还考查了三角形内角和定理.比较简单,解题要细心.6.【分析】首先求出汽车行驶各段所用的时间,进而根据红绿灯的设置,分析每次绿灯亮的时间,得出符合题意答案.【解答】解:∵甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,∴两车的速度为:=(m/s),∵AB之间的距离为800米,BC为1000米,CD为1400米,∴分别通过AB,BC,CD所用的时间为:=96(s),=120(s),=168(s),∵这两辆汽车通过四个路口时都没有遇到红灯,∴当每次绿灯亮的时间为50s时,∵=1,∴甲车到达B路口时遇到红灯,故A错误;∴当每次绿灯亮的时间为45s时,∵=3,∴乙车到达C路口时遇到红灯,故B错误;∴当每次绿灯亮的时间为40s时,∵=5,∴甲车到达C路口时遇到红灯,故C错误;∴当每次绿灯亮的时间为35s时,∵=2,=6,=10,=4,=8,∴这两辆汽车通过四个路口时都没有遇到红灯,故D正确;则每次绿灯亮的时间可能设置为:35秒.故选:D.【点评】此题主要考查了推理与论证,根据题意得出汽车行驶每段所用的时间,进而由选项分析是解题关键.二.填空题(共6小题,满分18分,每小题3分)7.【分析】根据零指数幂、负指数幂的运算法则解答即可.【解答】解:(﹣1)0+()﹣1=1+3=4.故答案为:4.【点评】主要考查了零指数幂,负指数幂的运算,负指数为正指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将5 100 000用科学记数法表示为5.1×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【分析】由方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣3=0有两个实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=16﹣4m≥0,解得:m≤4.故答案为:m≤4.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有两个实数根”是解题的关键.10.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,解得r=1,然后利用扇形的半径等于圆锥的母线长和勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以所围成的圆锥的高=.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.11.【分析】连接AC,根据等腰三角形三线合一的性质可得AC⊥BC,根据线段中点的定义求出OC,再根据直角三角形斜边上的中线等于斜边的一半求出AO,利用勾股定理列式求出AC,然后写出点A的坐标即可.【解答】解:如图,连接AC,∵AO=AB,点C是OB的中点,∴AC⊥BC,OC=OB=×10=5,∵点D是AO的中点,∴AO=2CD=2×6.5=13,由勾股定理得,AC===12,所以,点A(5,12).故答案为:(5,12).【点评】本题考查了坐标与图形性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,等腰三角形的性质,熟记性质并作辅助线构造成直角三角形是解题的关键.12.【分析】求出BA的值,根据已知画出符合条件的三种情况:①当PA=AB=5cm时,②当P和C重合时,PB=AB=5cm,③作AB的垂直平分线交AC于P,此时PB=PA,连接PB,求出即可.【解答】解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5(s);②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8(s);③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=(s),故答案为:5或8或.【点评】本题考查了菱形性质和等腰三角形的判定的应用,主要考查学生能否求出符合条件的所有情况.三.解答题(共5小题,满分30分,每小题6分)13.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母,得2x﹣(x﹣1)=4(x﹣5),去括号,得2x﹣x+1=4x﹣20,移项并合并同类项,得﹣3x=﹣21,系数化为 1,得x=7,经检验,x=7是原方程的解,所以原方程的解是x=7.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为、2、的线段,画三角形即可.(3)利用勾股定理作一个边长为的正方形即可得.【解答】解:(1)如图1所示,Rt△ABC即为所求;(2)如图所示,Rt△DEF即为所求;(3)如图所示,正方形PQRS即为所求.【点评】此题主要考查了作图与应用作图.本题需仔细分析题意,结合图形,利用勾股定理即可解决.15.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值,代入计算即可求出值.【解答】解:原式=•=•=,由不等式2x﹣6<0,得到x<3,∴不等式2x﹣6<0的非负整数解为x=0,1,2,则x=0时,原式=2.【点评】此题考查了分式的化简求值,以及一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.17.【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,注意要不重不漏;(2)根据(1)求得所有情况与符合条件的情况,求其比值即可.【解答】解:(1)列表如下:或树状图;∴小明家所有可能选择游玩的方式有:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)小明家恰好在同一城市游玩的可能有(A,E),(B,D)两种,∴小明家恰好在同一城市游玩的概率==.【点评】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.四.解答题(共4小题,满分32分,每小题8分)18.【分析】(1)根据已知条件列出算式,进行有理数的混合运算,再根据所给条件判断他的健康情况.(2)根据指数的计算公式,分别求出重量在65千克时的身高及重量在70千克的身高,从而可估算出B同志的身高.【解答】解:(1)A同志的指数==35.16,身体质量指数高于30,所以A同志属于不健康的胖.(2)B同志的指数==23,身高2=,又∵B同志的体重在65~70之间,如果体重为65千克,则身高==1.68米;如果体重为70千克,则身高==1.74米,∴B同志的身高在1.68至1.74之间.【点评】本题考查了一元一次不等式的应用,题目涉及了身体质量指数这个概念,比较新颖,关键是掌握身体质量指数的计算方法,另外在第二问估算身高时要将两端的值算出来,这样才能进行估算.19.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B 的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.20.【分析】(1)总数是100÷0.2=500,所以第三组的频数是125,画图即可;(2)根据中位数的求算方法可知中位数落在第三组;(3)用样本来估计总体.【解答】解:(1)样本容量=100÷2=500,则第三小组的频数=500﹣50﹣100﹣200﹣25=125,补图(2)∵中位数是从小到大排列的第250,第251这两个数据和的平均数,又∵落在前三小组的频数分别为50,100,125∴抽取的样本中的中位数落在第三小组;(3)∵10000×=500,∴估计全县初三参赛学生中获优胜奖的有500人.【点评】主要考查了频率的计算方法和如何画频率分布折线图,还考查了中位数的确定方法和用样本估计总体的能力.21.【分析】(1)先通过二次函数解析式求出点A,B的坐标,再求出AC,AB,CB的长度,用勾股定理逆定理证直角三角形,求出直线AD的解析式,用含相同字母的代数式分别表示E,Q,P的坐标,并表示出EP长度,求出AE长度,根据二次函数的性质求出EA+EP最大值时点E的坐标.最后作出点E关于CB的对称点,利用两点之间线段最短可求出结果;(2)由旋转的性质得到三角形CA′K与三角形CAK全等,且为等腰直角三角形,求出A′,K′的坐标,求出直线A′K′及CB的解析式,求出交点坐标,通过图象观察出P的横坐标的取值范围.【解答】解:(1)在抛物线y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=6,当x=0时,y=﹣6,∵抛物线y=x2﹣x﹣6与x轴交于A,B(点A在点B左侧),与y轴交于点C,∴A(﹣2,0),B(6,0),C(0,﹣6),∴AB=8,AC=,BC=,在△ABC中,AC2+BC2=192,AB2=192,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵AD∥BC,∴∠CAD=90°,过点D作DL⊥x轴于点L,在Rt△ADL中,DL=10,AL=10,tan∠DAL==,∴∠DAB=30°,把点A(﹣2,0),D(8,10)代入直线解析式,得,解得k=,b=2,∴y AD=x+2,设点E的横坐标为a,EP⊥y轴于点Q,则E(a, a+2),Q(a,0),P(a, a2﹣a﹣6),∴EQ=a+2,EP=a+2﹣(a2﹣a﹣6)=a2+a+8,∴在Rt△AEB中,AE=2EQ=a+4,∴PE+AE=a+4+(a2+a+8)=a2a+12=(a﹣5)2+∴根据函数的性质可知,当a=5时,PE+AE有最大值,∴此时E(5,7),过点E作EF⊥CB交CB的延长线于点F,则∠EAC=∠ACB=∠ACF=90°,∴四边形ACFE是矩形,作点E关于CB的对称点E',在矩形ACFE中,由矩形的性质及平移规律知,x F﹣x E=x C﹣x A,y E﹣y F=y A﹣y C,∵A(﹣2,0),C(0,﹣6),E(5,7),∴x F﹣5=0﹣(﹣2),7﹣y F=0﹣(﹣6),∴x F=7,y F=1,∴F(7,1),∵F是EE′的中点,∴,,∴x E′=9,y E′=﹣5,∴E'(9,﹣5),连接AE',交BC于点N,则当GH的中点M在E′A上时,EN+MN有最小值,∴AE′==2,∵M是Rt△AGH斜边中点,∴AM=GH=,∴EN+MN=E′M=2﹣,∴EN+MN的最小值是2﹣.(2)在Rt△AOC中,∵tan∠ACO==,∴∠AOC=30°,∵KE平分∠ACB,∴∠ACK=∠BCK=45°,由旋转知,△CA′K′≌△CAK,∠AC′A′=75°,∴∠OCA′=75°﹣∠ACO=45°,∠AC′K′=45°,∴OCK′=90°,∴K′C⊥y轴,△CAK′是等腰直角三角形,∴A′C=AC=4,∴x A′==2,y A′=2﹣6,∴A′(2,2﹣6),∴K′(4,﹣6),将A′(2,2﹣6),K′(4,﹣6),代入一次函数解析式,得,解得k=﹣1,b=4﹣6,∴y A′K′=﹣x+4﹣6,∵CB∥AD,∴将点C(0,﹣6),B(6,0)代入一次函数解析式,得,解得k=,b=﹣6,∴y CB=x﹣6,联立y A′K′=﹣x+4﹣6和y CB=x﹣6,得﹣x+4﹣6=x﹣6,∴x=6﹣6,∴直线CB与A′K′的交点横坐标是6﹣6,∵当EP经过A′时,点P的横坐标是2,∴如图2,当2<x P<6﹣6时,重叠部分是轴对称图形;如图3,由于RS的长度为2,由图可看出当x P=2﹣1时,重叠部分同样为轴对称图形;综上,当x P=2﹣1或2<x P<6﹣6时,矩形RQRS和△A′CK′重叠部分为轴对称图形.【点评】本题考查了勾股定理的逆定理,三角函数,二次函数的性质,旋转的性质,两点之间线段最短等众多知识点,综合性非常强,解此题的关键是对初中阶段各知识点都要掌握熟练.五.解答题(共1小题,满分10分,每小题10分)22.【分析】(1)由已知可证得△ADG∽△EBG,△AGF∽△EGD,根据相似三角形的对应边成比例即可得到DG2=FG•BG;(2)由已知可得到DH,AH的长,又因为△ADG∽△EBG,从而求得AG的长,则根据GH=AH﹣AG就得到了线段GH的长度.【解答】解:(1)证明:∵ABCD是矩形,且AD∥BC,∴△ADG∽△EBG.∴=.又∵△AGF∽△DGE,∴=.∴=.∴DG2=FG•BG.(2)∵ACED为平行四边形,AE,CD相交点H,∴DH=DC=AB=.∴在直角三角形ADH中,AH2=AD2+DH2∴AH=.又∵△ADG∽△BGE,∴==.∴AG=GE=×AE=×13=.∴GH=AH﹣AG=﹣=.【点评】此题主要考查学生对相似三角形的判定,平行四边形的性质及矩形的性质等知识点的掌握情况.六.解答题(共1小题,满分12分,每小题12分)23.【分析】(1)由于OA是等边三角形的边,又是圆的弦,过B点作OA的垂线,根据等边三角形的性质,可求B点坐标,连接AC,则∠OCA=∠OBA=60°,解直角△OCA可求OC.(2)因为∠COA=90°,所以CA为直径,CD为圆的切线,∠OCA=60°,所以∠DCO=30°,解直角△OCD可求OD,取AC的中点(圆心)为O',用阴影部分面积=△OCD面积+△OO'C面积﹣扇形OO'C面积可求解.(3)①设点Q的坐标为(0,t),计算OH的长,△OPM为等腰三角形,有三种可能:OP=OM,OM=PM,OP=PM,根据每一种情况下的图形特征,分别求解.【解答】解:(1)过点B作OA的垂线,垂足为G,∵A(2,0),∴OA=2,OG=OA=1,设B点坐标为(1,t),则=2,∴t=,∴B(1,)(1分)连接AC,则∠OCA=∠OBA=60°,∴=tan60°,OC===,∴C(0,).故答案为(1,),(0,).(2)∵∠COA=90°,∴CA为直径,又∵CD为圆的切线,∠OCA=60°,∴∠DCO=30°,∴OD=tan∠DCO•OC=×=,∵AC是⊙O的直径,BG为△OAB的边OA的中线,∴O′为△ABC外接圆的圆心,∵∠OCA=60°,∴∠OCA=30°,∠OO′C=60°,S阴影=S△OCD+S△OO'C﹣S扇形OO'C=××+××1﹣=.故答案为:.(3)①设点Q的坐标为(0,t),OH=OA×cos60°=,(I)若OP=OM,∠OPM=∠OMP=75°,∴∠OQP=45°,过点P做PE⊥OA,垂足为E,则有:OE=EP,即t﹣(﹣t)=(t),解得:t=1,即点Q的坐标为(0,1).(II)若OM=PM,则∠MOP=∠MPO=30°,∴PQ∥OA,从而OQ=0.5OP,即t=(﹣t),解得t=即点的坐标为(0,),(III)若OP=PM,∠POM=∠PMO=∠COB,此时PQ∥OC,不满足题意.②线段OM的长的最大值为.【点评】本题考查了正三角形与圆,圆的切线性质,等腰三角形条件的探求方法,面积求法及分类讨论的思想,具有较强的综合性.。

