2018-2019学年最新人教版七年级数学上册期中考试模拟试卷及答案-经典试题

合集下载

河北省保定市第十七中学2018-2019学年人教版七年级上学期期中考试数学试题(含答案解析)

河北省保定市第十七中学2018-2019学年人教版七年级上学期期中考试数学试题(含答案解析)

2018-2019学年七年级上学期期中考试数学试题一、选择题(1-10小题每小题3分,11-16小题每小题3分,共42分,每小题的四个选项中只有一个是正确的)1.某天的温度上升了﹣2℃的意义是()A.上升了2℃B.没有变化C.下降了﹣2℃D.下降了2℃2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.3.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105B.1.3×104C.1.3×105D.13×1034.六棱柱中,侧棱的条数有()A.6条B.8条C.12条D.18条5.下列一组数:0.6,﹣4,(﹣1)2017,﹣5,﹣(﹣1.7),﹣|﹣2|中负数有()A.2个B.3个C.4个D.5个6.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能7.下面关于有理数的说法正确的是()A.正数、负数和零统称为有理数B.正整数与负整数合在一起就构成全部整数C.有限小数和无限循环小数不是有理数D.整数和分数统称为有理数8.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.9.如图,点A表示的有理数是a,则a,﹣a,1的大小顺序为()A.a<﹣a<1 B.﹣a<a<1 C.a<1<﹣a D.1<﹣a<a 10.下列说法正确的有()A.x+2=5是代数式B.是单项式C.多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和D.2不是单项式11.已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2017的值为()A.﹣1 B.1 C.2012 D.﹣200812.如图是某同学完成作业的照片,他做对的题数是()A.2个B.3个C.4个D.5个13.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 14.已知|a|=5,|b|=2,且|a﹣b|=b﹣a,则a+b=()A.3或7 B.﹣3或﹣7 C.﹣3 D.﹣715.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.1+π或1﹣πB.2+π或2﹣πC.0.5+π或0.5﹣πD.0.25+π或0.25﹣π16.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去,则第2014个图中共有正方形的个数为()A.2014 B.2017 C.6040 D.6044二、填空题(17、18每小题3分,19小题每空2分,共10分)17.单项式的系数是.18.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是.19.一列数a1,a2,a3,a4,…,其中a1=﹣1,a2=,a3=,a4=,…依此类推,a2=,a2018=.三、解答题(共68分,请写出必要的解答过程)20.计算①(﹣40)﹣28+(﹣5)+28②(﹣12)÷③11﹣(+22)﹣11×(﹣3)④0﹣23÷(﹣4)3﹣21.用简便方法运算①÷(﹣)②(﹣1.53)×0.75+0.53×+3.4×(﹣0.75)③49×(﹣5)22.已知a,b互为相反数,m,n互为倒数,x的平方与它本身相等,回答:(1)由题目可得,a+b=,mn=,x=;(2)求多项式2x2+(﹣mn)2017+(a+b)2018的值.23.亮亮在学习展开与折叠时,不小心将正方体展开图的一个面给剪下来了,如图所示,经过折叠发现,它可以围成一个无盖的正方体盒子.现在请你开动脑筋,无盖的正方体盒子展开图还有哪些,请画出5种与亮亮不同的.(注意:请用尺子规范作图呦!)24.某电动车厂本周内计划每日生产200辆电动车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)(1)产量最多的一天比产量最少的一天多生产了辆.(2)本周总生产量与计划生产量相比,是增加还是减少,增加或减少了多少辆?(3)本周共生产了多少辆电动车?25.观察下列各式,并回答问题1+2+1=4=221+2+3+2+1=9=321+2+3+4+3+2+1=16=421+2+3+4+5+4+3+2+1=25=52……(1)请你写出第5个式子;(2)请你用含n的式子表示上述式子所表示的规律;(3)计算:1+2+3+……+99+100+99+……+3+2+1.(4)计算:6+7+8+……+99+100+99+……+8+7+6;(5)计算:1+2+3+……+99+100.26.阅读材料:我们知道无限循环小数可以化成分数,下面提供了一种方法.把循环小数0.化为分数:由100×0.﹣0.=16.﹣0.=16即(100﹣1)×0.=1699×0.=16所以0.=把循环小数2.1化为分数:只需将其小数部分0.1化成分数即可由100×0.1﹣10×0.1=15.﹣1.=14即(100﹣10)×0.1=1490×0.1=14所以0.1=所以2.1=2下面将展示三组题,你只能选择一组来做.(请在答题纸上标明你选择的题组)A组:请将下面4个数化成分数.①0.②0.③1.④3.2B组:请将下面2个数化成分数.①0.2②﹣3.0C组:你还知道其他无限循环小数化成分数的方法吗,请用0.举例说明.参考答案与试题解析一.选择题(共16小题)1.某天的温度上升了﹣2℃的意义是()A.上升了2℃B.没有变化C.下降了﹣2℃D.下降了2℃【分析】在一般情况下,温度上升一般用正数表示,上升的度数是负数,则表示与上升相反意义的量,即下降了2℃.【解答】解:上升一般用正数表示,则温度上升了﹣2℃的意义是下降了2℃,故选D.2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:由题意,得图形与B的图形相符,故选:B.3.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105B.1.3×104C.1.3×105D.13×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将13000用科学记数法表示为:1.3×104.故选:B.4.六棱柱中,侧棱的条数有()A.6条B.8条C.12条D.18条【分析】根据棱柱的特征:n棱柱有n条侧棱,2n条底棱,n棱柱的棱是3n条,可得答案.【解答】解:六棱柱有六条侧棱,12条底棱,故选:C.5.下列一组数:0.6,﹣4,(﹣1)2017,﹣5,﹣(﹣1.7),﹣|﹣2|中负数有()A.2个B.3个C.4个D.5个【分析】根据正数和负数的定义即可作出判断,负数是小于0的数,据此选择正确选项.【解答】解:在0.6,﹣4,(﹣1)2017,﹣5,﹣(﹣1.7),﹣|﹣2|中负数有﹣4,(﹣1)2017=﹣1,﹣5,﹣|﹣2|=﹣2共4个,故选:C.6.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能【分析】根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【解答】解:A、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;D、根据以上分析可得此选项错误;故选:B.7.下面关于有理数的说法正确的是()A.正数、负数和零统称为有理数B.正整数与负整数合在一起就构成全部整数C.有限小数和无限循环小数不是有理数D.整数和分数统称为有理数【分析】根据有理数的定义即可作出判断.【解答】解:A、正有理数、负有理数和零统称为有理数,故说法错误;B、正整数与负整数以及0合在一起就构成整数,故说法错误;C、有限小数和无限循环小数是有理数,故说法错误;D、整数和分数统称为有理数,故说法正确.故选:D.8.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.9.如图,点A表示的有理数是a,则a,﹣a,1的大小顺序为()A.a<﹣a<1 B.﹣a<a<1 C.a<1<﹣a D.1<﹣a<a【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【解答】解:因为﹣1<a<0,所以0<﹣a<1,可得:a<﹣a<1.故选:A.10.下列说法正确的有()A.x+2=5是代数式B.是单项式C.多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和D.2不是单项式【分析】利用代数式,整式,多项式,单项式的性质判断即可.【解答】解:A、x+2=5不是代数式,是等式,原说法错误,故不符合题意;B、不是单项式,是分式,原说法错误,故不符合题意;C、多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和,原说法正确,故符合题意;D、2是单项式,原说法错误,故不符合题意,故选:C.11.已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2017的值为()A.﹣1 B.1 C.2012 D.﹣2008 【分析】根据非负数的性质进行计算即可.【解答】解:∵|x﹣3|+(y+4)2=0,∴x﹣3=0,y+4=0,∴x=3,y=﹣4,∴(x+y)2017=(3﹣4)2017=﹣1.