2018年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(原卷)
2018年全国各地中考数学真题汇编:数与式、方程不等式(山东专版)(原卷)

2018年全国各地中考数学真题汇编(山东专版)数与式、方程不等式一.选择题(共12小题)1.(2018•淄博)化简的结果为()A.B.a﹣1 C.a D.1 2.(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 3.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0 4.(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.5.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15 6.(2018•潍坊)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在7.(2018•泰安)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 8.(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b 9.(2018•烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31 10.(2018•聊城)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.11.(2018•济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.12.(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.28二.填空题(共16小题)13.(2018•淄博)分解因式:2x3﹣6x2+4x=.14.(2018•烟台)与最简二次根式5是同类二次根式,则a=.15.(2018•威海)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.16.(2018•枣庄)若二元一次方程组的解为,则a﹣b=.17.(2018•潍坊)当m=时,解分式方程=会出现增根.18.(2018•烟台)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.19.(2018•泰安)观察“田”字中各数之间的关系:则c的值为.20.(2018•枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.21.(2018•淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.22.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.23.(2018•潍坊)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.24.(2018•枣庄)将从1开始的连续自然数按以下规律排列:…则2018在第行.25.(2018•东营)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.26.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.27.(2018•德州)对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.28.(2018•滨州)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.三.解答题(共12小题)29.(2018•青岛)(1)解不等式组:(2)化简:(﹣2)•.30.(2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.31.(2018•东营)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.32.(2018•淄博)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.33.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?34.(2018•东营)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC 的周长.35.(2018•潍坊)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?36.(2018•烟台)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.37.(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?38.(2018•泰安)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)39.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?40.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?。
2018年湖南中考数学试题汇编

2018年湖南中考数学试题汇编1.已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k) C.f(k+1)≥f(k)D.f(k)=0或1 2.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8s C.3s D.预测结果不可靠3.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元4.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.125.如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.B.﹣C.D.﹣6.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为7.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人8.甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关9.在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.10.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.511.