2023年陕西省西安市西工大附中中考九年级第三次模拟考试数学试卷(含答案解析)

2023年陕西省西安市西工大附中中考九年级第三次模拟考试数学试卷(含答案解析)

2023年陕西省西安市西工大附中中考九年级第三次模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.12023-的绝对值是()A .2023-B .2023C .12023D .12023-2.如图是某种零件模型的示意图,它的主视图是()A .B .C .D .3.下列运算正确的是()A .3412x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=4.如图,在ABC 中,AB AC =,80BAC ∠=︒,AD 是中线,BE 是角平分线,AD 与BE 交于点O ,则AOB ∠的度数为()A .130︒B .125︒C .120︒D .115︒5.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,若16AC =,8BD =,则菱形ABCD 的边长为()A .B .C .8D .106.将直线y kx =向右平移3个单位得到直线2y x b =+,则k ,b 的值分别为()A .2k =,6b =-B .2k =,6b =C .2k =-,6b =-D .2k =-,6b =7.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,以点O 为圆心的量角器(半圆O )的直径和AB 重合,零刻度落在点A 处(即从点A 处开始读数),点D 是AB 上一点,连接CD 并延长与半圆交于点P ,若72BDC ∠=︒,则点P 在量角器上的读数为()A .36︒B .54︒C .64︒D .72︒8.已知抛物线:()2280y mx mx m =-+≠,若点()11,A x y ,()22,B x y ,()4,0C 均在该抛物线上,且1224x x <-<<,则下列结论正确的是()A .120y y >>B .210y y >>C .120y y >>D .210y y >>二、填空题9.下列各数:227,2π-,3.14,其中无理数有______个.10.一个多边形的内角和是1440︒,则这个多边形的边数为________.11.如图,在ABC 中,56A ∠=︒,将ABC 绕点B 旋转得到A BC ''△,且点A '落在AC 边上,则CA C ''∠=______︒.12.如图,点A 在反比例函数4y x=的图象上,过点A 作AB x ⊥轴于点B ,AC y ⊥轴于点C ,以O 为位似中心把四边形OBAC 放大得到四边形OB A C ''',且相似比为2:3,则经过点A '的反比例函数表达式为______.13.如图,平行四边形ABCD 中,2AB =,3BC =,=60B ∠︒,点P 在AD 上,且2AP =,若直线l 经过点P ,将该平行四边形的面积平分,并与平行四边形的另一边交于点Q ,则线段PQ 的长度为______.三、解答题14.计算:()(211tan 60----+-°.15.解不等式组:()3173232x x x x ⎧-≥-⎪⎨+>-⎪⎩.16.化简:212111x x x -⎛⎫-÷ ⎪--⎝⎭.17.如图,已知四边形ABCD ,连接BD ,请用尺规作图法在BC 边上找一点P ,使得ABP 与ABD △的面积相等.(不写作法,保留作图痕迹)18.如图,在ABC 中,AB AC =,点D 在AC 上,过点C 作CE AB ∥,且CE AD =,连接AE .求证:AE BD =.19.近年来,新能源汽车深受人们的喜爱,某4S 店上周销售A 型新能源汽车2辆,销售B 型新能源汽车3辆,销售额为98万元;本周销售A 型新能源汽车3辆,销售B 型新能源汽车1辆,销售额为91万元;这两周这两款型号的新能源车销售单价不变,求出每辆A 型车和B 型车的售价各为多少万元?20.一只不透明袋子中装有3个白球和2个红球,这些球除颜色外都相同,某课外学习小组做摸球试验.(1)将球搅匀后从中任意摸出一个球,摸到红球的概率为______;(2)将球搅匀后从中任意摸出两个球,请用树状图或列表的方法求恰好摸到1个白球,1个红球的概率.21.小延想要测量学校教学楼AB 的高度,他站在N 点处时,视线通过旗杆DE 的顶端与顶楼的窗子下沿C 重合,他向前走到点G 处时,视线通过旗杆DE 的顶端与楼顶A 重合,已知小延的眼睛与地面的距离 1.6MN FG ==米,2NG =米,6GE =米,8BE =米,3AC =米,MN 、FG 、DE 、AB 均与地面垂直,且在同一平面内,请你根据以上数据计算教学楼AB 的高度.22.某校初三年级举办传统文化知识竞赛,甲、乙两个班都派出a 名学生参赛,比赛结束后,将成绩整理成下列图表:甲组成绩统计表分数/分人数/人100190480m 701601(1)求a 和m 的值;(2)将乙班成绩条形图补充完整;(3)若从甲、乙两班中选出一个班代表年级参加学校比赛,若只考虑平均成绩,请你分析选哪个班代表学校参赛比较合适.23.小林同学从家出发,步行到离家a 米的公园散步,速度为50米/分钟;6分钟后哥哥也从家出发沿着同一路线骑自行车到公园,哥哥到达公园后立即以原速返回家中,两人离家的距离y (米)与小林出发的时间x (分钟)的函数关系如图所示.(1)=a ______;(2)求CD 所在直线的函数表达式;(3)小林出发多长时间与哥哥第二次相遇?24.如图,已知ABC 的外接圆直径是AB ,点O 是圆心,点D 在O 上,且 AD BD=,过点D 作O 的切线,与CA 、CB 的延长线分别交于点E 、F .(1)求证:AB EF ∥;(2)若O 的半径为5,8BC =,求DF 的长度.25.已知抛物线2y ax bx c =++的顶点坐标为81,3⎛⎫⎪⎝⎭,与y 轴的交点型标为()0,2.(1)求该抛物线的解析式;(2)点A 、B 在x 轴上方的抛物线上,点A 在点B 左侧,点C 、D 在x 轴上,且四边形ABCD 为矩形,是否存在点A ,使得矩形ABCD 周长最大?若存在,求点A 的坐标;若不存在,请说明理由.26.问题提出:(1)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.小林用边长为10的正方形ABCD 制作了一个“弦图”:如图①,在正方形ABCD 内取一点E ,使得90BEC ∠=︒,作DF CE ⊥,AG DF ⊥,垂足分别为F 、G ,延长BE 交AG 于点H .若2EH =,求tan BCE ∠;问题解决:(2)如图②,四边形ABCD 是公园中一块空地,50AB BC ==米,AD CD =,90ABC ∠=︒,60D ∠=︒,空地中有一段半径为50米的弧形道路(即 AC ),现准备在 AC 上找一点P ,将弧形道路改造为三条直路(即PA PB PC 、、),并要求90BPC ∠=︒,三条直路将空地分割为ABP 、BCP 和四边形APCD 三个区域,用来种植不同的花草.①求APC ∠的度数;②求四边形APCD 的面积.参考答案:1.C【分析】根据正数和零的绝对值是它本身,负数的绝对值是它的相反数进行求解即可.【详解】解:12023-的绝对值是12023,故选C .【点睛】本题主要考查了求一个数的绝对值,熟知绝对值的意义是解题的关键.2.C【分析】主视图即从正面看几何体,据此解题.【详解】该零件模型是一个空心圆柱,从正面看主视图是中间有两条竖直虚线的矩形.故选:C .【点睛】本题考查简单几何体的主视图,是基础考点,难度较易,掌握相关知识是解题关键.3.B【分析】利用合并同类项,同底数幂的乘除法运算法则以及积的乘方分别分析得出即可.【详解】解:A 、347x x x ⋅=,故错误,不符合题意;B 、()32628x x -=-,故正确,符合题意;C 、633x x x ÷=,故错误,不符合题意;D 、2x 和3x 不是同类项,不能合并,故错误,不符合题意;故选B .【点睛】此题主要考查了合并同类项,同底数幂的乘除法运算法则以及积的乘方运算,正确掌握运算法则是解题关键.4.D【分析】根据等腰三角形的性质可求ABC ∠,根据角平分线的定义可求ABE ∠,根据三角形三线合一的性质可求BAD ∠,再根据三角形内角和可求AOB ∠.【详解】解:∵AB AC =,80BAC ∠=︒,∴()118080502ABC ACB ∠=∠=︒-︒=︒,∵BE 平分ABC ∠,∴1252ABE ABC ∠=∠=︒,∵AD 是中线,∴1402BAD CAD BAC ∠=∠=∠=︒,∴180115AOB ABE BAD ∠=︒-∠-∠=︒,故选:D .【点睛】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和,关键是求得ABE ∠和BAD ∠.5.A【分析】根据菱形的性质,利用勾股定理即可求出边长.【详解】解:∵四边形ABCD 是菱形,∴AC BD ⊥,182AO CO AC ===,142BO DO BD ===,∴AB =故选:A .【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算边长是解题的关键.6.A【分析】根据左加右减可得3y kx k =-,根据题意即可解得.【详解】直线y kx =向右平移3个单位得到:()33y k x kx k =-=-∴32kx k x b -=+∴2k =,6b =-故本题选:A .【点睛】本题考查了一次函数图象的平移变换,熟练掌握上述知识点是解答本题的关键.7.B【分析】根据半圆的直径与等腰直角三角形斜边重合,由三角形的外角和定理求出ACD ∠,如图所示,连接OP ,根据圆周角与圆心角的关系算出AOP ∠,由此即可求解.【详解】解:∵Rt ABC △中,AC BC =,90ACB ∠=︒,∴45CAB CBA ∠=∠=︒,在ACD 中,BDC ∠是外角,且72BDC ∠=︒,∴724527ACD BDC CAB ∠=∠-∠=︒-︒=︒,如图所示,连接OP ,根据题意得,222754AOP ACP ∠=∠=⨯︒=︒,∴点P 在量角器上的读数为54︒,故选:B .【点睛】本题主要考查等腰直角三角形,圆周角的综合,掌握三角形外角和定理,圆周角与圆心角的关系是解题的关键.8.D【分析】根据点C 求出抛物线表达式,得到开口方向,再求出抛物线与x 轴交点,最后根据1224x x <-<<,结合抛物线的性质得到结果.【详解】解:∵()4,0C 在()2280y mx mx m =-+≠图像上,∴01688m m =-+,解得:1m =-,∴228y x x =-++,开口向下,令2280y x x =-++=,则2x =-或4x =,∴抛物线与x 轴交于()2,0-和()4,0,∵1224x x <-<<,∴210y y >>,故选D .【点睛】本题考查了二次函数解析式,图像和性质,与x 轴的交点坐标,解题的关键是求出解析式,结合性质作答.9.2【分析】根据无理数的定义:无线不循环小数,判断即可.3=,∴无理数有2π-,共2个,故答案为:2.【点睛】本题考查了无理数,解题的关键是掌握无理数的定义以及常见形式.10.10【分析】设这个多边形的边数为n ,根据多边形内角和公式列出方程,解方程即可求解.【详解】解:设这个多边形的边数为n ,则()21801440n -⨯︒=︒,解得10n =.故答案为:10.【点睛】本题考查了多边形内角和公式,熟练掌握多边形内角和公式是解题的关键.11.68【分析】根据旋转的性质得到AB A B '=,56A BA C ''∠=∠=︒,根据等边对等角得到56BA A '∠=︒,利用三角形内角和求出68ABA '∠=︒,再利用三角形外角的性质可得结果.【详解】解:由旋转可知:AB A B '=,56A BA C ''∠=∠=︒,∴56A BA A '∠=∠=︒,∴180268ABA A '∠=︒-⨯∠=︒,∴68CA C CA B BA C A ABA BA C ''''''''∠=∠-∠=∠+∠-∠=︒,故答案为:68.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练掌握旋转的性质是解题的关键.12.9【分析】设经过点A '的反比例函数表达式为ky x=,根据反比例函数的比例系数的意义得到4OBAC AC AB S ⋅==四边形,再根据位似图形的相似比得到面积之比,从而求出四边形OB A C '''的面积,可得k 值.【详解】解:设经过点A '的反比例函数表达式为ky x=,∵点A 在反比例函数4y x=的图象上,AB x ⊥,AC y ⊥,∴4OBAC AC AB S ⋅==四边形,∵四边形OBAC 和四边形OB A C '''的相似比为2:3,∴面积之比为4:9,∴四边形OB A C '''的面积为4499÷=,∴9k A C A B ''''=⋅=,故答案为:9.【点睛】本题考查了反比例函数系数k 的几何意义,位似图形的性质,解答此题的关键是根据反比例函数系数k 的几何意义求出k 的值.13【分析】过点C 作CR AD ⊥,垂足为R ,根据平行四边形的性质得出相应条件,求出1DP =,得到点P 与点R 重合,利用勾股定理求出CP ,根据直线平分平行四边形的面积可得直线经过对角线交点O ,证明()ASA ODP OBQ △≌△,得到2CQ AP ==,利用勾股定理即可求出PQ .【详解】解:在平行四边形ABCD 中,对角线交于点O ,2AB CD ==,3BC AD ==,60ABC ADC ∠=∠=︒,AD BC ∥,AO CO =,如图,过点C 作CR AD ⊥,垂足为R ,∴30DCR ∠=︒,OAP OCQ ∠=∠,∴112DR CD ==,∵2AP =,∴1DP =,即DR DP =,即点P 与点R 重合,∴CP ==∵直线l 平分平行四边形ABCD 的面积,∴直线l 经过对角线的交点O ,在OAP △和OCQ △中,OAP OCQ AOP COQ OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ASA ODP OBQ △≌△,∴2CQ AP ==,∵AD BC ∥,CP AD ⊥,∴CP BC ⊥,∴PQ =.