故选:A.12.如图是某同学完成作业的照片,他做对的题数是()A.2个B.3个C.4个D.5个【分析】直接利用幂的乘方运算法则以及相反数的定义以及绝对值的性质、倒数的定义分别分析得出答案.【解答】解:①﹣1的倒数是1,不正确,故原题解答正确;②|﹣3|=3,正确,故原题解答错误;③﹣(﹣2)=﹣2,不正确,故原题解答错误;④=,正确,故原题解答正确;⑤若|a|=|b|,则a=b,不正确,故原题解答错误;故选:A.13.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.14.已知|a|=5,|b|=2,且|a﹣b|=b﹣a,则a+b=()A.3或7 B.﹣3或﹣7 C.﹣3 D.﹣7【分析】由|a﹣b|=b﹣a,知b>a,又由|a|=5,|b|=2,知a=﹣5,b=2或﹣2,当a=﹣5,b=2时,a+b=﹣3,当a=﹣5,b=﹣2时,a+b=﹣7,故a+b=﹣3或﹣7.【解答】解:∵|a﹣b|=b﹣a,∴b>a,∵|a|=5,|b|=2,∴a=﹣5,b=2或﹣2,当a=﹣5,b=2时,a+b=﹣3,当a=﹣5,b=﹣2时,a+b=﹣7,∴a+b=﹣3或﹣7.故选:B.15.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.1+π或1﹣πB.2+π或2﹣πC.0.5+π或0.5﹣πD.0.25+π或0.25﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,再由圆的周长公式得出周长为π,根据两点间的距离是大数减小数,可得答案.【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π.故选:A.16.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去,则第2014个图中共有正方形的个数为()A.2014 B.2017 C.6040 D.6044【分析】观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,再根据此规律写出第n个图形中的正方形的个数的表达式,再代入2014求得问题即可.【解答】解:第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,…,第n个图形有正方形(3n﹣2)个.则第2014个图中共有正方形的个数为3×2014﹣2=6040.故选:C.二.填空题(共3小题)17.单项式的系数是.【分析】直接利用单项式的定义分析得出答案.【解答】解:单项式的系数是.故答案为:18.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是 5 .【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【解答】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故答案为:5.19.一列数a1,a2,a3,a4,…,其中a1=﹣1,a2=,a3=,a4=,…依此类推,a2=,a2018=.【分析】根据后一个数等于1减去前一个数差的倒数,进行计算即可求解.【解答】解:由题中给出的规律,得a1=﹣1,a2=,a3=2,a4=﹣1,a5=…2018÷3=672 (2)∴a2018=.故答案为,.三.解答题(共7小题)20.计算①(﹣40)﹣28+(﹣5)+28②(﹣12)÷③11﹣(+22)﹣11×(﹣3)④0﹣23÷(﹣4)3﹣【分析】①先化简,再计算加减法;②将除法变为乘法,再约分计算即可求解;③先算乘法,再算减法;④先算乘方,再算除法,最后算减法;同级运算,应按从左到右的顺序进行计算.【解答】解:①(﹣40)﹣28+(﹣5)+28=﹣40﹣28﹣5+28=﹣45;②(﹣12)÷=(﹣12)×(﹣12)×(﹣)=﹣;③11﹣(+22)﹣11×(﹣3)=11﹣22+33=22;④0﹣23÷(﹣4)3﹣=0﹣8÷(﹣64)﹣=0+﹣=0.21.用简便方法运算①÷(﹣)②(﹣1.53)×0.75+0.53×+3.4×(﹣0.75)③49×(﹣5)【分析】①将除法变为乘法,再根据乘法分配律简便计算;②根据乘法分配律简便计算;③先变形为(50﹣)×(﹣5),再根据乘法分配律简便计算.【解答】解:①÷(﹣)=×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣16+20﹣2=2;②(﹣1.53)×0.75+0.53×+3.4×(﹣0.75)=(﹣1.53+0.53﹣3.4)×0.75=﹣4.4×0.75=﹣3.3;③49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249.22.已知a,b互为相反数,m,n互为倒数,x的平方与它本身相等,回答:(1)由题目可得,a+b=0 ,mn= 1 ,x=0或1 ;(2)求多项式2x2+(﹣mn)2017+(a+b)2018的值.【分析】(1)根据相反数的定义、互为倒数的定义、平方的性质即可解决问题;(2)把a+b=0,mn=1,x=0或1,代入式子计算即可求解.【解答】解:(1)由题目可得,a+b=0,mn=1,x=0或1;故答案为:0;1;0或1.(2)当x=0时,2x2+(﹣mn)2017+(a+b)2018=0﹣1+0=﹣1;当x=1时,2x2+(﹣mn)2017+(a+b)2018=2﹣1+0=1.∴多项式2x2+(﹣mn)2017+(a+b)2018的值为﹣1或1.23.亮亮在学习展开与折叠时,不小心将正方体展开图的一个面给剪下来了,如图所示,经过折叠发现,它可以围成一个无盖的正方体盒子.现在请你开动脑筋,无盖的正方体盒子展开图还有哪些,请画出5种与亮亮不同的.(注意:请用尺子规范作图呦!)【分析】根据立方体的展开图解决问题即可(答案不唯一).【解答】解:无盖的正方体盒子展开图有:24.某电动车厂本周内计划每日生产200辆电动车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)(1)产量最多的一天比产量最少的一天多生产了辆.(2)本周总生产量与计划生产量相比,是增加还是减少,增加或减少了多少辆?(3)本周共生产了多少辆电动车?【分析】(1)求出每天的产量,即可得到产量最多的一天比产量最少的一天多生产的辆数;(2)根据表格求出所有数据之和,即可做出判断;(3)由表格以及计划每日生产的辆数即可得到本周的产量;【解答】解:(1)产量最多的一天比产量最少的一天多生产了(200+10)﹣(200﹣25)=35(辆),即产量最多的一天比产量最少的一天多生产了35辆;(2)﹣3+9﹣3+7+10﹣9﹣25=﹣14可知本周总生产量与计划生产量相比减少14辆.(3)本周生产的电动车为:7×200+(﹣3+9﹣3+7+10﹣9﹣25)=1386(辆).25.观察下列各式,并回答问题1+2+1=4=221+2+3+2+1=9=321+2+3+4+3+2+1=16=421+2+3+4+5+4+3+2+1=25=52……(1)请你写出第5个式子1+2+3+4+5+6+5+4+3+2+1=36=62;(2)请你用含n的式子表示上述式子所表示的规律1+2+3+…+n+…+3+2+1=n2;(3)计算:1+2+3+……+99+100+99+……+3+2+1.(4)计算:6+7+8+……+99+100+99+……+8+7+6;(5)计算:1+2+3+……+99+100.【分析】(1)由1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52,…可以看出每组数的和等于中间数的平方;由此可以写出第5个式子;(2)根据给出的式子可得所表示的规律;(3)(4)根据(2)中的规律可直接计算出结果;(5)根据(3)的结果加上100再除以2即可求解.【解答】解:(1)第5个式子1+2+3+4+5+6+5+4+3+2+1=36=62;(2)用含n的式子表示上述式子所表示的规律:1+2+3+…+n+…+3+2+1=n2;(3)1+2+3+……+99+100+99+……+3+2+1=1002=10000.(4)6+7+8+……+99+100+99+……+8+7+6=1002﹣(1+2+3+4+5)×2=10000﹣30=9970;(5)1+2+3+……+99+100=(10000+100)÷2=5050.故答案为:1+2+3+4+5+6+5+4+3+2+1=36=62;1+2+3+…+n+…+3+2+1=n2.26.阅读材料:我们知道无限循环小数可以化成分数,下面提供了一种方法.把循环小数0.化为分数:由100×0.﹣0.=16.﹣0.=16即(100﹣1)×0.=1699×0.=16所以0.=把循环小数2.1化为分数:只需将其小数部分0.1化成分数即可由100×0.1﹣10×0.1=15.﹣1.=14即(100﹣10)×0.1=1490×0.1=14所以0.1=所以2.1=2下面将展示三组题,你只能选择一组来做.(请在答题纸上标明你选择的题组)A组:请将下面4个数化成分数.①0.②0.③1.④3.2B组:请将下面2个数化成分数.①0.2②﹣3.0C组:你还知道其他无限循环小数化成分数的方法吗,请用0.举例说明.【分析】A组:根据题目中的结论解题即可;B组:根据题目中的结论解题即可;C组:令c=0.161616,则方程两边都乘以100,转化为100c﹣c=16,求出其解即可.【解答】解:A组:①0.=;②0.==;③1.=1;④3.2=3;B组:①0.2=;②﹣3.0=﹣3;C组:令c=0.262626…①则100c=26.262626…②②﹣①得100c﹣c=16,即99c=16,解得:c=故将0.化成分数为.。