阅读材料:若a b=N,则b=log a N,称b为以a为底N的对数,例如23=8,则log28=log223=3.根据材料填空:log39=.12.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)13.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.14.如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE•BE=.15.设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n ﹣1)2,则a2018=.16.如图,C、D是以AB为直径的⊙O上的点,=,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.17.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?18.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B 型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?19.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.20.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.。
2018年湖南省各市中考数学试题汇编及参考答案(word解析版14份)

2018年湖南省各市中考数学试题汇编(含参考答案与试题解析)目录1.湖南省长沙市中考数学试题及参考答案与试题解析 (2)2.湖南省衡阳市中考数学试题及参考答案与试题解析 (23)3.湖南省娄底市中考数学试题及参考答案与试题解析 (44)4.湖南省湘潭市中考数学试题及参考答案与试题解析 (66)5.湖南省怀化市中考数学试题及参考答案与试题解析 (86)6.湖南省邵阳市中考数学试题及参考答案与试题解析 (102)7.湖南省岳阳市中考数学试题及参考答案与试题解析 (123)8.湖南省株洲市中考数学试题及参考答案与试题解析 (144)9.湖南省常德市中考数学试题及参考答案与试题解析 (165)10.湖南省张家界市中考数学试题及参考答案与试题解析 (186)11.湖南省郴州市中考数学试题及参考答案与试题解析 (203)12.湖南省永州市中考数学试题及参考答案与试题解析 (224)13.湖南省益阳市中考数学试题及参考答案与试题解析 (245)14.湖南省湘西州中考数学试题及参考答案与试题解析 (267)2018年湖南省长沙市中考数学试题及参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数是()A.﹣2 B.12-C.2 D.122.据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105 B.10.2×103C.1.02×104D.1.02×1033.下列计算正确的是()A.a2+a3=a5B.1=C.(x2)3=x5D.m5÷m3=m24.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 5.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.不等式组20240xx+⎧⎨-⎩>≤的解集在数轴上表示正确的是()A.B.C.D.7.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B.C.D.8.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件91+的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min11.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.化简:111mm m-=--.14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是 .17.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为 .18.如图,点A ,B ,D 在⊙O 上,∠A=20°,BC 是⊙O 的切线,B 为切点,OD 的延长线交BC 于点C ,则∠OCB= 度.三、解答题(本大题共8个小题,共66分)19.(6.分)计算:()()20180134sin 45π--+︒.20.(6分)先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,12b =-. 21.(8分)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了 名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?22.(8分)为加快城乡对接,建设全域美丽乡村,某地区对A 、B 两地间的公路进行改建.如图,A 、B 两地之间有一座山.汽车原来从A 地到B 地需途径C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A 地到B 地大约要走多少千米?(2)开通隧道后,汽车从A 地到B 地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141)23.(9分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(9分)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.25.(10分)如图,在平面直角坐标系xOy中,函数myx(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.26.(10分)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x 轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;==“十字形”ABCD的周长为参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数是()A.﹣2 B.12-C.2 D.12【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得答案.【解答过程】解:﹣2的相反数是2,故选:C.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105 B.10.2×103C.1.02×104D.1.02×103【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:10200=1.02×104,故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.a2+a3=a5B.1=C.