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,含30度的直角三角形,解题的关键是添加辅助线,构造以PQ 为边的直角三角形.14.2-【分析】先计算负指数幂,特殊角的三角函数值,以及二次根式的乘法,再绝对值,并化简,最后合并计算.【详解】解:()(211tan 60----+-°11=--(11=+--2=-【点睛】本题考查了实数的混合运算,涉及了特殊角的三角函数值,二次根式的乘法,负指数幂,解题的关键是掌握各部分的运算方法.15.23x -≤<【分析】先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】()3173232x x x x ⎧-≥-⎪⎨+>-⎪⎩①②解①得:2x ≥-解②得:3x <则不等式组的解集为23x -≤<【点睛】本题考查了一元一次不等式组的解法,掌握不等式组的解法是解题关键.16.1x --【分析】先将括号内的部分通分,再利用同分母分式减法计算,将除法转化为乘法,再约分计算.【详解】解:212111x x x -⎛⎫-÷ ⎪--⎝⎭()()1121111x x x x x x --⎛⎫=-÷ ⎪--+-⎝⎭()()11212x x x x x +--=⨯--1x =--【点睛】本题考查了分式的混合运算,解题的关键是掌握通分和约分的方法.17.见解析【分析】以BD 为边,作BDP ABD ∠=∠即可.【详解】解:如图,点P 即为所求.可得BDP ABD ∠=∠,∴AB DP ∥,∴点D 到AB 的距离1h 和点P 到AB 的距离2h 相等,∴ABP ABD S S =△△.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.见解析【分析】根据平行线的性质得到ACE DAB ∠=∠,再证明()SAS AEC BDA ≌△△,可得结论.【详解】解:∵CE AB ∥,∴ACE DAB ∠=∠,在AEC △和BDA △中,CE AD ACE DAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AEC BDA ≌△△,∴AE BD =.【点睛】此题考查了全等三角形的判定和性质,熟记全等三角形的判定定理是解题的关键.19.每辆A 型车的售价是25万元,每辆B 型车的售价是16万元【分析】设每辆A 型车的售价是x 万元,每辆B 型车的售价是y 万元,利用总价=单价×数量,结合上周和本周销售两种型号新能源汽车的数量及销售额,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设每辆A 型车的售价是x 万元,每辆B 型车的售价是y 万元,由题意得:2398391x y x y +=⎧⎨+=⎩,解得:2516x y =⎧⎨=⎩,答:每辆A 型车的售价是25万元,每辆B 型车的售价是16万元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(1)25(2)35【分析】(1)直接根据概率公式求解即可;(2)画树状图展示所有20种等可能的结果数,找出恰好摸到1个白球,1个红球的结果数,然后根据概率公式求解.【详解】(1)解:∵共有3个白球和2个红球,∴摸到红球的概率为22325=+;(2)画树状图如下:共有20种等可能的结果,其中恰好摸到1个白球,1个红球的结果有12种,∴恰好摸到1个白球,1个红球的概率为123205=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.21.22.6米【分析】连接MF 并延长交DE AB 、分别于H 、P 两点,则由题意可证FDH FAP ∽、MDH MCP ∽,可得FH DH FP AP =、MH DH MP CP =,代入数据解方程即可.【详解】如图所示,连接MF 并延长交DE AB 、分别于H 、P 两点,则由题意可知MP AB MP NB ⊥∥、,设教学楼AB 高为h 米,则()()1.6 4.6AP h CP h =-=-米、米∵MN 、FG 、DE 、AB 均与地面垂直∴DH AP DH CP∥∥、∴90DHF APF DFH AFP∠=∠=︒∠=、∴FDH FAP∽∴FH DH FP AP =∴668 1.6DH h =+-∴()31.67DH h =-又∵DH CP∥∴MHD MPC∠=∠∵DMH CMP∠=∠∴MDH MCP∽∴MH DH MP CP =∴262683 1.6DH h +=++--∴()14.62DH h =-∴()()134.6 1.627h h -=-解得22.6h =故教学楼AB 的高22.6米.【点睛】本题考查了三角形相似的判定及性质、解一元一次方程等知识点,熟练掌握上述知识点是解答本题的关键.22.(1)10a =,3m =(2)见解析(3)甲班,理由见解析【分析】(1)由乙班70分人数及其所占百分比可得总人数a ,总人数减去甲班得60、70、90、100分的人数即可求得m ;(2)用a 分别减去60、70、90、100分的人数,可得乙班80分的人数,再补全条形图即可;(3)计算出两个班的加权平均数,再根据大小判断即可.【详解】(1)解:330%10a =÷=;1014113m =----=;(2)乙班80分的人数为:1013321----=(人),补全图形如图:(3)选甲班代表学校参赛.∵90480370100183601011x ⨯⨯+⨯+++⨯==⨯甲分,27038010601810093102x ⨯+⨯+⨯+⨯⨯+==乙分,∴乙班的平均数较小,故选择甲班.【点睛】本题考查条形统计图、扇形统计图,以及加权平均数的求法,解答本题的关键是明确题意,能从图表中获取关键数据.23.(1)600(2)2002400y x =-+(3)9.6分钟【分析】(1)根据图象,小林从家到公园与公园时间为12分钟,路程⨯速度即可求的a ;(2)由图象的出D 点的坐标,由于哥哥到达公园后立即以原速返回家中,所以来回则所用时间也相等,由此可以求出C 点坐标,进而可以求出CD 所在直线的函数表达式;(3)求出直线OA 与直线CD 的交点,其中交点的横坐标所表示实际意义是小林出与哥哥第二次相遇的时间.【详解】(1)解:由题意得:小林从家到公园与公园时间为12分钟,5012a \=´600=.(2)解:设(),C m n ,由题意得:12662m -=+9=,由图象得:600n =,()9,600C \;由图象得:()12,0D ;设CD 所在直线的函数表达式为:y kx b =+,则有:9600120x b x b +=⎧⎨+=⎩,解得:2002400k b =-⎧⎨=⎩,2002400y x \=-+.(3)解:由图象:()12,600A 设OA 所在直线的函数表达式为:1y k x =,则有112600k =,解得:150k =,50y x \=.由200240050x x -+=解得:9.6x =.故小林出发9.6分钟与哥哥第二次相遇.【点睛】本题主要考查了一次函数的实际应用问题;理解图象表示的实际意义,准确分析图象,并从方程角度结合行程问题求解是解决问题的关键.24.(1)见解析(2)353【分析】(1)连接OD ,根据切线的性质得到OD EF ⊥,根据 AD BD=得到OD AB ⊥,即可证明结论;(2)过点B 作BG EF ⊥,证明四边形OBDG 是矩形,求出6AC =,证明BGF ACB △∽△,可求出GF ,即可得到DF .【详解】(1)解:连接OD ,∵EF 与O 相切,切点为D ,∴OD EF ⊥,∵AB 为直径,∴180AOD BOD ∠+∠=︒,∵ AD BD=,∴90AOD BOD ∠=∠=︒,即OD AB ⊥,∴AB EF ∥;(2)过点B 作BG EF ⊥,∵90ODG BOD BGD ∠=∠=∠=︒,∴四边形OBDG 是矩形,∴5DG OB ==,5BG OD ==,∵AB 是O 的直径,∴90C ∠=︒,∵210AB OB ==,8BC =,∴6AC ==,∵AB EF ∥,∴F ABC ∠=∠,∵90BGF C ∠=∠=︒,∴BGF ACB △∽△,∴BG GF AC BC=,即568GF =,∴203GF =,∴353DF DG FG =+=.【点睛】本题考查了圆周角定理,切线的性质,平行线的判定,相似三角形的判定和性质,矩形的判定和性质,勾股定理,解题的关键是熟练运用相似三角形的判定和性质求出GF .25.(1)224233y x x =-++(2)125,23A ⎛⎫- ⎪⎝⎭【分析】(1)根据抛物线的顶点设解析式为()2813y a x =-+,再将()0,2代入,求出a 值即可;(2)设出点A 坐标224,233a a a ⎛⎫-++ ⎪⎝⎭,利用点A 的横坐标表示出矩形ABCD 的周长,再根据二次函数的性质求出点A 坐标即可.【详解】(1)解:设抛物线解析式为()2813y a x =-+,把()0,2代入,得()282013a =-+,解得:23a =-,∴抛物线解析式为:()222824123333y x x x =--+=-++;(2)存在点A ,使得矩形ABCD 周长最大,设224,233A a a a ⎛⎫-++ ⎪⎝⎭,∵抛物线的顶点坐标为81,3⎛⎫ ⎪⎝⎭,∴对称轴为直线1x =,设点C 的横坐标为m ,则12a m +=,∴2m a =-,∴222CD a a a =--=-,设矩形ABCD 的周长为w ,则()224222222233w AD CD a a a ⎛⎫=+=-+++- ⎪⎝⎭,∴24125323w a ⎛⎫=-++ ⎪⎝⎭,∵403-<,∴抛物线开口向下,函数有最大值,∴12a =-,代入24125323w a ⎛⎫=-++ ⎪⎝⎭得:253w =,∴125,23A ⎛⎫- ⎪⎝⎭.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,能够表示出矩形的周长是解答此题的关键.26.(1)3tan 4BCE ∠=;(2)①135︒;②(2500m APCD S =+四边形【分析】(1)利用同角的余角相等推出BAH EBC ∠=∠,证明ABH BCE ≌,得到AH BE =,BH CE =,设AH BE x ==,根据勾股定理,得222AH BH AB +=,代入数值求出6x =,得到6,8BE CE BH ===,即可根据公式求出答案;(2)①作AE AB ⊥,CE BC ⊥,证得四边形ABCE 是正方形,得到50AE CE ==米,点E 为 AC 的圆心,连接EP ,设PEC α∠=,则90PEA α∠=︒-,根据等边对等角求出,EPC EPA ∠∠的度数,即可得到APC ∠的度数;②连接AC ,过点C 作CF AD ⊥于点F ,证明PCA PAB ∽,得到PC AP AC PA BP AB ==,求出50PC AP PA BP ===,在Rt BPC △中,根据勾股定理得到222BP PC BC +=,求出BP =(负值舍去),得到2PC =⨯,AP =,过点A作AG PG ⊥交CP 的延长线于点G ,得到AG PG =,求出AG =(负值舍去),计算出APC S ,再证ACD 是等边三角形,得到AD CD AC ===,求出CF 得到ACD S ,即可根据APC ACD APCD S S S =+ 四边形求出答案.【详解】解:(1)∵90BEC ∠=︒,DF CE ⊥,AG DF ⊥,∴90EFG AGF BEC ∠=∠=∠=︒,∴四边形EFGH 是矩形,∴90AHB BEC ∠=︒=∠,∴90BAH ABH ∠+∠=︒,∵四边形ABCD 是正方形,∴,90AB BC ABC =∠=︒,∴90ABH EBC ∠+∠=︒,∴BAH EBC ∠=∠,∴ABH BCE ≌,∴AH BE =,BH CE =,设AH BE x ==,则2BH x =+,根据勾股定理,得222AH BH AB +=,∴()222210x x ++=,解得6x =,∴6,8BE CE BH ===,∴63tan 84BE BCE CE ∠===;(2)①作AE AB ⊥,CE BC ⊥,∴四边形ABCE 是矩形,又∵50AB BC ==,∴四边形ABCE 是正方形,∴50AE CE ==米,∵空地中有一段半径为50米的弧形道路(即 AC ),∴点E 为 AC 的圆心,连接EP ,设PEC α∠=,则90PEA α∠=︒-,∵EC EP =,∴()1111809090222EPC ECP PEC PEC α∠=∠=⨯︒-∠=︒-∠=︒-,∵EA EP =,∴()()111180909090452222EAP EPA PEA PEA αα∠=∠=⨯︒-∠=︒-∠=︒-︒-=︒+,∴1459013522APC EPA EPC αα∠=∠+∠=︒++︒-=︒;②连接AC ,过点C 作CF AD ⊥于点F ,∵135APC ∠=︒,∴36036013590135BPA APC BPC ∠=︒-∠-∠=︒-︒-︒=︒,∴APC BPA ∠=∠,∵AB BC =,90ABC ∠=︒,∴45BAC BCA ∠=∠=︒,∴45PAB PAC ∠+∠=︒,∵45PCA PAC ∠+∠=︒,∴PCA PAB ∠=∠,∴PCA PAB ∽,∴PC AP AC PA BP AB==,又AC ===,∴50PC AP PA BP ===∴PC AP ==,,∴2PC BP ==,在Rt BPC △中,222BP PC BC +=,∴()222250BP BP +=,∴252500BP =,∴BP =(负值舍去),∴2PC =⨯,AP =,过点A 作AG PG ⊥交CP 的延长线于点G ,∵135APC ∠=︒,∴45APG ∠=︒,在Rt AGP △中,45APG ∠=︒,∴45PAG ∠=︒,∴PAG APG ∠=∠,∴AG PG =,又222AG PG AP +=,∴(222AG =,∴2500AG =,∴AG =(负值舍去),∴211500m 22APC S PC AG =⋅=⨯= ;∵,60AD CD D =∠=︒,∴ACD 是等边三角形,∴AD CD AC ===m ,∵CF AD ⊥,∴1122AF DF AD ===⨯=,∴CF ===,∴21122ACD S AD CF =⋅=⨯= ,∴(2500m APC ACD APCD S S S =+=+ 四边形.【点睛】此题考查了等边三角形的判定和性质,全等三角形的判定和性质,定和性质,正方形的判定和性质,求角的正切值,综合掌握各知识点并引出辅助线解决问题是解题的关键.。