最新初一数学上册期中考试试卷及答案人教版名师优秀教案

最新初一数学上册期中考试试卷及答案人教版名师优秀教案

初一数学上册期中考试试卷及答案(人教版) 初一数学上册期中测试试卷一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)11(的绝对值是( )( ,211 (A) (B) (C)2 (D) -2 ,222(武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( ). 3434(A)1.68×10m (B)16.8×10 m (C)0.168×10m (D)1.68×10m3(如果收入15元记作+15元,那么支出20元记作( )元.(A)+5 (B)+20 (C)-5 (D)-2012234(有理数,,,1, ,-(-1),中,其中等于1的个数是( ). ,1(1),(1),,,1(A)3个 (B)4个 (C)5个 (D)6个5(已知p与q互为相反数,且p?0,那么下列关系式正确的是( )(q(A) (B) (C) (D) ,1pq.1,pq,,0pq,,0p(方程5-3x=8的解是( )( 61313(A)x=1 (B)x=-1 (C)x= (D)x=- 337(下列变形中, 不正确的是( ).(A) a,(b,c,d),a,b,c,d (B) a,(b,c,d),a,b,c,d(C) a,b,(c,d),a,b,c,d (D) a,b,(,c,d),a,b,c,d8(如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是( )(B A1 a b ,1 0(A) b,a>0 (B) a,b>0 (C) ab,0 (D) a,b>09(按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( ).3(A)1022.01(精确到0.01) (B)1.0×10(保留2个有效数字)(C)1020(精确到十位) (D)1022.010(精确到千分位)10(“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为( ).(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x)=4ababa7a7ab,ab,47ab,47ab,11. 下列等式变形:?若,则;?若,则;?若,则;?若,则.,,,,b4b4xxxx其中一定正确的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个1bd()cdabxx,,,acx12.已知、互为相反数,、互为倒数,等于-4的2次方,则式子的值为( )( 2(A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)1,13(写出一个比小的整数: . 2a mere formality. The documents, meeting, long work arrangement, check and supervise the implementation of small, poor implementation of the system, the work is not effective. Some leading cadres sense of purpose, consciousness of the masses is not strong14(已知甲地的海拔高度是300m,乙地的海拔高度是,50m,那么甲地比乙地高____________m(15(十一国庆节期间,吴家山某眼镜店开展优原价: 元惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价( 国庆节8折优惠,现价:160元16(小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输入… … 1 2 3 4 512345输出... (25101726)那么,当输入数据为8时,输出的数据为 (三、解一解, 试试谁更棒(本大题共8小题,共72分)1310317((本题10分)计算(1) (2) (1)(48),,,,(,1),2,(,2),464解: 解:1137322xx,,,13,,,xx18((本题10分)解方程(1) (2) 26解: 解:66419((本题7分)统计数据显示,在我国的座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和2严重缺水城市(其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的倍(求严重缺水城市有多少座,解:20. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.a mere formality. The documents, meeting, long work arrangement, check and supervise the implementation of small, poor implementation of the system, the work is not effective. Some leading cadres sense of purpose, consciousness of the masses is not strong-------------------------------胜利教育---------------------------------------------------------------一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)2(2)如果一列数是等比数列,且公比为.那么有:,,qaaaa,,,aaq,aaqaqqaq,,,()123421321123。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

人教版七年级上册数学期中试卷及答案

人教版七年级上册数学期中试卷及答案

人教版七年级上册数学期中试卷及答案人教版七年级上册数学期中考试试题一、单选题1.下列计算结果为-1的是()A。

(-2) + (+3)B。

(+1) - (-2)C。

(-1)^2014D。

(-3) ÷ (+3)2.在-π,-2,3.14,22/7,0.1414中,有理数的个数是()A。

2个B。

3个C。

4个D。

5个3.长江三峡工程电站的总装机容量用科学记数法表示为1.82×10^7千瓦,把它写成原数是()A。

千瓦B。

xxxxxxx千瓦C。

xxxxxxxx千瓦D。

xxxxxxxx0千瓦4.下面说法中不正确的是()A。

一个数与它的倒数之积是1B。

一个数的立方等于它本身,则这个数为1C。

两个数的商为-1,这两个数互为相反数D。

两个数的积为1,这两个数互为倒数5.数a、b、c在数轴上对应的位置如图,化简a+b-c-b的结果()A。

a+cB。

c-aC。

-c-aD。

a+2b-c6.a、b互为相反数,c为最大的负整数,d的倒数是它本身,则2a+2b+d的值是()A。

1B。

-1C。

3D。

-1或17.下列说法正确的是()A。

单项式是整式,整式也是单项式B。

25与x^5是同类项C。

单项式-πxy的系数是-π,次数是4D。

(1/2)+2是一次二项式8.有理数(-1)^2,(-1)^3,-1/2,|-1|,-1中,其中等于1的个数是()A。

3个B。

4个C。

5个D。

6个9.下列说法正确的是()A。

x的指数是0时,x的值为1B。

-2ab的系数是-2C。

-1是一次单项式D。

x的系数是0时,x为010.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A。

5.5×10^6千米B。

5.5×10^7千米C。

55×10^6千米D。

0.55×10^8千米二、填空题11.绝对值大于2而小于5的所有的正整数的和为 54.12.把多项式a^3-b^3+3a^2b+2ab^2按a的降幂排列为 -b^3+3ab^2+3a^2b+a^3.0.用科学记数法表示为:-3.1 x 10^-5.在数轴上,到表示-2的点有5个单位的点所对应的数是-7.若4a^2bn与-8amb^3是同类项,则m=-1、n=3.计算((1111/2345) + (1111/2345) + (/)) - ((1/2) + (1/3) + (1/4) + (1/5))的结果是0..一组数据为:x,-2x^2,4x^3,-8x^4,…观察其规律,推断第n个数据应为(-2)^n x^(n-1)。