(x2)3=x5D.m5÷m3=m2【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;二次根式的加减法.【思路分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答过程】解:A、a2+a3,无法计算,故此选项错误;B、=C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.【总结归纳】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm【知识考点】三角形三边关系.【思路分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答过程】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.【总结归纳】本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.5.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A .【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.不等式组20240x x +⎧⎨-⎩>≤的解集在数轴上表示正确的是( ) A . B .C .D .【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】先求出各不等式的解集,再求出其公共解集即可.【解答过程】解:解不等式x+2>0,得:x >﹣2,解不等式2x ﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C .【总结归纳】本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.将下列如图的平面图形绕轴l 旋转一周,可以得到的立体图形是( )A .B .C .D .【知识考点】点、线、面、体.【思路分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答过程】解:绕直线l 旋转一周,可以得到圆台,故选:D .。
2018年湖南省湘潭市中考数学试卷(含答案与解析)

数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前湖南省湘潭市2018年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( )A .2B .2-C .12D .2± 2.如图所示的几何体的主视图是( )ABCD3.每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2 000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI )标准,体重超标的有15名学生,则估计全校体重超标学生的人数为( )A .15B .150C .200D .2 000 4.如图,点A 的坐标(1,2)-,点A 关于y 轴的对称点的坐标为( )A .(1,2)B .(1,2)--C .(1,2)-D .(2,1)-5.如图,已知点E 、F 、G 、H 分别是菱形ABCD 各边的中点,则四边形EFGH 是( )A .正方形B .矩形C .菱形D .平行四边形 6.下列计算正确的是( )A .235x x x +=B .235x x x =C .238()x x x -=D .623x x x ÷=7.若0b >,则一次函数y x b =-+的图象大致是( )ABCD8.若一元二次方程220x x m -+=有两个不相同的实数根,则实数m 的取值范围是( )A .1m ≥B .1m ≤C .1m >D .1m <毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 9.因式分解:222a ab b -+= .10.湘潭市2018年对九年级学生进行了物理、化学实验操作考试,其中物理实验操作考试有4个考题备选,分别记为A ,B ,C ,D ,学生从中随机抽取一个考题进行测试,如果每一个考题抽到的机会均等,那么学生小林抽到考题B 的概率是 .11.分式方程314xx =+的解为 .12.如图,在等边三角形ABC 中,点D 是边BC 的中点,则BAD ∠= .13.如图,AB 是O 的切线,点B 为切点,若30A ∠=︒,则AOB ∠= .14.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC AD ∥,则可添加的条件为 .(任意添加一个符合题意的条件即可)15.《九章算术》是我国古代最重要的数学著作之一,在“匀股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC △中,90ACB ∠=︒,10AC AB +=,3BC =,求AC 的长,如果设AC x =,则可列方程为 .16.阅读材料:若b a N =,则log a b N =,称b 为以a 为底N 的对数,例如328=,则322log 8log 23==.根据材料填空:3log 9= .三、解答题(本大题共10小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:121|5|(1)3-⎛⎫-+-- ⎪⎝⎭18.(本小题满分6分) 先化简,再求值:242124x x x +⎛⎫+÷⎪--⎝⎭,其中3x =.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)19.(本小题满分6分)随看航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域降重举行海上阅兵,在阅兵之前我军加强了海上巡逻.如图,我军巡逻舰在某海域航行到A 处时,该舰在观测点P 的南偏东45︒的方向上,且与观测点P 的距离PA 为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P 的北偏东30︒方向上的B 处,问此时巡逻舰与观测点P 的距离PB 为多少每里?1.414,1.732,结果精确到1海里)20.(本小题满分6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B 阅读,C 足球,D 器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出她所有可能的选法;(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________21.(本小题满分6分)2018年湘潭市将创建全国森林城市,提出了“共建绿色城”的倡议.某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况道行了统计,并绘制了如图所示的两幅不完整的统计图.