河南省信阳市息县2024届九年级下学期中考三模数学试卷(含答案)

河南省信阳市息县2024届九年级下学期中考三模数学试卷(含答案)

2024年信阳市息县中考第三次模拟考试数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.的倒数是()A.B.C.2 D.2.2024年1月,国家统计局公布了2023年全年出生人口数约为9020000,其中数字9020000用科学记数法表示为()A.B.C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.物理实验中,小明研究一个小木块在斜坡上滑下时的运动状态,如图,斜被为,,,小木块在斜坡上,且,,则的度数为()A.B.C.D.6.对于实数a,b定义运算“⊗”为,例如,则关于x的方程的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图所示,某同学自制了一个测角仪:等腰直角三角板的底边和量角器直径平行.若重锤线与的夹角为,那么被测物体表面的倾斜角的度数为()A.B.C.D.8.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.小亮调查了全班同学一周学会炒的菜品数量,结果如图所示,则全班同学一周学会炒的菜品数量的平均数是()A.2B.2.6C.3D.3.19.一个不透明的口袋里有1个红色小球,1个黄色小球,1个蓝色小球,这3个球除颜色外都相同,从口袋中随机摸出一个小球,记下颜色后放回口袋,摇匀后再从中随机摸出一个小球,则两次都摸到黄色小球的概率是()A.B.C.D.10.如图,抛物线与x轴交于点A,B,对称轴为直线,若点A的坐标为,则下列结论:①点B的坐标为;②;③;④点在抛物线上,当时,则,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11.使有意义的x的取值范围是.12.不等式组的解集是.13.请你写出一个图像经过点的函数解析式:.14.如图,矩形中,,,点、分别是、上的动点,,则的最小值是.15.如图,在矩形中,,点E是的中点,将沿折叠后得到,延长交射线于点F,若,则的长为.三、解答题(本大题共8个小题,共75 分)16.(10分)(1)计算:.(2)解方程:17.(9分)为了解甲、乙两所学校八年级学生综合素质整体情况,对两校八年级学生进行了综合素质测评,并对成绩作出如下统计分析.【收集整理数据】分别从两所学校各随机抽取了a名学生的综合素质测试成绩(百分制,成绩都是整数且不低于分).将抽取的两所学校的成绩分别进行整理,分成A,B,C,D,E,F六组,用x表示成绩,A 组:,B组:,C组:,D组:,E组:,F组:,其中乙校E组成绩如下:,,,,,,,,,,,,,,.【描述数据】根据统计数据,绘制出了如下统计图.【分析数据】两所学校样本数据的平均数、中位数、众数、方差如下表:学校平均数中位数众数方差甲校乙校b79根据以上信息,解答下列问题:(1),;(2)补全条形统计图;(3)甲校共有人参加测试,若测试成绩不低于80分的为优秀,估计甲校测试成绩优秀的约有人;(4)从平均数、中位数、众数、方差中,任选一个统计量,解释其在本题中的意义.18.(9分)如图,在中,.(1)实践与操作:按照下列要求完成尺规作图,并标出相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线交于点,交于点;②在线段的延长线上截取线段,使,连接,,.(2)猜想与证明:试猜想四边形的形状,并进行证明.19.(9分)如图,已知正比例函数的图象与反比例函数的图象相交于点和点B.(1)求反比例函数的解析式;(2)请结合函数图象,直接写出不等式的解集;(3)如图,以为边作菱形,使点C在x轴正半轴上,点D在第一象限,双曲线交于点E,连接,求的面积.20.(9分)在郑州之林公园内有一座如意雕塑(图1),它挺拔矗立在前端,展现出了郑东新区的美好蓝图与如意和谐的愿望.综合实践小组想按如图2 所示的方案测量如意雕塑的高度EF:①在如意雕塑前的空地上确定测量点A,当测量器高度为时,测得如意雕塑最高点E的仰角;②保持测量器位置不变,调整测量器高度为时,测得点E的仰角,已知点A,B,C,D,E,F,G在同一竖直平面内,请根据该小组的测量数据计算如意雕塑的高度.(结果精确到1m .参考数据:21.(9分)2024 年郑州市中招体育考试抽号流程为:第一次抽号确定素质类项目(从1 分钟跳绳、50米跑、掷实心球、立定跳远四项素质类项目中抽考1 项);第二次抽号确定运动健康技能类统考项目(从篮球运球投篮、足球运球射门、排球垫球三项运动健康技能类中抽考1项).某班为了备战中考体育,统一采购了一批跳绳和足球,已知跳绳与足球的总数量为50个(每种都购买),下面是经过调查,甲、乙两个商店的跳绳和足球售价信息及优惠方案:商店足球单价跳绳单价优惠方式甲所购商品按原价打八折乙足球原价,跳绳五折(1)在调查过程中,由于粗心,将足球与跳绳的单价遗失了,只知道甲、乙两个商店的足球和跳绳的单价相同,如果按原价买根跳绳与个足球需要花元,花同样的钱还能按原价买根跳绳与个足球,求跳绳与足球的单价;(2)已知跳绳的数量不超过足球数量的一半,若跳绳与足球只能在同一家店购买,则在哪家店购买,该班所需总费用最低?求出这个最低总费用.22.(9分)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?23.(10分)(1)【发现】如图1,正方形的边长为4,点E为中点.连接.将绕点A顺时针旋转至连接交于点G.爱思考的小明做了这样的辅助线,过点E作,交于点H……请沿着小明的思路思考下去,则(2)【应用】如图2,菱形的边长为3,且,连接,点E为上一点,连接.将绕点A顺时针旋转至,连接交于点G,若,求的值;(3)【拓展】如图3,在四边形中,,且.点E为上一点,连接.将绕点A顺时针旋转至,连接交于点C,,请直接写出的长.2024年息县中考第三次模拟考试数学参考答案一、选择题(每小题3分,共30分)1.D2.C3.C4.B5.B6.A7.B8.B9.B10.B二、填空题(每小题3分,共15分)11.12.13.,,(答案不唯一).14.1015.2或三、解答题(本大题共8个小题,共75 分)16.(10分)解:(1).(5分)(2)原方程可化为.方程两边同乘,得.解得.检验:当时,.∴原方程的解是(5分)17.(9分)(1),(2分)(2)(2分)(3)解:(人)(3分)故答案为:;(4)解:平均数表示两个学校抽取的人成绩的平均成绩;(2分)众数表示两个学校抽取的人中得分在某个分数的人数最多;中位数表示两个学校抽取的人中,将成绩从小到大排列后,位于中间位置的成绩;方差表示两个学校抽取的人的成绩稳定性.18.(9分)(1)解:按照要求,如图所示,即为所求作的图形.(5分).(2)猜想:四边形为菱形.证明:为的垂直平分线,,,∴四边形为平行四边形,又,∴四边形为菱形.(4分)19.(9分)(1)解:把点代入正比例函数可得:,∴点,把点代入反比例函数,可得:,∴反比例函数的解析式为;(3分)(2)解:∵点A与点B是关于原点对称的,∴点,∴根据图象可得,不等式的解集为:或;(2分)(3)解:如图所示,过点A作轴,垂足为G,∵,∴在中,,∵四边形是菱形,∴,,∴.(4分)20.(9分)延长交于,延长交于,则米,米,,∴米,设米,在中,,∴,在中,,∴,∵,∴,∴(米),∴(米),答:如意雕塑的高度约为米.21.(9分)(1)解:设跳绳的单价为元根,足球的单价为元个,依题意,得:,解得:.(3分)答:跳绳的单价为元根,足球的单价为元个.(2)设购买跳绳条,则购买足球()个,∵跳绳的数量不超过足球数量的一半,∴∴设总费用为元,依题意,得:.(2分),∵∴随的增大而减小,∴当时,最小,为(元),,∵∴随的增大而减小,∴当时,最小,为(元)∵,(4分)∴在甲家店购买,该班所需总费用最低,这个最低总费用为元.22.(9分)(1)(5分)解:由题意得:抛物线的顶点坐标为,设抛物线解析式为,把点代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;(2)(4分)设小明带球向正后方移动米,则移动后的抛物线为,把点代入得,解得(舍去),,∴当时他应该带球向正后方移动1米射门.23.(10分)(1)(3分)过点E作,交于点H,∵正方形的边长为4,∴四边形是矩形,四边形是矩形,∴,∵点E为中点,∴,∵将绕点A顺时针旋转至∴∵,∴,∴,∴,∴,∴;(2)(4分)过点E 作,作,∵菱形的边长为3,且,∴是等边三角形,,∵∴,,,∴,∴,∵,∴,∴是等边三角形,∴,∵将绕点A顺时针旋转至,∴,,即是等边三角形,∴,∵,∴,∴,∴,∴;(3)(4分)过点E作,作,交延长线于点R,交于点Q,∵,∴∴,,∵,∴,∵,∴,设,则,∵将绕点A顺时针旋转至,∴,∵,∴,即,过点B作,过点A作,则,∴,∴,∴,解得:(负值舍去),经检验:是方程的解,∴。

三模中考数学试卷及答案

三模中考数学试卷及答案

考试时间:120分钟满分:150分一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001…D. √42. 若方程2x - 3 = 5的解为x,则x + 2的值为()A. 5B. 6C. 7D. 83. 在等腰三角形ABC中,若AB = AC,且∠BAC = 40°,则∠ABC的度数为()A. 40°B. 50°C. 70°D. 80°4. 已知函数y = 2x + 1,当x = 3时,y的值为()A. 7B. 8C. 9D. 105. 若平行四边形ABCD的对角线AC和BD相交于点O,则OA与OB的长度关系是()A. OA = OBB. OA ≠ OBC. 无法确定D. 无法计算6. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标为()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)7. 若等差数列{an}的前n项和为Sn,且S5 = 50,S10 = 150,则第15项a15的值为()A. 25B. 30C. 35D. 408. 下列命题中,正确的是()A. 任何等差数列都是等比数列B. 任何等比数列都是等差数列C. 等差数列的公差一定是常数D. 等比数列的公比一定是常数9. 若a、b、c是等差数列,且a + b + c = 15,则b的值为()A. 5B. 10C. 15D. 2010. 在△ABC中,若∠A = 90°,∠B = 30°,则BC的长度是AB的()A. √3倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)11. 若方程2(x - 1) = 3的解为x,则x的值为______。

12. 在等腰三角形ABC中,若AB = AC,且∠BAC = 45°,则∠ABC的度数为______。

13. 已知函数y = 3x - 2,当x = -1时,y的值为______。

中考数学三模试题(有答案)

中考数学三模试题(有答案)