人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试题一、单选题1.下列四个数中,最小的数是( )A .0B .3-C .1-D .12-2.绝对值为13的数是( )A .13± B .13 C .13- D .33.将460 000 000用科学记数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 4.下列计算正确的是( )A .527x y xy +=B .22234x y yx x y -=-C .257x x x +=D .321x x -=5.多项式2123xy xy --的次数和次数最高项的系数分别是( )A .5,3-B .2,3-C .2,3D .3,3- 6.下列说法中错误的是( )A .-23x 2y 的系数是-23 B .0是单项式C .23xy 的次数是1 D .-x 是一次单项式7.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >bB .b >﹣aC .a+b >0D .ab <08.研究表明“距离地面越高,温度越低”,相关数据如表所示:( )根据上表,请预测距离地面6km 的高空温度是( )A .14-℃B .15-℃C .16-℃D .17-℃9.长方形的一边为2a ﹣3b ,另一边比它小a ﹣b ,则此长方形的另一边为( )A .3a ﹣4bB .3a ﹣2bC .a ﹣2bD .a ﹣4b10.若多项式22233(52)x y x mx -+-+的值与x 的值无关,则m 等于( )A .0B .3C .3-D .9-二、填空题11.若将“向东走100米”记作“+100米”,则“向西走60米”可记作“_________米” 12.比较大小:-2 ______ 3--.13.已知点P 是数轴上表示3-的点,把点P 向左移动2个单位后,再向右移动5个单位,那么移动完后点P 表示的数是_________.14.已知某快递公司的收费标准为寄一件物品不超过1千克,收费10元;超过1千克的部分每千克加收1.5元.小丽在该快递公司寄一件6千克的物品,需要付费_________元.15.计算:16()(5)42÷---⨯=_________. 16.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是______元.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如2231x x --+252x x =+-,则所捂住的多项式是_________.18.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”已知数轴上点A 1的相关点为A 2,点A 2的相关点为A 3,点A 3的相关点为A 4,…,这样依次得到点A 1、A 2、A 3、A 4、…、An .若点A 1在数轴上表示的数是12,则点A 2022在数轴上表示的数是_________.三、解答题19.计算:125233⎛⎫-++-- ⎪⎝⎭.20.合并同类项:3x 2-1-2x -5+3x -x 221.计算:3211(2)25()()24⎡⎤-+-⨯-÷-⎢⎥⎣⎦.22.把下列各数填在相应的集合中:716,,3,9.1,4,126,0,3.1410---. 正数集合{ …};分数集合{ …};负整数集合{ …}.23.画出数轴,在数轴上表示下列各数:5+, 3.5-,12,112-,4,0.并用“<”连接.24.先化简,再求值:2211312()()2323x x y x y --+-+,其中2x =-,23y =25.如图所示,有块长为20m ,宽为10m 的长方形土地,现在将其余三面留出宽都是xm 的小路,中间余下的长方形部分做菜地,用含x 的式子表示:(1)菜地的长a= m ,菜地的宽b= m .(2)当1x =时,求菜地的周长C .26.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为1+,向下一楼记为1-.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):7+,3-,11+,8-,12+,5-,10-.(1)请你通过计算说明小李最后停在几楼.(2)该中心大楼每层高3m ,电梯每上或下1m 需要耗电0.06度,根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?27.我们知道,42(421)3x x x x x -+=-+=.类似地,我们把()a b +看成一个整体,则4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把2()a b -看成一个整体,则合并2223()8()6()a b a b a b ---+-的结果是 .(2)已知223x y -=,求2842y x -+-的值.28.先阅读,再解答问题: 我们知道111122=-⨯,1112323=-⨯,1113434=-⨯,那么: (1)145=⨯ ;120202021=⨯ ; (2)用含有n (n 为正整数)的式子表示你发现的规律: ;(3)依据(2)中的规律计算:111112233420212022++++⨯⨯⨯⨯.(写出解题过程)参考答案1.B【解析】【分析】有理数大小比较的法则:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:℃|-3|>|-1|>|12-|>|0|, ℃-3<−1<12-<0, ℃其中最小的数是-3.故选:B .【点睛】本题考查了有理数大小比较,掌握有理数大小比较的法则是解答本题的关键.2.A【解析】【分析】数轴上某个数与原点的距离叫做这个数的绝对值,利用绝对值的意义进行判断.【详解】解:|13|=13,|﹣13|=13.故选:A.【点睛】本题考查了绝对值:若a>0,|a|=a;若a=0,|a|=0;若a<0,|a|=﹣a.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此判断即可.【详解】解:A、5x+2x=7x,原计算错误,故该选项不符合题意;B、3x2y−4yx2=−x2y正确,故该选项符合题意;C 、x 2与x 5不是同类项,不能合并,故该选项不符合题意;D 、3x -2x=x ,原计算错误,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.5.D【解析】【分析】直接利用多项式的次数与系数的确定方法即可得出答案.【详解】解:多项式2123xy xy --的次数为3,最高次项的系数是3-.故选:D .【点睛】本题考查多项式的定义.解题的关键是掌握多项式的相关定义,要注意多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数;次数最高项的系数就是数字因数.6.C【解析】【分析】根据单项式定义是“表示数与字母乘积的式子叫单项式,特别地,单独的一个数或字母也是单项式”,单项式的系数的定义是“单项式中的数字因数叫做单项式的系数”,单项式的次数的定义是“单项式中所有字母因数的指数之和叫单项式的次数”来判断.【详解】解:A 选项中,因为223x y -的系数是23-,所以本选项正确,不符合题意; B 选项中,因为0是单项式, 所以本选项正确,不符合题意;C 选项中,因为23xy 的次数是2,不是1,所以本选项错误,符合题意; D 选项中,因为x -是一次单项式,所以本选项正确,不符合题意;故选C .【点睛】本题考查了单项式定义、系数、次数,解题的关键是掌握相应的定义:表示数与字母乘积的式子叫单项式,特别地,单独的一个数或字母也是单项式.7.D【解析】【分析】本题主要考查有理数的乘法,数轴,有理数的加法,根据数轴上点的特征可得a<0<b,且|a|>|b|,据此逐项判断可求解.【详解】解:由数轴可知:a<0<b,且|a|>|b|,故A选项错误;℃b<﹣a,故B选项错误;a+b<0,故C选项错误;ab<0,故D选项正确.故选:D.【点睛】本题主要考查了数轴,有理数的乘法及加法,掌握数轴上点的特征是解题的关键.8.C【解析】【分析】观察表格发现:距离地面的高度每升高1千米,温度就下降6℃.距离地面5千米的时候温度为-10℃,再降低6℃即可得出答案.【详解】解:观察表格发现:距离地面的高度每升高1千米,温度就下降6℃,℃距离地面6千米的高空温度为:-10-6=-16(℃),故选:C.【点睛】本题考查了正数和负数,有理数的减法,解题的关键是通过表格发现温度随距离地面的高度变化的规律.9.C【解析】【分析】根据另一边比它小a ﹣b ,列代数式()23a b a b ---,然后根据整式的加减运算法则计算即可.【详解】解:℃长方形的一边为2a ﹣3b ,另一边比它小a ﹣b ,另一边为()23232a b a b a b a b a b ---=--+=-.故选择C .【点睛】本题考查列代数式,整式的加减运算,掌握列代数式的方法,整式的加减运算法则是解题关键.10.D【解析】【分析】先将多项式化简,再根据多项式3x 2-3(5+y -2x 2)+mx 2的值与x 的值无关,即可得到m 的值.