(1)求该校的班级总数;(2)将条形统计图补充完整;(3)求该校各班在这一活动中植树的平均棵数.22.(本小题满分6分)如图,在正方形ABCD中,AF BE,AE与DF相交于于点O.(1)求证:DAF ABE△≌△;(2)求AOD∠的度数.数学试卷第7页(共34页)数学试卷第8页(共34页)数学试卷 第9页(共34页) 数学试卷 第10页(共34页)23.(本小题满分8分)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24.(本小题满分8分) 如图,点M 在函数3(0)y x x=>的图象上,过点M 分别作x 轴和y 轴的平行线交函数1(0)y x x=>的图象于点B 、C . (1)若点M 的坐标为(1,3). ①求B 、C 两点的坐标; ②求直线BC 的解析式; (2)求BMC △的面积.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________25.(本小题满分10分)如图,AB是以O为圆心的半圆的直径,半径CO AO⊥,点M是AB上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当60AOM∠=︒时,求DM的长;②当12AM=时,求DM的长.(2)探究:在点M运动的过程中,DMC∠的大小是否为定值?若是,求出该定值;若不是,请说明理由.26.(本小题满分10分)如图,点P为抛物线214y x=上一动点.(1)若抛物线214y x=是由抛物线21(2)14y x=+-通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,1)-,过点P作PM l⊥于M.①问题探究:如图1,在对称轴上是否存在一定点F,使得PM PF=恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图2,若点Q的坐标为(1,5),求QF PF+的最小值.数学试卷第11页(共34页)数学试卷第12页(共34页)7 / 17湖南省湘潭市2018年初中学业水平考试数学答案解析一、选择题 1.【答案】A【解析】根据只有符号不同的两个数互为相反数,可得一个数的相反数。
2018年全国各地中考数学真题汇编:数与式、方程不等式(四川专版)(解析卷)

2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是()解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.二.填空题(共10小题)11.(2018•自贡)分解因式:ax2+2axy+ay2=a(x+y)2.解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)12.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,故答案为:3=log 464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x 答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。
2018年全国中考数学真题湖南岳阳中考数学(解析版-精品文档)

2018年湖南省岳阳市初中学业水平考试试卷数学(满分120分,考试时间90分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018湖南岳阳,1,3分)2018的倒数是 A.2018 B.20181 C.20181- D.-2018【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂2.(2018湖南岳阳,2,3分) 下列运算结果正确的是A .325a a a ⋅=B .325()a a =C .325a a a +=D .22a a -=-【答案】A.【解析】解:A 选项,a 3·a 2=a 3+2=a 5,故正确;B 选项(a 3)2=a 3×2=a 6,故错误;C 选项,a 3和a 2不是同类项,不能合并,故错误;D 选项,a -2=21a ,故错误.故选A.【知识点】同底数幂的乘法,幂的乘方,合并同类项,负整数指数幂3.(2018湖南岳阳,3,3分) 函数3-=x y 中自变量x 的取值范围是()A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C.【解析】解:根据题意可得x -3≥0,解答x ≥3,故选C.【知识点】函数的自变量的取值范围4.(2018湖南岳阳,4,3分) 抛物线23(2)5y x =-+的顶点坐标是( )A .(2,5)-B .(2,5)--C .(2,5)D .(2,5)-【答案】C. 【解析】解:因为23(2)5y x =-+为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.【知识点】二次函数的性质5.(2018湖南岳阳,5,3分) 已知不等式组2010x x -<⎧⎨+≥⎩,其解集在数轴上表示正确的是( )A .B .C .D .【答案】D.【解析】解:⎩⎨⎧≥+-②01①02x x <, 解不等式①,得x <2,解不等式②,得x ≥-1,不等式组的解集为-1≤x <2,不等式组的解集在数轴上表示为:故选D .【知识点】解一元一次不等式组6.(2018湖南岳阳,6,3分) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92【答案】 B【解析】解:将这组数按从小到大的顺序排列为:86,88,90,92,96,96,98,故该组数中的中位数为92,众数为96.故选B.【知识点】中位数,众数7.(2018湖南岳阳,7,3分) 下列命题是真命题的是( )A .平行四边形的对角线相等B .三角形的重心是三条边的垂直平分线的交点C .五边形的内角和是540D .圆内接四边形的对角相等【答案】C.【解析】解:A 选项,平行四边形的对角线不一定相等,如菱形是平行四边形,但对角线不相等,故错误;B 选项,三角形的重心是三条边的中线的交点,故错误;C 选项,五边形的内角和为(5-2)×180°=540°,故正确;D 选项,圆内接四边形的对角互补,不一定相等,故错误.故选C.【知识点】平行四边形的性质,三角形重心的定义,多边形内角和,圆内接四边形的性质8.(2018湖南岳阳,8,3分) 在同一直角坐标系中,二次函数2y x =与反比例函数1(0)y x x=>的图象如图所示,若两个函数图象上有三个不同....的点1(,)A x m ,2(,)B x m ,3(,)C x m ,其中m 为常数,令123x x x ω=++,则ω的值为( )A .1B .mC .2mD .1m【答案】D.【解析】解:根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上, 不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上,∵二次函数2y x =的对称轴是y 轴,∴21x x +=0.