中考数学三模试题(有答案)中考数学三模试卷一、挑选题(本大题共8小题,每小题3分,共24分)1.(3分)若一个数的倒数是﹣2,则这个数是()A.B.﹣C.D.﹣【解答】解:若一个数的倒数是﹣2,即﹣,则这个数是﹣,故选:B.2.(3分)下列运算中,正确的是()A.a3?a6=a18B.6a6÷3a2=2a3C.(﹣)﹣1=﹣2 D.(﹣2ab2)2=2a2b4【解答】解:A、a3?a6=a9,故此选项错误;B、6a6÷3a2=2a4,故此选项错误;C、(﹣)﹣1=﹣2,故此选项正确;D、(﹣2ab2)2=4a2b4,故此选项错误.故选:C.3.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C 选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.4.(3分)若一个正多边形的XXX角等于其内角,则这个正多边形的边数为()A.3 B.4 C.5 D.6【解答】解:360°÷n=.故这个正多边形的边数为4.故选:B.5.(3分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2) C.ax(x+1)(x﹣1)D.ax (x﹣1)2【解答】解:原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选:D.6.(3分)下列大事为必定大事的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚一般的正方体骰子,掷得的点数小于7【解答】解:打开电视机,它正在播广告是随机大事,A错误;某彩票的中奖机会是1%,买1张一定不会中奖是随机大事,B错误;抛掷一枚硬币,一定正面朝上是随机大事,C错误;投掷一枚一般的正方体骰子,掷得的点数小于7是必定大事,D 正确,故选:D.7.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC 的长为()A.2πB.4πC.5πD.6π【解答】解:衔接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.8.(3分)已知反比例函数的图象经过点(﹣2,4),当x>2时,所对应的函数值y的取值范围是()A.﹣2<y<0 B.﹣3<y<﹣1 C.﹣4<y<0 D.0<y<1【解答】解:设反比例函数的关系式为y=,∵图象经过点(﹣2,4),∴k=﹣8,∴y=﹣,∴x=﹣,当x=2时,y=﹣4,结合图象可得当x>2时,﹣4<y<0,故选:C.二、填空题(本大题共8小题,每小题3分,满分24分)9.(3分)已知|x|=3,y2=16,且x+y的值是负数,则x﹣y的值为1或7.【解答】解:∵|x|=3,y2=16,∴x=±3,y=±4.∵x+y<0,∴x=±3,y=﹣4.当x=﹣3,y=﹣4时,x﹣y=﹣3+4=1;当x=3,y=﹣4时,x﹣y=3+4=7.故答案为:1或710.(3分)若﹣0.5x a+b y a﹣b与x a﹣1y3是同类项,则a+b=1.【解答】解:∵代数式﹣0.5x a+b y a﹣b与x a﹣1y3是同类项,∴a+b=a﹣1,a﹣b=3,a=2,b=﹣1,∴a+b=1,故答案为:1.11.(3分)一个圆锥的侧面绽开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为2.【解答】解:设此圆锥的底面半径为r,按照圆锥的侧面绽开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2.故答案为:2.12.(3分)化简(x﹣)÷(1﹣)的结果是x﹣1.【解答】解:原式=(﹣)÷=?=x﹣1.故答案是:x﹣1.13.(3分)在如图所示的象棋盘上,若“将”位于点(1,﹣2)上,“象”位于点(3,﹣2)上,则“炮”位于点(﹣2,1)上.【解答】解:如图所示:“炮”位于点:(﹣2,1).故答案为:(﹣2,1).14.(3分)一个暗箱里放有a个除XXX彩外彻低相同的球,这a 个球中红球惟独3个.若每次将球搅匀后,随意摸出1个球登记XXX 彩再放回暗箱.通过大量重复摸球实验后发觉,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是15.【解答】解:由题意可得,×100%=20%,解得,a=15个.故答案为15.15.(3分)化简﹣()2,结果是4.【解答】解:﹣()2=﹣()2=|3x﹣1|﹣(3x﹣5)=3x﹣1﹣3x+5=4.故答案为:4.16.(3分)计算下列各式的值:=10;=102;= 103;……观看所得结果,尝试发觉蕴含在其中的逻辑,由此可得=102023.【解答】解:=10;=100=102;=1000=103;……;=102023.故答案为:10;102;103;102023.三、解答题(本大题共2小题,每小题5分,满分10分)17.(5分)解方程组:.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.18.(5分)解方程(1)﹣1=.(2)=.【解答】解:(1)﹣1=去分母得:x(x+2)﹣(x﹣1)(x+2)=3,解得:x=1,检验:当x=1时,(x﹣1)(x+2)=0,故此方程无实数根;(2)=去分母得:2x+1=3x,解得:x=1,检验:当x=1时,x(2x+1)≠0,故x=1是原方程的解.四、解答题(本大题共2小题,每小题6分,满分12分)19.(6分)反比例函数y=的图象经过点A(1,2).(1)求反比例函数的表达式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,k=2,∴反比例函数的表达式为y=;(2)如图:y2<y1<y3.20.(6分)小明有2件上衣,分离为红XXX和蓝群,有3条裤子,其中2条为蓝群、1条为棕XXX.小明随意拿出1件上衣和1条裤子穿上.请用画树状图或列表的办法列出全部可能浮现的结果,并求小明穿的上衣和裤子恰好都是蓝群的概率.【解答】解:画树状图得:如图:共有6种可能浮现的结果,∵小明穿的上衣和裤子恰好都是蓝XXX的有2种状况,∴小明穿的上衣和裤子恰好都是蓝群的概率为:=.五、解答题(本大题共2小题,每小题7分,满分14分)21.(7分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP 的面积.【解答】解:(1)∵令y=0,则x=;令x=0,则y=3,∴A(,0),B(0,3);(2)∵OP=2OA,∴P(3,0)或(﹣3,0),∴AP=或,∴S△ABP =AP×OB=××3=,或S△ABP=AP×OB=××3=.故答案为:或.22.(7分)已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).(1)求出抛物线的解析式;(2)通过配方,写出抛物线的对称轴方程及顶点坐标.【解答】解:(1)依题意有,即,∴;∴抛物线的解析式为:y=x2﹣4x﹣6.(2)把y=x2﹣4x﹣6配方得,y=(x﹣2)2﹣10,∴对称轴方程为x=2;顶点坐标(2,﹣10).六、解答题(本大题共2小题,每小题8分,满分16分)23.(8分)父亲告知小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)012345温度(℃)202382﹣4﹣10按照上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)假如用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?【解答】解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每升高一千米,温度降低6摄氏度,可得解析式为t=20﹣6h;(3)由表可知,距地面5千米时,温度为零下10摄氏度;(4)将t=6代入h=20﹣t可得,t=20﹣6×6=﹣16.24.(8分)如图,△ABC中,∠C=90°,⊙O是△ABC的内切圆,D、E、F是切点.(1)求证:四边形ODCE是正方形;(2)假如AC=6,BC=8,求内切圆⊙O的半径.【解答】解:(1)∵⊙O是△ABC的内切圆,∴OD⊥BC,OE⊥AC,又∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴四边形ODCE是正方形;(2)∵∠C=90°,AC=6,BC=8,∴AB==10,由切线长定理得,AF=AE,BD=BF,CD=CE,∴CD+CE=BC+AC﹣BD﹣AE=BC+AC﹣AB=4,则CE=2,即⊙O的半径为2.七、解答题(本大题共2小题,每小题10分,满分20分)25.(10分)烟台享有“苹果之乡”的美誉.甲、乙两超市分离用3000元以相同的进价购进质量相同的苹果.甲超市销售计划是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售计划是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果所有售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【解答】解:(1)设苹果进价为每千克x元,按照题意得:400x+10%x(﹣400)=2100,解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分离为10元和5.5元,则乙超市获利600×(﹣5)=1650(元),∵甲超市获利2100元,∵2100>1650,∴将苹果按大小分类包装销售,更合算.26.(10分)某乒乓球馆使用发球机举行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时光为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.8…x(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线恰好擦网扣杀到点A,求a的值.【解答】解:(1)由表格中数据可知,当t=0.4秒时,乒乓球达到最大高度.(2)以点A为原点,桌面中线为x轴,乒乓球水平运动方向为正方向建立直角坐标系.由表格中数据可推断,y是x的二次函数,且顶点为(1,0.45),所以可设y=m(x﹣1)2+0.45,将(0,0.25)代入,得:0.25=m(0﹣1)2+0.45,解得:m=﹣0.2,∴y=﹣0.2(x﹣1)2+0.45.当y=0时,﹣0.2(x﹣1)2+0.45=0,解得:x=2.5或x=﹣0.5(舍去).∴乒乓球落在桌面时,与端点A的水平距离是2.5米.(3)①由(2)得,乒乓球落在桌面时的坐标为(2.5,0).∴将(2.5,0)代入y=a(x﹣3)2+k,得0=a(2.5﹣3)2+k,化简收拾,得:k=﹣a.②∵球网高度为0.14米,球桌长(1.4×2)米,∴扣杀路线在直线经过(0,0)和(1.4,0.14)点,由题意可得,扣杀路线在直线y=x上,由①得y=a(x﹣3)2﹣a,令a(x﹣3)2﹣a=x,收拾,得20ax2﹣(120a+2)x+175a=0.当△=(120a+2)2﹣4×20a×175a=0时,符合题意,解方程,得a1=,a2=.当a=时,求得x=﹣,不合题意,舍去;当a=时,求得x=,符合题意.答:当a=时,可以将球沿直线扣杀到点A.。