【详解】解:3x 2-3(5+y -2x 2)+mx 2=3x 2-15-3y+6x 2+mx 2=(9+m )x 2-3y -15,℃多项式3x 2-3(5+y -2x 2)+mx 2的值与x 的值无关,℃9+m=0,解得m=-9,故选:D .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.11.-60【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:向东记为正,则向西就记为负,直接得出结论即可.【详解】解:℃向东走100米记作+100米,℃向西走60米可记作-60米,故答案为:-60.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.>【解析】【分析】 先把3--化简成3-,再比较2-和3-的大小,绝对值越大的负数本身越小.【详解】 解:33--=-,33-=,22-=,℃23<,℃23->-,即23->--.故答案是:>.【点睛】本题考查有理数的大小比较和绝对值的化简,解题的关键是掌握比较有理数大小的方法. 13.0【解析】【分析】根据题意列出算式(-3)-2+5,求出即可.【详解】解:根据题意得:(-3)-2+5=0,即点P 表示的数是0,故答案为0.【点睛】本题考查了数轴和有理数的加减的应用,关键是能根据题意列出算式.14.17.5【解析】【分析】根据寄一件物品不超过1千克,收费10元;超过1千克的部分每千克加收1.5元,可以得到小丽在该快递公司寄一件6千克的物品,需要付费10+(6-1)×1.5,然后计算即可.【详解】解:由题意可得,小丽在该快递公司寄一件6千克的物品,需要付费:10+(6-1)×1.5=10+5×1.5=10+7.5=17.5(元),故答案为:17.5.【点睛】本题考查有理数的混合运算,解答本题的关键是列出相应的算式,求出小丽需要支付的费用.15.8【解析】【分析】先计算乘除,再根据有理数的减法法则计算即可.【详解】 解:16()(5)42÷---⨯ 6220=-⨯+=-12+20=8.故答案为:8.【点睛】本题考查有理数的四则混合运算,掌握运算顺序,会把除法转化为乘法进行运算是解题关键.16.0.99a【解析】【分析】先求出按批发价a 元提高10%的零售价()110%a +(元),再乘以(1-10%)即可【详解】解:按批发价a 元提高10%的零售价格为()110%a +(元),又按零售价降低10%即为单价,则单价为()()110%110%0.99a a +⨯-= (元).故答案为:0.99a .【点睛】本题考查用字母表示数,列代数式,掌握用字母表示数,列代数式方法是解题关键. 17.3x 2+8x -3【解析】【分析】根据整式的加减法则进行计算即可.【详解】解:所捂住的多项式是x 2+5x -2+2x 2+3x -1=3x 2+8x -3,故答案为:3x 2+8x -3.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 18.-1【解析】【分析】通过计算求出点A 2在数轴表示的数2,点A 3在数轴表示的数是-1,点A 4在数轴表示的数12,可得规律,每3组数是一个循环,则可判断点A 2022在数轴上表示的与点A 3在数轴上表示的相同,即可求解.【详解】解:℃点A 1在数轴表示的数是12, ℃点A 2在数轴表示的数是12112=-,点A 3在数轴表示的数是1112=--, 点A 4在数轴表示的数是111(1)2=--,℃每3组数是一个循环,℃2022÷3=674,℃点A2022在数轴上表示的与点A3在数轴上表示的相同,℃点A2022在数轴上表示的-1,故答案为:-1.【点睛】本题考查数字的变化规律,能够通过所给条件,探索出数的规律是解题的关键.19.2-【解析】【分析】根据有理数的加法运算,即可求得结果.【详解】解:1252 33⎛⎫-++--⎪⎝⎭125233⎛⎫=--+-⎪⎝⎭13=-+2=-【点睛】本题考查了有理数的加减混合运算,采用加法的结合律会使运算比较简单.20.2x2+x-6【解析】【详解】试题分析:先找出同类项,再根据合并同类项法则即可得到结果.原式=3x2-x2-1-5-2x+3x=2x2+x-6.考点:本题考查的是合并同类项,解答本题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.21.11-【解析】【分析】原式先计算乘方,再计算中括号内的,然后计算除法,最后进行加减运算即可得到答案.【详解】解:3211(2)25()()24⎡⎤-+-⨯-÷-⎢⎥⎣⎦ =1418(25)()4-+-⨯÷- =5418(2)()4-+-÷- =3418()4-+÷- =83--=11-【点睛】本题主要考查了有理数的混合运算,熟练掌握混合运算的顺序和法则是解答本题的关键. 22.716,,10126,3.14;7,109.1,- 3.14;-3,-4 【解析】【分析】根据“正数是大于0的数;分数包括正分数和负分数;负整数是小于0整数:进行判断即可.【详解】解:正数集合{ 716,,10126,3.14 …}; 分数集合{ 7,109.1,- 3.14 …}; 负整数集合{-3,-4…} 故答案为:716,,10126,3.14;7,109.1,- 3.14;-3,-4 【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类. 23. 3.5-<112-<0<12<4<+5,见解析 【解析】【分析】根据正数在原点的右边,负数在原点的左边以及距离原点的距离可得各数在数轴上的位置.【详解】如图所示:由小到大排序为: 3.5-<112-<0<12<4<+5 【点睛】本题考查了数轴:数轴有三要素(正方向、原点、单位长度),原点表示数0,原点左边的点表示负数,右边的点表示正数.24.23x y -+,469【解析】【分析】先化简整式,再代入求值即可;【详解】 解:原式22123122323x x y x y =-+-+,=23x y -+,2x =-,23y =时, 原式469=;【点睛】本题主要考查了整式加减化简求值,准确计算是解题的关键.25.(1)(20-2x ),(10-x )(2)菜地的周长为54m .【解析】【分析】(1)根据图形中的数据求出菜地的长、宽;(2)根据图形中的数据求出菜地的周长即可,把x=1代入求出即可.(1)解:菜地的长a=(20-2x )m ,菜地的宽b=(10-x )m ,故答案为:(20-2x ),(10-x );(2)解:菜地的周长为:2(20-2x )+2(10-x )=(60-6x )m ,当x=1时,菜地的周长C=60-6×1=54(m ).【点睛】本题考查了求代数式的值和列代数式,能够正确列出代数式是解此题的关键.26.(1)5楼(2)10.08度【解析】【分析】(1)把上下楼层的记录相加,根据有理数的加法运算法则进行计算,可判断小李最后的位置;(2)求出上下楼层所走过的总路程,然后乘以0.06即可得解.(1)解:()()()()()()()7311812510++-+++-+++-+-=7-3+11-8+12-5-10=44+1=5,故小李最后停在5楼;(2) 解:7311812510++-+++-+++-+-=7+3+11+8+12+5+10=565630.0610.08⨯⨯=(度),当他办事时电梯需要耗电10.08度.【点睛】本题主要考查了有理数的混合运算,(2)中注意要求出上下楼层的绝对值,而不是利用(1)中的结论求解,这是本题容易出错的地方.27.(1)2()a b -(2)10,过程见解析【解析】【分析】(1)把2()a b -看成一个整体,合并同类项即可;(2)把2842y x -+-的前两项提取公因式4,然后整体代入求值.(1)解:2223()8()6()a b a b a b ---+-=(3-8+6)2()a b -=2()a b -故答案为:2()a b -(2)解:℃ 223x y -=,℃2842y x -+-=24(2)2y x -+-=24(2)2x y --=432⨯-=10【点睛】本题考查了整式的加减,掌握整体的思想是解决本题的关键. 28.(1)1111;4520202021-- (2)111(1)1n n n n =-++ (3)20212022【解析】【分析】(1)利用题干中反映的规律解答即可;(2)利用(1)中的方法解答即可;(3)利用(2)中的规律将式子中的每一项变成两数之差即可得出结论.(1)℃111111111,,,12223233434=-=-=-⨯⨯⨯ ℃111111,45452020202120202021=-=-⨯⨯ 故答案为:1111;4520202021--(2)由(1)中的规律可得:用含有n (n 为正整数)的式子表示为:111(1)1n n n n =-++ 故答案为:111(1)1n n n n =-++(3)111112233420212022++++⨯⨯⨯⨯111111112233420212022=-+-+-++-112022=-20212022=。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案七年级上册数学期中考试试卷一、选择题(每题3分,共30分)1.数 -1 的倒数是()。

A。

-1/2 B。

-2 C。

1/2 D。

22.下列各对数中,互为相反数的是()。

A。

-3 和 3 B。

2 和 -2 C。

1/2 和 -2 D。

-5/2 和 5/23.XXX测量身高近似1.71米,若将他身高记为X则他的实际身高范围为()。

A。

1.7 ≤ X ≤ 1.8 B。

1.705 < X < 1.715 C。

1.705 ≤ X < 1.715 D。

1.705 ≤ X ≤ 1.7154.如果a的绝对值是1,那么a的2017次方等于()。

A。

1 B。

2017 C。

2017或-2017 D。

-1或15.用激光测量仪测得两物体间的距离是326亿千米,数据326亿用科学记数法可表示为()。

A。

3.26×10^8 B。

326×10^8 C。

3.26×10^9 D。

3.26×10^106.多项式2x^3-8x^2+x-1与多项式3x^3+2mx^2-5x+3的和不含关于x的二次项,则数m的值等于()。

A。

2 B。

-2 C。

4 D。

07.下列各式中正确的是()。

A。

-(2x+5) = -2x+5 B。

-1/(4x-2) = -2x+2 C。

-a+b = -(a-b) D。

2-3x = -(3x+2)8.下列各组数中,数值相等的是()。

A。

-2^3 和 (-2)^3 B。

3^2 和 2^3 C。

-3^2 和 (-3)^2 D。

-3×2^2 和 -3×2^29.已知代数式x+2y+7的值是4,则代数式2x+4y+1的值是()。

A。

9 B。

-5 C。

-7 D。

不能确定10.数轴上表示整数的点称为整点.某数轴上的单位长度是1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点个数是()。