中考数学第三次模拟试卷含答案解析.doc

中考数学第三次模拟试卷含答案解析.doc

2019-2020 年中考数学第三次模拟试卷含答案解析一、选择题(本题共 12 小题,每小题 3 分,共 36 分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下列运算中,正确的是( )A2 4 66 3 2C4)2 62 4 6. a +a =a B.a a =a.(﹣ a=aD. a? a =a÷2.方程 x 2﹣ 2x+3=0 的根的情况是()A .有两个相等的实数根B .只有一个实数根C .没有实数根D .有两个不相等的实数根3.已知点 P ( a+1, 2a ﹣ 3)在第一象限,则 a 的取值范围是( )A . a <﹣ 1B . a >C .﹣ < a < 1D .﹣ 1< a <4.已知正比例函数 y=kx ( k < 0)的图象上两点 A ( x 1,y 1)、 B ( x 2, y 2),且 x 1< x 2,则下列不 等式中恒成立的是()A . y 1+y 2> 0B . y 1+y 2< 0C . y 1﹣ y 2> 0D . y 1﹣ y 2< 05.一个不透明的盒子中装有3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A .B .C .D .6.如图,直线 AB , CD 相交于点 O ,射线 OM 平分∠ AOC ,ON ⊥OM ,若∠ AOM=35 °,则∠ CON的度数为()A . 35°B . 45°C . 55°D . 65° 7.如图,在直角坐标系中,有两点 A ( 6, 3), B (6, 0),以原点 O 为位似中心,相似比为,在第一象限内把线段AB 缩小后得到新的线段,则点A 的对应点坐标为()A .( 2, 1)B .( 2, 0)C .( 3,3)D .( 3, 1)8.如图,为了测得电视塔的高度AB ,在D 处用高为1 米的测角仪CD ,测得电视塔顶端A 的仰角为 30°,再向电视塔方向前进100 米达到F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB (单位:米)为()A . 50B . 51C . 50+1D . 1019.关于 x 的方程 =1 的解是正数,则 a 的取值范围是( )A . a >﹣ 1B . a >﹣ 1 且 a ≠0C . a <﹣ 1D . a <﹣ 1 且 a ≠﹣ 210.如图, AB 是⊙ O 的直径,弦CD ⊥ AB ,∠ CDB=30 °, CD=2,则S 阴影 =()A . πB . 2πC .D . π11.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A . 236πB . 136πC . 132πD . 120π12.如图,二次函数y=ax 2+bx+c 的图象交 x 轴于 A 、 B 两点,下列结论:① abc >0;② 2a+b=0;③ 当 m ≠1 时, a+b > am 2+bm ;④ a ﹣ b+c > 0; ⑤ 若 ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则 x 1+x 2=2; ⑥ OA ?OB= ;其中正确的有()A . 3 个B . 2 个C . 4 个D . 5 个二、填空题(本大题6 个小题,每题 3 分,共18 分)13.两组数据:3, a , 2b ,5 与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.14.如图,点 E 在正方形ABCD的边CD上.若 △ ABE的面积为8, CE=3 ,则线段BE 的长为.15.观察下列一组数: , ,根据该组数的排列规律,可推出第10 个数是.16.如图,在 Rt △ABC 中,∠ BAC=90 °,AB=AC=16cm ,AD 为 BC 边上的高. 动点 P 从点 A 出发,沿 A →D方向以cm/s 的速度向点D 运动.设 △ABP的面积为 S 1,矩形 PDFE 的面积为S 2,运动时间为t 秒( 0< t < 8),则t=秒时,S 1=2S 2.17.已知 cos α= ,则 的值等于 .18.已知关于 x 的方程 x 2﹣ 6x+k=0 的两根分别是x 1,x 2,且满足 +=3,则 k 的值是.三、解答题(本大题 7 个小题,共 66 分.注意:解答应写出必要的文字说明, 证明过程或解答步骤. ) 19.( 1)计算:×(﹣)+|﹣2 |+( ) ﹣ 3﹣2 ×tan60°( 2)解方程: x 2﹣ 2x=2x ﹣ 4.20.先化简,再求值:( + ) ÷ ,其中 x= , y= ﹣ .21.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出 1 辆 A 型车和 3 辆 B 型车,销售额为 96 万元;本周已售出2 辆 A 型车和 1 辆 B 型车,销售额为62 万元.( 1)求每辆 A 型车和 B 型车的售价各为多少元.( 2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共 6 辆,购车费不少于 130 万元,且不超过140 万元.则有哪几种购车方案?22.如图,正方形 ABCD 的边长为 8cm , E 、 F 、 G 、 H 分别是 AB ,BC , CD , DA 上的动点,且AE=BF=CG=DH ,( 1)求证:四边形 EFGH 是正方形;( 2)当四边形 EFGH 的面积为 50cm 2时,求 tan ∠ FEB 的值;( 3)求四边形 EFGH 面积的最小值.23.如图,已知点 A 、 P 在反比例函数 y= (k < 0)的图象上,点 B 、Q 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1, AB ⊥ x 轴,且 S △ OAB =4,若 P 、 Q 两点关于 y 轴对称,设点 P 的坐标为( m ,n ).( 1)求点 A 的坐标和 k 的值;( 2)求 的值.24.如图, AB 是⊙ O 的弦, D 为半径 OA 的中点,过 D 作 CD ⊥OA 交弦 AB 于点 E,交⊙ O 于点 F,且CE=CB .(1)求证: BC 是⊙ O 的切线;(2)连接 AF 、BF ,求∠ ABF 的度数;( 3)如果 CD=15 , BE=10 , sinA=,求⊙ O的半径.25.如图:已知抛物线y=ax 2﹣ x+c 与 x 轴相交于 A 、B 两点,并与直线y= x﹣ 2 交于 B 、C 两点,其中点 C 是直线 y= x﹣ 2 与 y 轴交点,连接 AC ,(1)求抛物线解析式;(2)证明:△ ABC 为直角三角形;( 3)在抛物线CB 段上存在点P 使得以 A ,C,P,B 为顶点的四边形面积最大,请求出点P 的坐标以及此时以 A , C, P,B 为顶点的四边形面积.2016 年四川省雅安中学中考数学一诊试卷参考答案与试题解析一、选择题(本题共12 小题,每小题 3 分,共 36 分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下列运算中,正确的是()2 46 6 3 2 4 2 62 4 6A . a +a =aB . a ÷a =aC .(﹣ a ) =aD . a ?a =a【考点】 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】 根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】 解: A 、 a 2?a 4=a 6,故错误;B 、 a 6÷a 3=a 3,故错误;C 、(﹣ a 4)2=a 8,故错误;D 、正确;故选: D .【点评】 本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.2.方程 x 2﹣ 2x+3=0 的根的情况是()A .有两个相等的实数根B .只有一个实数根C .没有实数根D .有两个不相等的实数根【考点】 根的判别式.【分析】 把 a=1, b=﹣ 2, c=3 代入 △ =b 2﹣ 4ac 进行计算,然后根据计算结果判断方程根的情况.【解答】 解:∵ a=1, b=﹣ 2, c=3,∴△ =b 2﹣ 4ac=(﹣ 2) 2﹣4×1×3= ﹣ 8< 0,所以方程没有实数根.故选 C .【点评】 本题考查了一元二次方程ax 2+bx+c=0( a ≠0,a ,b ,c 为常数) 的根的判别式 △=b 2﹣ 4ac .当△ >0 时,方程有两个不相等的实数根;当 △ =0 时,方程有两个相等的实数根;当△ < 0 时,方程没有实数根.3.已知点P ( a+1, 2a ﹣ 3)在第一象限,则a 的取值范围是()A . a <﹣ 1B . a >C .﹣< a < 1D .﹣ 1< a <【考点】 点的坐标.【分析】 让横坐标大于 0,纵坐标大于 0 即可求得a 的取值范围.【解答】 解:∵点 P (a+1, 2a ﹣ 3)在第一象限,∴,解得: a,故选: B .【点评】 考查了点的坐标、一元一次不等式组的解集的求法;用到的知识点为:第一象限点的横纵坐标均为正数.4.已知正比例函数 y=kx ( k < 0)的图象上两点 A ( x 1,y 1)、 B ( x 2, y 2),且 x 1< x 2,则下列不 等式中恒成立的是()A . y 1+y 2> 0B . y 1+y 2< 0C . y 1﹣ y 2> 0D . y 1﹣ y 2< 0【考点】 一次函数图象上点的坐标特征;正比例函数的图象.【分析】 根据 k < 0,正比例函数的函数值y 随 x 的增大而减小解答.【解答】 解:∵直线 y=kx 的 k <0,∴函数值 y 随 x 的增大而减小,∵ x 1< x 2, ∴ y 1> y 2,∴ y 1﹣ y 2>0.故选: C .【点评】 本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.5.一个不透明的盒子中装有 3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A .B.C.D.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选 B .【点评】本题考查了概率公式:随机事件 A 的概率 P(A )=事件 A 可能出现的结果数除以所有可能出现的结果数.6.如图,直线AB , CD 相交于点O,射线 OM 平分∠ AOC ,ON ⊥OM ,若∠ AOM=35 °,则∠ CON 的度数为()A . 35° B. 45° C. 55° D. 65°【考点】垂线;角平分线的定义.【分析】由射线 OM 平分∠ AOC ,∠AOM=35 °,得出∠ MOC=35 °,由 ON ⊥ OM ,得出∠ CON= ∠ MON ﹣∠ MOC 得出答案.【解答】解:∵射线OM 平分∠ AOC ,∠ AOM=35 °,∴∠ MOC=35 °,∵ON⊥ OM ,∴∠ MON=90 °,∴∠ CON= ∠MON ﹣∠ MOC=90 °﹣35°=55 °.故选: C.【点评】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.7.如图,在直角坐标系中,有两点 A ( 6, 3), B (6, 0),以原点O 为位似中心,相似比为,在第一象限内把线段AB 缩小后得到新的线段,则点 A 的对应点坐标为()A .( 2, 1)B .( 2, 0) C.( 3,3) D .( 3, 1)【考点】位似变换;坐标与图形性质.【分析】由以原点O 为位似中心,相似比为,根据位似图形的性质,即可求得答案.【解答】解:∵以原点O 为位似中心,相似比为, A ( 6, 3),∴在第一象限内,点 A 的对应点坐标为:(2, 1).故选 A .【点评】此题考查了位似图形的变换.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或﹣ k.8.如图,为了测得电视塔的高度AB ,在 D 处用高为 1 米的测角仪CD ,测得电视塔顶端 A 的仰角为 30°,再向电视塔方向前进100 米达到 F 处,又测得电视塔顶端 A 的仰角为60°,则这个电视塔的高度AB (单位:米)为()A . 50B . 51 C. 50 +1 D. 101【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】设AG=x ,分别在Rt△ AEG 和Rt△ ACG 中,表示出CG 和 GE 的长度,然后根据DF=100m ,求出x 的值,继而可求出电视塔的高度AH .【解答】解:设 AG=x ,在Rt△ AEG 中,∵ tan∠AEG= ,∴EG= = x,在 Rt△ ACG 中,∵ tan∠ACG= ,∴ CG= = x,∴ x﹣x=100 ,解得: x=50 .则AB=50 +1(米).故选 C.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.9.关于 x 的方程=1 的解是正数,则 a 的取值范围是(A . a>﹣ 1 B . a>﹣ 1 且 a≠0 C. a<﹣ 1D. a<﹣ 1 且)a≠﹣ 2【考点】分式方程的解.【专题】计算题.【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求 a 的取值范围.【解答】解:去分母得,2x+a=x ﹣1∴x= ﹣ 1﹣ a∵方程的解是正数∴﹣ 1﹣ a> 0 即 a<﹣ 1又因为 x﹣ 1≠0∴a≠﹣ 2则 a 的取值范围是a<﹣ 1 且 a≠﹣ 2故选: D.【点评】由于我们的目的是求 a 的取值范围,根据方程的解列出关于 a 的不等式,另外,解答本题时,易漏掉a≠﹣ 2,这是因为忽略了x﹣ 1≠0 这个隐含的条件而造成的,这应引起同学们的足够重视.10.如图, AB 是⊙ O 的直径,弦CD ⊥ AB ,∠ CDB=30 °, CD=2,则S阴影=()A .π B. 2π C.D.π【考点】扇形面积的计算;勾股定理;垂径定理.【专题】计算题.【分析】求出 CE=DE , OE=BE=1 ,得出 S =S ,所以 S 阴影 =S 扇形BOC.△BED △OEC【解答】解:如图, CD⊥AB ,交 AB 于点 E,∵ AB 是直径,∴ CE=DE= CD=,又∵∠ CDB=30 °∴∠ COE=60 °,∴ OE=1, OC=2 ,∴ BE=1 ,∴S△BED =S△OEC,∴S阴影 =S 扇形BOC= =.故选: D.【点评】本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键.11.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A . 236πB . 136πC . 132πD . 120π 【考点】 由三视图判断几何体.【分析】 根据给出的几何体的三视图可知几何体是由大小两个圆柱组成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.【解答】 解:由三视图可知,几何体是由大小两个圆柱组成,22×8 故该几何体的体积为: π×2 ×2+π×4=8π+128π=136π.故选: B .【点评】 本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键,本题体现了数形结合的数学思想.212.如图,二次函数 y=ax +bx+c 的图象交 x 轴于 A 、 B 两点,下列结论:① abc >0;② 2a+b=0;③ 当 m ≠1 时, a+b > am 2+bm ;④ a ﹣ b+c > 0; ⑤ 若 ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则 x 1+x 2=2; ⑥ OA ?OB= ; 其中正确的有()A . 3 个B . 2 个C . 4 个D . 5 个【考点】 二次函数图象与系数的关系.【分析】根据抛物线开口方向得a < 0,由抛物线对称轴为直线 x= ﹣ =1,得到 b=﹣ 2a > 0,即 2a+b=0,由抛物线与 y 轴的交点位置得到 c > 0,所以 abc < 0;根据二次函数的性质得当 x=1 时,函数有最大值 a+b+c ,则当 m ≠1 时, a+b+c > am 2+bm+c ,即 a+b > am 2+bm ;根据抛物线的对称性得到抛物线与x 轴的另一个交点在 (﹣ 1,0)的右侧, 则当 x= ﹣ 1 时, y < 0,所以 a ﹣ b+c <0;把 ax 12+bx 1=ax 22+bx 2先移项,再分解因式得到( x 1﹣ x 2)[a ( x 1+x 2)+b]=0,而 x 1≠x 2,则 a ( x 1+x 2)+b=0 ,即 x 1+x 2=﹣,然后把 b=﹣ 2a 代入计算得到 x 1+x 2=2 ;设 A ( x 1, 0), B (x 2, 0),根据抛物线和方程的关系得出 x 1?x 2= ,即可求得 OA ?OB= ﹣ x 1?x 2=﹣ . 【解答】 解:∵抛物线开口向下,∴ a <0,∵抛物线对称轴为直线x= ﹣ =1,∴ b=﹣ 2a > 0,即 2a+b=0,所以 ② 正确;∵抛物线与 y 轴的交点在 x 轴上方,∴ c >0,∴ abc < 0,所以 ① 错误;∵抛物线对称轴为直线 x=1 ,∴函数的最大值为 a+b+c ,∴当 m ≠1 时, a+b+c > am 2+bm+c ,即 a+b > am 2+bm ,所以 ③ 正确;∵抛物线与 x 轴的一个交点在( 3, 0 )的左侧,而对称轴为直线 x=1,∴抛物线与 x 轴的另一个交点在(﹣ 1, 0)的右侧∴当 x= ﹣ 1 时, y < 0, ∴ a ﹣b+c < 0,所以 ④ 错误; ∵ ax2 2 ,1+bx 1=ax 2 +bx 2∴ ax 1 22﹣bx 2=0 ,+bx 1﹣ ax 2∴ a (x 1+x 2)( x 1﹣ x 2) +b ( x 1﹣ x 2) =0,∴( x 1﹣ x 2) [a ( x 1+x 2) +b]=0 ,而 x 1≠x 2,∴ a (x 1+x 2) +b=0,即 x 1+x 2=﹣ , ∵ b=﹣ 2a ,∴ x 1+x 2=2,所以 ⑤ 正确;设 A ( x 1 ,0), B ( x 2, 0),∴x1?x2= .∵OA= ﹣ x1, OB=x 2,∴OA ?OB= ﹣ x1?x2=﹣,所以⑥错误.故选:A.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c( a≠0),二次项系数 a 决定抛物线的开口方向和大小:当a>0 时,抛物线开口向上;当a< 0 时,抛物线开口向下;一次项系数 b 和二次项系数 a 共同决定对称轴的位置,当 a 与b 同号时(即ab> 0),对称轴在y 轴左侧;当a 与b 异号时(即ab< 0),对称轴在y 轴右侧;常数项 c 决定抛物线与y 轴交点.抛物线与y 轴交于( 0,c);抛物线与x 轴交点个数由△ 决定,△ =b2﹣4ac>0时,抛物线与x 轴有 2 个交点;△ =b2 ﹣ 4ac=0 时,抛物线与x 轴有 1 个交点;△=b2﹣ 4ac< 0 时,抛物线与x 轴没有交点.二、填空题(本大题 6 个小题,每题 3 分,共18 分)13.