A。

2015个或2016个 B。

人教版七年级数学上册期中试卷及答案

人教版七年级数学上册期中试卷及答案

人教版七年级数学上册期中试卷及答案马上就要七年级数学期中考试了,有道是:天道筹勤!相信自己吧!希望你干自愿事,吃顺口饭,听轻松话,睡安心觉.使自己保持良好平静的心态,不要太紧张,相信你的梦想会实现的!下面是小编为大家精心推荐的人教版七年级数学上册期中试卷,希望能够对您有所帮助. 人教版七年级数学上册期中试题一、选择题1.我市某天的最高气温是7℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高℃ B.﹣6℃ C.﹣8℃℃2.在﹣2,﹣1,0,2这四个数中,最大的数是A.﹣2B.﹣1为有理数,则﹣|a|表示A.正数B.负数C.正数或0D.负数或04.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是A.六棱柱B.正方体C.长方体D.球5.一个数的立方根等于它本身,这个数是或1 或±16.实数a,b在数轴上的位置如图所示,以下说法正确的是+b=0 D.|b| 人教版七年级数学上册期中试卷参考答案一、选择题1.我市某天的最高气温是7℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高℃ B.﹣6℃ C.﹣8℃℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温即可.【解答】解:7﹣=7+1=8℃.故选;D.【点评】本题主要考查的是有理数的减法,根据题意列出算式是解题的关键.2.在﹣2,﹣1,0,2这四个数中,最大的数是A.﹣2B.﹣1【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣20,a=0,a0时,|a|=a,﹣|a|为负数;当a=0时,|a|=0,﹣|a|=0;当aa进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a因此,﹣b故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.10.如果|x﹣4|与2互为相反数,则2x﹣的值是A.﹣2【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;整式.【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【解答】解:∵|x﹣4| 与2互为相反数,即|x﹣4|+2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2,故选A【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.二、填空题11.如图,若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=5,y=3.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“1”与“x”是相对面,“3”与“y”是相对面,∵相对面上两个数之和为6,∴x=5,y=3.故答案为:5;3.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.﹣的倒数是 .【考点】倒数.【分析】首先将﹣化为分数形式,再利用倒数的性质可求出.【解答】解:∵﹣=﹣,∴﹣的倒数为:﹣,故答案为:﹣ .【点评】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.若|a+1|+|b﹣2|=0,则a﹣b=﹣3.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出a、b的值,再把a、b的值代入a﹣b中即可.【解答】解:∵|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,∴a﹣b=﹣1﹣2=﹣3.故答案为:﹣3.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:绝对值;偶次方;二次根式.当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.在数轴上距﹣1有2个单位长度的点所表示的数是1或﹣3.【考点】数轴.【分析】根据数轴的特点进行解答即可.【解答】解:设在数轴上距离﹣1两个单位长度的点表示的数是x,则|x﹣|=2,解得x=1或x=﹣3.故答案为:1或﹣3.【点评】本题考查的是数轴的特点,即在数轴上到原点的距离相等的数有两个,这两个数互为相反数.15.已知|x﹣1|+2=0,则2015=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式,根据有理数的乘方法则计算即可.【解答】解:由题意得,x﹣1=0,y+2=0,解得,x=1,y=﹣2,则2015=﹣1,故答案为:﹣1.【点评】本题考查的是绝对值的性质、偶次方和非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题16.计算.;;;化简: .【考点】有理数的混合运算;整式的加减.【分析】先去括号,再根据加法结合律进行计算即可;根据乘法分配律进行计算即可;先算括号里面的,再算乘方,乘法,最后算加减即可;先去括号,再合并同类项即可.【解答】解:原式=﹣ + ﹣﹣=+=﹣ +=﹣8+=﹣6 ;原式= ×+ ×12﹣×12=﹣6+20﹣14=0;原式=﹣1﹣××=﹣1﹣×=﹣1+= ;原式=x﹣6x+2y+6x+y=x+3y.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.四.17.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图.【考点】作图-三视图;专题:正方体相对两个面上的文字.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1,左视图有3列,每列小正方形数目分别为2,3,2.据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.18.在数轴上表示下列各数的点,并用“<”连接各数:5、0、﹣2、、﹣5.自己画数轴.【考点】有理数大小比较;数轴.【专题】作图题;实数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣5<﹣2<0< <5.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.五、19.已知:A=3a2﹣,B=2a2+b+2b2﹣c2,且a与b互为相反数,|c|=2,若2A﹣3B+C=0,求C的值.【考点】整式的加减—化简求值;相反数;绝对值.【专题】计算题;整式.【分析】把A与B代入已知等式表示出C,去括号合并得到最简结果,求出a+b与c的值,代入计算即可求出值.【解答】解:∵A=3a2﹣ a+3b2﹣3c2,B=2a2+b+2b2﹣c2,∴2A﹣3B+C=0,即C=3B﹣2A=3﹣2=6a2+3b+6b2﹣3c2﹣6a2+3a﹣6b2+6c2=3+3c2,∵a与b互为相反数,|c|=2,∴a+b=0,c2=4,则原式=12.【点评】此题考查了整式的加减﹣化简求值,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.20.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25本周三生产了多少辆摩托车?本周总生产量与计划生产量相比,是增加还是减少?产量最多的一天比产量最少的一天多生产了多少辆?【考点】有理数的加减混合运算.【专题】应用题.【分析】明确增加的车辆数为正数,减少的车辆数为负数,依题意列式再根据有理数的加减法则计算;首先求出总生产量,然后和计划生产量比较即可得到结论;根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.【解答】解:本周三生产的摩托车为:300﹣3=297辆;本周总生产量为++++ ++=300×7﹣21=2079辆,计划生产量为:300×7=2100辆,2100﹣2079=21辆,∴本周总生产量与计划生产量相比减少21辆;产量最多的一天比产量最少的一天多生产了﹣=35,即产量最多的一天比产量最少的一天多生产了35辆.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.一、填空题21.已知代数式的值为2,则代数式3x2﹣4x﹣7的值为1.【考点】代数式求值.【专题】计算题.【分析】首先由代数式的值为2,得出3x2﹣4x=8,然后整体代入代数式3x2﹣4x﹣7求值.【解答】解:根据题意得: x2﹣x=2,则3x2﹣4x=8,所以3x2﹣4x﹣7=8﹣7=1.故答案为;1.【点评】本题考查代数式求值,解决本题的关键是将3x2﹣4x的值作为一个整体代入求解.22.一个多项式A减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,计算结果是﹣x2+3x﹣7,那么这个多项式A减去多项式2x2+5x﹣3,正确的计算结果应该是﹣5x2﹣7x﹣1.【考点】整式的加减.【专题】计算题.【分析】由题意和减去一个加数等于另一个加数求出多项式A,用A减去2x2+5x﹣3,去括号合并即可得到结果.【解答】解:由题意列得:﹣=﹣x2+3x﹣7﹣2x2﹣5x+3=﹣3x2﹣2x﹣4,则这个多项式减去2x2+5x﹣3列得:﹣=﹣3x2﹣2x﹣4﹣2x2﹣5x+3=﹣5x2﹣7x﹣1.故答案为:﹣5x2﹣7x﹣1【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.用“*”定义一种新运算:对于任意有理数a,b,都有a*b=ab﹣a2,例如,2*3=2×3﹣22=2,那么2*=﹣5.【考点】有理数的混合运算.【专题】新定义.【分析】由题目中给出的公式,即可推出原式=2×﹣22,通过计算即可推出结果.【解答】解:∵a*b=ab﹣a2,∴原式=2×﹣22=﹣1﹣4=﹣5.故答案为﹣5.【点评】本题主要考查有理数的混合运算,关键在于根据题意正确的套用公式,认真计算.24.整数m为2,0,4,﹣2时,式子为整数.【考点】代数式求值.【分析】由式子为整数可知m﹣1=3或m﹣1=1或m﹣1=﹣1或m ﹣1=﹣3,从而可解得 m的值.【解答】解:∵3×1××=3,∴m﹣1=3或m﹣1=1或m﹣1=﹣1或m﹣1=﹣3.解得:m=4或m=2或m=0或m=﹣2.故答案为:2,0,4,﹣2.【点评】本题主要考查的是求代数式的值,根据式子为整数确定出m﹣1的值是解题的关键.25.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需157根火柴.【考点】规律型:图形的变化类.【分析】根据第1个图案需7根火柴,7=1×+3,第2个图案需13根火柴,13=2×+3,第3个图案需21根火柴,21=3×+3,得出规律第n个图案需n+3根火柴,再把11代入即可求出答案.【解答】解:根据题意可知:第1个图案需7根火柴,7=1×+3,第2个图案需13根火柴,13=2×+3,第3个图案需21根火柴,21=3×+3,…,第n个图案需n+3根火柴,则第11个图案需:11×+3=157;故答案为:157.【点评】此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.二、26.观察下列等式:第1个等式:a1= = ×;第2个等式:a2= = ×;第3个等式:a3= = ×;第4个等式:a4= = ×;…请解答下列问题:按以上规律列出第5个等式:a5= = ;用含有n的代数式表示第n个等式:an= = ;求a1+a2+a3+a4+…+a100的值.【考点】规律型:数字的变化类.【分析】观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.运用变化规律计算.【解答】解:根据观察知答案分别为:; ;; ;a1+a2+a3+a4+…+a100= ×+ ×+ ×+ ×+…+ ×=== ×= .【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.三、27.同学们,我们在本期教材的第一章《有理数》中曾经学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a 的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记做|﹣3﹣0|:数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|数轴上表示到数﹣2的点的距离为5的点有几个?并求出它们表示的数.根据中②、③两小题你所填写的结论,请同学们利用数轴探究这两段距离之和的最小值,并简述你的思考过程.【考点】绝对值函数的最值;相反数;两点间的距离.【专题】常规题型.【分析】根据题意所述,运用类比的方法即可得出答案.画出数轴,则﹣2的左右各有一个点,继而可求出答案.根据绝对值的几何意义,可求出|a+3|+|a﹣2|的最小值.【解答】解:由题意表述可类比得:①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|;②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|;③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|;,结合数轴可得﹣2的左右分别有一个点距离﹣2的距离为5,表示的数为﹣7或3.|a+3|+|a﹣2|的最小值为5;因为当a在数轴上﹣3和2之间时距离和最小,而当a在﹣3和2之间时,|a+3|+|a﹣2|=5.【点评】此题考查了绝对值函数的最值、数轴、两点间的距离及相反数的知识,综合的知识点较多,难度一般,注意理解绝对值的几何意义是关键.四、28.定义:如果10b=n,那么称b为n的劳格数,记为b=d.根据劳格数的定义,可知:d=1,d=2,那么:d=3.劳格数有如下运算性质:若m、n为正数,则d=d+d;d=d﹣d.根据运算性质,填空: =5,若d=,则d=,d=﹣下表中与x数对应的劳格数d有且只有两个是错误的,请找出错误的劳格数并改正.x 3 5 6 8 9 12 27d 3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a ﹣3b【考点】有理数的混合运算.【专题】新定义.【分析】根据新定义可以得到本问的答案;根据若m、n为正数,则d=d+d;d=d﹣d,可以解答本题;根据第二问的运算性质可以解答本题,关键是灵活变活,运用反证法说明哪些数据是正确的,从而可以得到哪两个数据是错误的,然后进行纠正即可.【解答】解:根据题意可得,d可表示为:10b=103,得b=3.故答案为:3.∵若m、n为正数,则d=d+d,d=∴ = ,d=d=d+d=+=,d=d=d﹣d=﹣1=﹣故答案为:5,,﹣若d≠2a﹣b,则d=2d≠4a﹣2b,d=3d≠6a﹣3b,从而表中有三个劳格数是错误的,与题设矛盾,∴d=2a﹣b,d=4a﹣2b,d=6a﹣3b都是正确的;若d≠a+c,则d=d﹣d=1﹣d≠1﹣a﹣c,∴d=3d≠3﹣3a﹣3c,d=d+d≠1+a﹣b﹣c,表中也有三个劳格数是错误的,与题设矛盾,∴d=a+c,d=1+a﹣b﹣c,d=3﹣3a﹣3c都是正确的;∴表中只有d和d的值是错误的,应纠正为:d=d+d﹣d=3a﹣b+c﹣1,d=d+2d=2﹣b﹣2c.【点评】本题考查有理数的混合运算,解题的关键是明确新定义和运算性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学期中测试卷
考试时间:120分钟 总分:120分
一、选择题(每小题3分,共33分)
1、在-212 、+7
10 、-3、2、0、4、5、-1中,负数有 ( )
A 、 1个
B 、2个
C 、3个
D 、4个
2、下列说法不正确的是 ( ) A 、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数 C 、正数和负数互为相反数
D 、在一个有理数前添加“-”号就得到它的相反数
3、| -2 | 的相反数是 ( ) A 、-1
2
B 、-2
C 、1
2
D 、2
4、如果ab<0且a>b ,那么一定有 ( ) A 、a>0,b>0
B 、a>0,b<0
C 、a<0,b>0
D 、a<0,b<0
5、如果a 2=(-3)2,那么a 等于 ( ) A 、3
B 、-3
C 、9
D 、±3
6、23表示 ( ) A 、2×2×2
B 、2×3
C 、3×3
D 、2+2+2
7、近似数4.50所表示的准确值a 的取值范围是 ( ) A 、4.495≤a <4.505 B 、4040≤a <4.60
C 、4.495≤a ≤4.505
D 、4.500≤a <4.5056
8、如果 | a + 2 | + ( b-1)2 = 0,那么(a + b )2009的值是 ( )
A、- 2009
B、2009
C、- 1
D、1
9、下列说法正确的是()
A、- 2不是单项式
B、- a表示负数
C、3ab
5
的系数是3 D、x +
a
x
+ 1 不是多项式
10、已知一个数的平方等于它的绝对值,这样的数共有()
A、1个
B、2个
C、3个
D、4个
11、下面用数学语言叙述代数式1
a
- b ,其中表达不正确的是()
A、比a的倒数小b的数
B、1除以a的商与b的相反数的差
C、1除以a的商与b的相反数的和
D、b与a的倒数的差的相反数
二、填空题(每小题3分,共30分)
12、若x<0,则x
| x |
= 。