两组数据: 3, a, 2b,5 与 a,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、 b 的二元一次方程组,再解方程组求得a、 b 的值,然后求中位数即可.【解答】解:∵两组数据:3, a,2b, 5 与 a, 6, b 的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3, 4, 5,6, 8, 8, 8,一共 7 个数,第四个数是6,所以这组数据的中位数是6.故答案为6.【点评】本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.14.如图,点 E 在正方形ABCD 的边 CD 上.若△ABE 的面积为 8,CE=3 ,则线段 BE 的长为5.【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出 AD=BC=CD=AB ,根据面积求出 EM ,得出 BC=4 ,根据勾股定理求出即可.【解答】解:过E 作 EM ⊥ AB 于 M ,∵四边形 ABCD 是正方形,∴ AD=BC=CD=AB ,∴ EM=AD ,BM=CE ,∵△ ABE 的面积为 8,∴ ×AB ×EM=8 ,解得: EM=4 ,即AD=DC=BC=AB=4 ,∵ CE=3,由勾股定理得:BE===5,故答案为: 5.BC 的长,【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出难度适中.15.观察下列一组数:,,根据该组数的排列规律,可推出第10 个数是.【考点】规律型:数字的变化类.【专题】规律型.【分析】由分子 1, 2,3, 4, 5,即可得出第10 个数的分子为10;分母为 3, 5, 7, 9, 11,即可得出第10 个数的分母为:1+2×10=21 ,得出结论.【解答】解:∵分子为1, 2, 3, 4, 5,,∴第 10 个数的分子为10,∵分母为3,5, 7, 9,11,,∴第 10 个数的分母为:1+2 ×10=21,∴第 10 个数为:,故答案为:.【点评】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.16.如图,在 Rt△ABC 中,∠ BAC=90 °,AB=AC=16cm ,AD 为 BC 边上的高.动点 P 从点 A 出发,沿 A→D 方向以cm/s 的速度向点 D 运动.设△ABP 的面积为S1,矩形PDFE 的面积为S2,运动时间为t 秒( 0< t< 8),则t= 6秒时,S1=2S2.【考点】一元二次方程的应用;等腰直角三角形;矩形的性质.【专题】几何动点问题;压轴题.【分析】利用三角形的面积公式以及矩形的面积公式,表示出S1和S2,然后根据S1=2S2,即可列方程求解.【解答】解:∵ Rt△ ABC 中,∠ BAC=90 °, AB=AC=16cm , AD 为 BC 边上的高,∴AD=BD=CD=8cm,又∵ AP=t ,则 S1= AP ?BD=×8×t=8t , PD=8 ﹣t,∵PE∥ BC,∴△ APE ∽△ ADC ,∴,∴PE=AP=t ,∴ S 2=PD ?PE=( 8 ﹣t ) ? t ,∵ S 1=2S 2,∴ 8t=2( 8﹣ t ) ?t ,解得: t=6.故答案是: 6.【点评】 本题考查了一元二次方程的应用,以及等腰直角三角形的性质,正确表示出S 1 和 S 2 是关键.17.已知 cos α= ,则的值等于 0 .【考点】 同角三角函数的关系. 【专题】 计算题.【分析】 先利用 tan α=得到原式 = = ,然后把 cos α= 代入计算即可.【解答】 解:∵ tan α=,∴= = ,∵ cos α= ,∴= =0.故答案为 0.【点评】 本题考查了同角三角函数的关系:平方关系: sin 2A+cos 2A=1 ;正余弦与正切之间的关系 (积的关系):一个角的正切值等于这个角的正弦与余弦的比,即 tanA= 或 sinA=tanA ?cosA .18.已知关于 x 的方程 x 2﹣ 6x+k=0 的两根分别是 x 1, x 2,且满足+ =3,则 k 的值是 2 .【考点】 根与系数的关系.【分析】 找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.2∴ x 1+x 2=6, x 1x 2=k ,+ = = =3,解得: k=2,故答案为: 2.【点评】 此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.三、解答题(本大题 7 个小题,共 66 分.注意:解答应写出必要的文字说明, 证明过程或解答步骤. )19.( 1)计算:×(﹣)+|﹣ ﹣ 3×tan60°2 |+( ) ﹣2( 2)解方程: x 2﹣ 2x=2x ﹣ 4.【考点】 实数的运算;负整数指数幂;解一元二次方程-配方法;特殊角的三角函数值.【专题】 计算题;实数.【分析】 ( 1)原式第一项利用二次根式乘法法则计算,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;( 2)方程整理后,利用完全平方公式化简,开方即可求出解.【解答】 解:( 1)原式 =﹣ 3+2 ﹣8﹣ 2 × =﹣ 3 +2 ﹣8﹣ 6=﹣﹣ 14;( 2)方程整理得: x 2﹣4x= ﹣ 4,配方得: x 2﹣4x+4=0 ,即( x ﹣ 2) 2=0,解得: x 1=x 2=2 .【点评】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:( + ) ÷ ,其中 x= , y= ﹣ .【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 与 y 的值代入计算即可求出值.【解答】解:原式 =?xy ( x﹣ y) =?xy ( x﹣ y)=3xy ,当 x=+,y=﹣时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.某汽车专卖店销售 A , B 两种型号的新能源汽车.上周售出 1 辆 A 型车和 3 辆 B 型车,销售额为 96 万元;本周已售出 2 辆 A 型车和 1 辆 B 型车,销售额为62 万元.( 1)求每辆 A 型车和 B 型车的售价各为多少元.( 2)甲公司拟向该店购买 A , B 两种型号的新能源汽车共 6 辆,购车费不少于130 万元,且不超过140万元.则有哪几种购车方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】应用题.【分析】( 1)每辆 A 型车和 B 型车的售价分别是x 万元、 y 万元.则等量关系为: 1 辆 A 型车和 3 辆 B 型车,销售额为96 万元, 2 辆 A 型车和 1 辆 B 型车,销售额为62 万元;( 2)设购买 A 型车 a 辆,则购买 B 型车( 6﹣ a)辆,则根据“购买A,B两种型号的新能源汽车共6 辆,购车费不少于130 万元,且不超过140 万元”得到不等式组.【解答】解:( 1)每辆 A 型车和 B 型车的售价分别是x 万元、 y 万元.则,解得.答:每辆 A 型车的售价为18 万元,每辆 B 型车的售价为26 万元;(2)设购买 A 型车 a 辆,则购买 B 型车( 6﹣ a)辆,则依题意得,解得2≤a≤3.∵a 是正整数,∴ a=2 或 a=3.∴共有两种方案:方案一:购买 2 辆 A 型车和 4 辆 B 型车;方案二:购买 3 辆 A 型车和 3 辆 B 型车.【点评】本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.如图,正方形ABCD 的边长为8cm, E、 F、 G、 H 分别是 AB ,BC , CD , DA 上的动点,且AE=BF=CG=DH ,(1)求证:四边形 EFGH 是正方形;(2)当四边形 EFGH 的面积为 50cm2时,求 tan∠ FEB 的值;(3)求四边形 EFGH 面积的最小值.【考点】正方形的判定与性质;二次函数的最值.【分析】( 1)由正方形的性质得出∠A= ∠ B= ∠C= ∠ D=90 °,AB=BC=CD=DA ,证出AH=BE=CF=DG ,由SAS 证明△ AEH ≌△ BFE≌△ CGF≌△ DHG ,得出 EH=FE=GF=GH ,∠ AEH= ∠ BFE,证出四边形 EFGH 是菱形,再证出∠ HEF=90 °,即可得出结论;( 2)设BE=xcm ,则BF=( 8﹣ x)cm,由勾股定理得出方程,解方程求出BE ,得出BF,即可得出结果;( 3)设四边形EFGH 面积为S,BE=xcm ,则BF=( 8﹣ x) cm,由勾股定理得出S=x 2+( 8﹣ x)2=2( x﹣ 4)2+32 ,S 是x 的二次函数,容易得出四边形EFGH 面积的最小值.【解答】( 1)证明:∵四边形ABCD 是正方形,∴∠ A= ∠B= ∠ C=∠ D=90 °, AB=BC=CD=DA,∵ AE=BF=CG=DH ,∴ AH=BE=CF=DG ,在 △AEH 、△ BFE 、 △ CGF 和 △ DHG 中,,∴△ AEH ≌△ BFE ≌△ CGF ≌△ DHG ( SAS ),∴ EH=FE=GF=GH ,∠ AEH= ∠ BFE ,∴四边形 EFGH 是菱形, ∵∠ BEF+ ∠ BFE=90 °,∴∠ BEF+ ∠ AEH=90 °,∴∠ HEF=90 °,∴四边形 EFGH 是正方形;( 2)解:∵四边形 EFGH 的面积为 50cm 2, ∴ EF 2=50cm 2,设 BE=xcm ,则 BF= ( 8﹣ x ) cm ,由勾股定理得: BE 2+BF 2=EF 2,即 x 2+( 8﹣x ) 2=50,解得: x=1,或 x=7 ,即 BE=1cm ,或 BE=7cm ,当 BE=1cm 时, BF=7cm , tan ∠ FEB= = ; 当 BE=7cm 时, BF=1cm , tan ∠ FEB==7;( 3)解:设四边形 EFGH 面积为 S ,设 BE=xcm ,则 BF= ( 8﹣x ) cm ,根据勾股定理得:EF 2=BE 2+BF 2=x 2+( 8﹣x ) 2, 222∴ S=x +( 8﹣x ) =2 ( x ﹣ 4) +32, ∵ 2> 0 ,∴ S 有最小值,当 x=4 时, S 的最小值 =32,∴四边形 EFGH 面积的最小值为32cm 2.【点评】 本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、 三角函数、 二次函数的最值等知识;本题综合性强, 有一定难度, 特别是( 2)( 3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.23.如图,已知点 A、 P 在反比例函数y= (k< 0)的图象上,点 B 、Q 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1, AB ⊥ x 轴,且 S△OAB =4,若 P、 Q 两点关于 y 轴对称,设点P 的坐标为( m,n).( 1)求点 A 的坐标和 k 的值;( 2)求的值.【考点】反比例函数与一次函数的交点问题.【分析】( 1)先由点 B 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1,将 y= ﹣1 代入 y=x ﹣ 3,求出 x=2,即 B ( 2,﹣ 1).由 AB ⊥ x 轴可设点 A 的坐标为( 2,t),利用 S△OAB =4 列出方程(﹣1﹣t)×2=4 ,求出t=﹣ 5,得到点 A 的坐标为(2,﹣ 5);将点 A 的坐标代入y= ,即可求出k 的值;( 2)根据关于y 轴对称的点的坐标特征得到Q(﹣ m, n),由点P( m,n)在反比例函数y= ﹣的图象上,点Q 在直线y=x ﹣ 3 的图象上,得出mn=﹣ 10, m+n= ﹣ 3,再将变形为,代入数据计算即可.【解答】解:( 1)∵点 B 在直线 y=x ﹣ 3 的图象上,点 B 的纵坐标为﹣ 1,∴当 y= ﹣ 1 时, x﹣ 3=﹣ 1,解得 x=2,∴ B( 2,﹣ 1).设点 A 的坐标为( 2, t),则 t<﹣ 1, AB= ﹣ 1﹣t.∵S△OAB =4,∴(﹣1﹣t)×2=4,解得 t= ﹣5,∴点 A 的坐标为( 2,﹣ 5).∵点 A 在反比例函数y=(k<0)的图象上,∴﹣ 5=,解得k=﹣10;(2)∵ P、Q 两点关于 y 轴对称,点 P 的坐标为( m, n),∴Q(﹣ m,n),∵点 P 在反比例函数y= ﹣的图象上,点Q 在直线y=x﹣ 3 的图象上,∴ n=﹣,n=﹣m﹣3,∴mn=﹣ 10, m+n= ﹣ 3,∴= = = =﹣.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y 轴对称的点的坐标特征,代数式求值,求出点 A 的坐标是解决第(1)小题的关键,根据条件得到mn=﹣ 10, m+n= ﹣ 3 是解决第( 2)小题的关键.24.如图, AB 是⊙ O 的弦, D 为半径 OA 的中点,过 D 作 CD ⊥OA 交弦 AB 于点 E,交⊙ O 于点 F,且CE=CB .(1)求证: BC 是⊙ O 的切线;(2)连接 AF 、BF ,求∠ ABF 的度数;( 3)如果 CD=15 , BE=10 , sinA=,求⊙ O的半径.【考点】切线的判定;相似三角形的判定与性质.【专题】压轴题.【分析】( 1)连接 OB ,由圆的半径相等和已知条件证明∠OBC=90 °,即可证明BC 是⊙ O 的切线;(2)连接 OF,AF , BF,首先证明△OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ ABF 的度数;( 3)过点 C 作 CG⊥ BE 于 G,根据等腰三角形的性质得到EG=BE=5 ,由两角相等的三角形相似,△ ADE ∽△ CGE,利用相似三角形对应角相等得到sin∠ECG=sinA=,在Rt△ECG中,利用勾股定理求出CG 的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】( 1)证明:连接OB,∵OB=OA , CE=CB ,∴∠ A= ∠OBA ,∠ CEB= ∠ ABC ,又∵ CD ⊥ OA ,∴∠ A+ ∠AED= ∠A+ ∠CEB=90 °,∴∠ OBA+ ∠ABC=90 °,∴OB ⊥BC ,∴BC 是⊙ O 的切线;( 2)解:如图1,连接 OF, AF , BF ,∵DA=DO , CD⊥OA ,∴ AF=OF ,∵OA=OF ,∴△ OAF 是等边三角形,∴∠ AOF=60 °,∴∠ ABF=∠AOF=30°;( 3)解:如图2,过点 C 作 CG⊥ BE 于 G,∵CE=CB ,∴ EG= BE=5 ,∵∠ ADE= ∠CGE=90 °,∠ AED= ∠ GEC,∴∠ GCE= ∠ A ,∴△ ADE ∽△ CGE,∴sin∠ ECG=sinA= ,在 Rt△ ECG 中,∵ CG==12 ,∵CD=15 ,CE=13 ,∴ DE=2 ,∵△ ADE ∽△ CGE,∴ = ,∴AD= , CG= ,∴⊙ O 的半径 OA=2AD=.【点评】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.25.如图:已知抛物线y=ax 2﹣ x+c 与 x 轴相交于 A 、B 两点,并与直线y= x﹣ 2 交于 B 、C 两点,其中点 C 是直线 y= x﹣ 2 与 y 轴交点,连接 AC ,(1)求抛物线解析式;(2)证明:△ ABC 为直角三角形;( 3)在抛物线 CB 段上存在点 P 使得以 A ,C ,P ,B以及此时以 A , C , P ,B 为顶点的四边形面积.为顶点的四边形面积最大,请求出点P 的坐标【考点】 二次函数综合题.【分析】 ( 1)由直线 y= x ﹣ 2 交x 轴、 y轴于点B 、C 两点可求得点B 和点C 的坐标,然后将点B和点C 的坐标代入抛物线的解析式得到关于a 、c 的方程组,从而可求得a 、 c 的值;( 2)先求得点A 和点B 的坐标, 然后依据勾股定理可求得AC和BC的长,最后依据勾股定理的逆定理可证明 △ABC为直角三角形;( 3)设出点 P 与点 D 的坐标,可求得PD 的长(用含 a 的式子表示),依据二次函数的性质可知当a=2 时,PD 的最大值为2,由三角形的面积公式可知DP有最大值时, △ BCD 的面积最大,由于 △ ABC的面积为定值,故此时四边形ACPB 的面积最大.【解答】 解:( 1)∵直线 y=x ﹣ 2 交 x 轴、 y 轴于点B 、 C两点,∴ B ( 4,0), C ( 0,﹣ 2), ∵ y=ax 2﹣ x+c 经过点 B , C ,∴,解得 ,∴ y= x 2﹣ x ﹣ 2;( 2)∵令 x 2﹣ x ﹣ 2=0,解得: x 1=﹣ 1, x 2=4,∴ OA=1 , OB=4 .∴ AB=5 . ∴ AC 2=OA 2+0C 2=5, BC 2=OC 2+OB 2=20 , AB 2=25.∴ AC 2+BC 2=AB 2.∴△ ABC 为直角三角形.( 3)如图所示:连接 CD 、 BD ,过点 P 作 PE ⊥ AB ,垂足为 E ,直线 EP 交抛物线与点 D .设直线 BC 的解析式为 y=kx+b .∵将 B ( 4, 0), C( 0,﹣ 2)代入得:,解得: k= ,b=﹣ 2,∴直线 BC 的解析式为 y= .设点 P( a,),则点 D( a, a 2﹣ a﹣ 2).2﹣ 2) =﹣2,∵PD=DE ﹣PE=﹣ a + a+2+( a +2a∴当 a=2 时, PD 有最大值, PD 的最大值 =2 .∵四边形 ACPB 的面积 =S△ACB +S△CBD = + = ×5×2+ ×4×DP=5+2PD .∴当 PD 最大时,四边形 ACPB 的面积.∴当 P 的坐标为(2,﹣ 1)时,四边形 ACPB 的面积的最大值 =5+2 ×2=9 .【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理、勾股定理的逆定理、三角形的面积公式、二次函数的图象和性质,列出四边形PD 与 a 的函数关系式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级第三次模拟考试数学一、选择题(本大题共10小题,每小题4分,满分40分) 1. 下列运算正确的是( ) A. 331-=- B.39±= C. 6332)(b a ab = D. 532a a a =+2. 如图是由6个相同的小正方体搭成的立体图形,若由图①变到图②,则( ) A. 主视图改变,俯视图改变 B. 主视图不变,俯视图改变 C. 主视图不变,俯视图不变 D. 主视图改变,俯视图不变3. 物理某一实验的电路图如图所示,其中1K 、2K 、3K 为电路开关,1L 、2L 为能正常发光的灯泡,任意闭合开关1K ,2K ,3K 中的两个,那么能让两盏灯泡同时发光的概率为( ) A.61 B. 32 C.21 D.31 4. 把代数式32b b a -分解因式,结果正确的是( )A. )(2b a b +B. )(b a b -C. )(22b a b - D. ))((b a b a b -+5. 2502015)(-的值等于( )A. ()502015-±B.()502015± C.502015- D. 201550-6. 桌面上有甲、乙、丙三个圆柱形的杯子,杯子的深度都是为15cm ,各装有10cm 高的水,且表格记录了甲、乙、丙三个杯子的底面积。

小明将甲、乙两杯内的一些水倒入丙杯,在这个过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5,若不记杯子厚度,则甲杯内水的高度变为多少cm ?( ) A. 5.4 B. 5.7 C.7.2 D. 7.5第6题图 第7题图 7. 如图,在矩形ABCD 中,9=AB ,12=BC ,点E 是BC 中点,点F 是边CD 上的任意一点,当AEF ∆的周长最小时,则DF 的长为( )A. 3B. 6C. 8D. 98. 已知0132=+-a a ,则分式142+a a 的值是( )A. 3B.31 C. 7 D. 71 9. ABC ∆的三边AB ,BC ,CA 的长分别为6cm ,4cm ,4cm ,P 为三条内角平分线的交点,则ABP ∆,BCP ∆,ACP ∆的面积比等于( )A . 1:1:1B . 3:2:2C . 2:3:2D . 2:2:310. 直线4+-=x y 与x 轴交于点A ,与y 轴交于点B ,O 是原点。

点P 是线段AB 上的动点(包括A 、B 两点),以OP 为直径作⊙Q ,则⊙Q 的面积不可能是( ) A . π5 B . π4 C . π3 D . π2二、填空题(本大题共5小题,每小题4分,满分20分)11. 环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于 2.5微米的颗粒物,2.5微米即0.0000025米。

用科学记数法表示0.0000025为 。

12. 已知x 、y 是实数,并且231690x y y ++-+=。

则2015(xy)的值是 。

13. 如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,由正n 边形“扩展”而来的多边形的边数记为(n 3)n a ≥求29a 的值 。

第13题图 第14题图14.如图,点C 在以AB 为直径的半圆上,AB=8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE=CF ;②当AD=2时,EF 与半圆相切;③线段EF 的最小值为4;④若点F 恰好落在BC 上,则AD=4。

其中正确结论的序号是 。

三、(本大题共2题,每题8分,满分16分)15.︒-+----60sin 4)13(122102)(16. 阅读材料:求+++++43222221 (2013)2+的值。

解:设+++++=43222221S (20132012)22++,将等式两边同时乘以2得:+++++=5432222222S …2014201322++,将下式减去上式得:1222014-=-S S ,即122014-=S ,即+++++43222221…12220142013-=+请你仿照此法计算:+++++43233331 (2014)3+的值。

四、(本大题共2小题,每小题8分,满分16分) 17. 如图,O ,B ,A 的坐标为(0,0),(3,0),(4,2)。

(1)将△OAB 绕点O 按逆时针方向旋转︒90到△11B OA ,画出△11B OA ,并求B 点所经过路线长。

(2)以O 为位似中心在y 轴左侧画△22B OA ,使△22B OA 与△OAB 的相似比为2:1,并直接写出2A ,2B 坐标。

18. 某处山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图所示)。

已知山坡的坡角︒=∠23AEF ,量得树干的倾斜角︒=∠38BAC ,大树被折断部分和坡面所成的角︒=∠60ADC ,4=AD m 。

(1)求DAC ∠的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:4.12≈,7.13≈,4.26≈).五、(本大题共2小题,每小题10分,满分20分)19、小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =︒90,∠A =︒60,CD 平分∠ACB ,试判断BC 和AC 、AD 之间的数量关系。

小明发现,利用轴对称做一个变化,在BC 上截取CA′=CA ,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答: (1)在图2中,小明得到的全等三角形是 ADC ∆ ≌∆ ;(2)直接写出BC 和AC 、AD 之间的数量关系是 .参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9.求AB 的长.A'D D CB CB A A图1 图2 图320、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A ,B 两种型号的空气净化器,已知一台A 型空气净化器的进价比一台B 型空气净化器的进价多300元,用7500元购进A 型空气净化器和用6000元购进B 型空气净化器的台数相同。

(1)求一台A 型空气净化器和一台B 型空气净化器的进价各为多少元?(2)在销售过程中,A 型空气净化器因为净化能力强,嗓音小而更受消费者的欢迎。

为了增大B 型空气净化器的销量,商社电器决定对B 型空气净化器进行降价销售,经市场调查,当B 型空气净化器的售价为DCBAl800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出l 台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B 型空气净化器的售价定为多少元?六.(本题满分12分)21、上学期,为创建文明城市,29中举行“社会主义核心价值观”演讲比赛,比赛聘请了10位老师和10位学生担任评委,其中九(7)班的得分情况如下面的统计图(表)所示:(1)在频数分布直方图中,自左向右第四组的频数为_______. (2)学生评委计分的中位数是_______分. (3)计算最后得分的规定如下:在评委的计分中各去掉一个最高分、一个最低分,分别计算平均数(老师、学生评委分开计算);并且按老师、学生评委的平均分各占60%、40%的方法计算各班最后得分,已知九(7)班最后得分为94.4分,求统计表中x 的值. 七.(本题满分12分)22、对于某一个函数,自变量x 在规定的范围内,若任意取两个值1x 和2x ,它们的对应函数值分别为1y 和2y .若12x x >1时,有12y y >,则称该函数单调递增;若12x x >时,有12y y <,则称该函数单调递减.例如二次函数2x y =,在0≥x 时,该函数单调递增;在0≤x 时,该函数单调递减。

(1)二次函数:2)1(2++=x y 自变量x 在哪个范围内,该函数单调递减?答: 。

(2)试说明函数:xx y 1-=在1>x 的函数范围内,是单调递增还是单调递减? (3)若存在两个关于x 的一次函数,分别记为:11b x k g +=和22b x k h +=,且函数g 在实数范围内单调递增,函数h 在实数范围内单调递减.记第三个一次函数h g y +=,则比例系数1k 和2k 满足何种条件时,函数y 在实数范围内单调递增?八.(本题满分14分)23、如图,在边长为8的正方形ABCD 中,点O 为AD 上一动点(84<<OA ),以O 为圆心,OA 的长为半径的圆交边CD 于点M ,连接OM ,过点M 作⊙O 的切线交边BC 于N 。

(1)求证:ODM ∆∽MCN ∆;(2)设x DM =,R OA =,求R 关于x 的函数关系式;(3)在动点O 逐渐向点D 运动(OA 逐渐增大)的过程中,CMN ∆的周长如何变化?说明理由。

参考答案一、选择题1.C2.C3.D4.D5.D6.C7.B8.D9.D 10.A 二、填空题11、6105.2-⨯ 12、-1 13、 870 14、①② 三、解答题 15、 316、2132015-解析:设+++++=43233331S (2014)3+, ①两边乘以3得:++++=43233333S (20152014)33++, ②①—②得:1332015-=-S S ,即2132015-=S ,则+++++43233331 (2)13320152014-=+。

17.(1)49π(2)如图所示,22B OA ∆为所求,根据图象可得出)(4,82--A ,)(0,62-B 。

18.(1)75° (2)10米 解:(1)延长BA 交EF 于点G , 在AGE Rt ∆中,︒=∠23E ,︒=∠∴67GAE ,又︒=∠38BAC , ︒︒︒︒=--=∠∴753867180CAE(2)过点A 作CD AH ⊥,垂足为H ,在ADH ∆中,︒=∠60ADC ,4=AD ,ADDHADC =∠cos ,2=∴DH , ADAHADC =∠sin ,32=∴AH . 在ACH Rt ∆中,︒︒︒︒=--=∠456075180C ,62=∴AC ,32==AH CH .1023262≈++=+=∴CD AC AB (米).答:这棵大树折断前高约10米.19.解:(1)△ADC ≌△A′DC ; (2)BC =AC +AD 解决问题如图,在AB 上截取AE =AD ,连接CE . ∵ AC 平分∠BAD , ∴ ∠DAC =∠EAC . 又 ∵AC =AC , ∴ △ADC ≌△AEC . ∴ AE =AD =9,CE=CD =10=BC . 过点C 作CF ⊥AB 于点F .∴ EF =BF . 设EF =BF =x . 在Rt △CFB 中,∠CFB =90°,由勾股定理得CF 2=CB 2-BF 2=102-x 2. 在Rt △CF A 中,∠CF A =90°,由勾股定理得CF 2=AC 2-AF 2=172-(9+x )2. ∴ 102-x 2=172-(9+x )2, 解得x =6. ∴ AB =AE +EF +FB =9+6+6=21. ∴ AB 的长为21.20. 解:(1)设B 型空气净化器的进价为x 元,则A 型空气净化器进价为)300(+x 元,由题意x x 60003007500=+ 解得:1200=x∴A 型空气净化器进价为1500300=+x (元)(2)设B 型空气净化器的售价在1800的基础上降低a 50元由题意:3200)4)(120050-1800=+-a a (, 解得421==a a ,∴B 型空气净化器的售价为1800-50a=1600元。

相关文档
最新文档