13、水位上升30cm 记作+30cm,那么-16cm表示。

14、在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜间,温度可降至-183℃,则月球表面昼夜的温度差是℃。

15、用“<”“=”或“>”填空:
(1)-(- 1)- | - 1 |;(2)- 0.1 -0.01
16、据测试,拧不静的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学计数法表示为。

17、近似数 2.30万精确到位,有效数字是,用科学计数法表为。

18、已知| a + 2 | + 3(b +1 )2取最小值,则ab + a
b = 。

19、如图1所示的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则这三个数之和为 (用含a 的代数式表示)。

20、若x p + 4x 3 - qx 2 - 2x + 5是关于x 五次五项式,则-p = 。

21、m 、n 互为相反数,x 、y 互为负倒数(乘积为-1的两个数),由(m + n)x y
-2010-2010xy = 。

三、解答题(每小题5分,共15分)
(1)(+3.5)-1.4-(-2.5)+(-4.6) (2)[2-5×(- 12 )2]÷(- 1
4 );
(3)[212 -(38 + 16 - 3
4
)×24]÷5×(- 1)2009
24、去括号,并合并同类项:(每小题6分,共12分)
(1)x – 2( x+1 ) + 3x ; (2)-(y + x )- (5x – 2y );
图1
25、(6分)先化简,再求值
已知|a – 4| + ( b+1 )2 = 0,求5ab2–[2a2b-(4ab2-2a2b)]+4a2b的值
26、(12分)出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规
定向东为正,向西为负,他这天下午行驶里程如下:(单位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米?
(2)若汽车耗油量为a升∕千米,这天下午共耗油多少升?
27、(12分)某种水果第一天以2元的价格卖出a斤,第二天以1.5元的价格卖出b斤,
第三天以1.2元的价格卖出c斤,求:
(1)这三天共卖出水果多少斤?
(2)这三天共卖得多少元?
(3)这三天平均售价是多少?并计算当a=30,b=40,c=50时,平均售价是多少?
参考答案
一、选择题(本题共12小题,每题3分,共33分)
1.C
2.C
3.B
4.B
5.D
6.A
7.A
8.C
9.D 10.C 11.B
二、填空题(本题共10小题,每题3分,共30分) 12. -1
13.水位下降16cm 14.310 15.> < 16.1.4×103
17.百 2 3 0 2.3×104 18.4 19.3a 20.-5 21.0
三、解答题(共57分)
23.计算:(本题共3小题,每题5分,共15分)
(1)0(2)-3 (3)-3
2
24.去括号并合并同类项:(本题共2小题,每题6分,共12分) (1)2x -2 (2)y -6x
25.先化简再求值(本题共1小题,每题6分,共6分) 9ab 2 36
26.(12分)(1)0 (2)118a
27.(12分)(1)(a +b +c)斤 (2)(2a +1.5b +1.2c )元
(3)平均价格:(2a +1.5b +1.2c )÷(a +b +c)
1.5元/斤。

相关文档
最新文档