∵点C 在反比例函数1(0)y x x=>上, ∴3x =m1, ∴mx x x 1321=++=ω. 故选D.【知识点】二次函数的性质,反比例函数的性质二、填空题:本大题共8小题,每小题4分,共32分.9.(2018湖南岳阳,9,4分) 因式分解:24x -= .【答案】(x -2)(x +2).【解析】解:原式=x 2-22=(x -2)(x +2).故答案为(x -2)(x +2).【知识点】应用公式法进行因式分解10.(2018湖南岳阳,10,4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所.数据120000000用科学记数法表示为 .【答案】1.2×108.【解析】解:120000000=1.2×108.故答案为1.2×108.【知识点】科学记数法11.(2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 .【答案】k <1.【解析】解:∵一元二次方程220x x k ++=有两个不相等的实数根,∴△=22-4k >0,解得k <1.故答案为k <1..【知识点】一元二次方程根的判别式的应用12.(2018湖南岳阳,12,4分)已知221a a +=,则23(2)2a a ++的值为 .【答案】5.【解析】解:∵221a a +=,∴23(2)2a a ++=3+2=5.故答案为5.【知识点】求代数式的值——整体代入法的应用13.(2018湖南岳阳,13,4分) 在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 .【答案】52. 【解析】解:∵在-2,1,4,-3,0这5个数字中负数有2个,∴任取一个数是负数的概率P=52. 故答案为52. 【知识点】古典概率的计算14.(2018湖南岳阳,14,4分)如图,直线//a b ,160∠=,240∠=,则3∠= .【答案】80°.【解析】解:如图,∵a ∥b ,∴∠1=∠4.∵∠1=60°,∴∠4=60°.∵∠2=40°,∴∠3=180°-∠4-∠2=180°-60°-40°=80°.故答案为80°.【知识点】平行线的性质,三角形内角和定理 15.(2018湖南岳阳,15,4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.【答案】1760. 【解析】解:如图.设该直角三角形能容纳的正方形边长为x ,则AD=12-x ,FC=5-x根据题意易得△ADE ∽△EFC ,∴FCDE EF AD =, ∴x x x x -=-512,解得:x =1760. 故答案为1760.【知识点】相似三角形的性质16.(2018湖南岳阳,16,4分).如图,以AB 为直径的O 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB ,∴BC BD =,故①正确;∵∠A=30°,∴∠COB=60°,∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确.故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质三、解答题(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤)17.(2018湖南岳阳,17,6分)计算:20(1)2sin45(2018)2π--+-+-.【思路分析】首先利用乘方运算,特殊角的三角函数值,零指数幂以及绝对值的性质进行化简,然后将化简后的式子进行加减即可.【解题过程】解:原式=1-2×22+1+2=2.【知识点】乘方运算,特殊角的三角函数值,零指数幂,绝对值的性质18.(2018湖南岳阳,18,6分)如图,在平行四边形ABCD中,AE CF=,求证:四边形BFDE是平行四边形.【思路分析】首先根据四边形ABCD是平行四边形,可得AD=BC,∠A=∠C,AB=CD,然后根据AE=CF 可得△ADE≌△CBF,进而得出DE=BF,进而证明出结论.【解题过程】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AB=CD.∵AE=CF,∴BE=DF.∵在△ADE和△CBF中,⎪⎩⎪⎨⎧=∠=∠=BCADCACFAE,∴△ADE≌△CBF(SAS)∴DE=BF,∴四边形BFDE是平行四边形.【知识点】平行四边形的判定与性质,全等三角形的判定与性质19.(2018湖南岳阳,19,8分)如图,某反比例函数图象的一支经过点(2,3)A和点B(点B在点A的右侧),作BC y⊥轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若ABC∆的面积为6,求直线AB的表达式.【思路分析】(1)首先设反比例函数的解析式为xky=,然后把A的坐标代入反比例函数的解析式即可求出答案;(2)根据三角形的面积求出B的坐标,设直线AB的解析式是y=mx+n,把A、B的坐标代入得到方程组,求出方程组的解即可.【解题过程】解:(1)设反比例函数的解析式为xky=,∵点A在反比例函数的图象上,∴将(2,3)A代入xky=,得k=2×3=6,∴反比例函数的解析式为xy6=.(2)设B(x,x6),则C(0,x6),点A到BC的距离d=3-x6,BC=x,S△ABC=232)63(6-xxx=-,∵S△ABC=6,∴623=6-x,解得x=6,∴B(6,1).设AB的表达式为y=mx+n,则⎩⎨⎧=+=+3216bkbk,解得⎪⎩⎪⎨⎧==421b-k,∴直线AB 的表达式为421+-=x y . 【知识点】待定系数法求一次函数的解析式和反比例函数的解析式,三角形的面积计算公式20.(2018湖南岳阳,20,8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队.现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为_______人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【思路分析】(1)根据条形统计图中喜欢腰鼓的人数和扇形统计图中腰鼓所占的比例即可计算出总人数;(2)根据总人数和腰鼓,花鼓戏,划龙舟以及其他的项目的人数可计算出广场舞的人数,进而画出条形图;(3)根据“划龙舟”的人数以及总人数计算出“划龙舟”的人占总数的百分比,进而得出所在扇形的圆心角;(4)首先列出表格,然后根据表格得出所有的情况和恰好选中“花鼓戏、划龙舟”这两个项目的情况,进而得出概率.【解题过程】解:(1)∵从条形图中可以看出喜欢腰鼓的有24人,从扇形图中可以看出喜欢腰鼓占的比例为20%,∴这次参与调查的村民人数为24÷20%=120人.故答案为240人.(2)喜欢广场舞的人数为120-24-15-30-9=42人,补充如图所示.(3)图中“划龙舟”所在的扇形的圆心角的度数为:360°×12030=90°. (4)列表如下:广场舞 腰鼓花鼓戏划龙舟 广场舞无(腰鼓,广场舞) (花鼓戏,广场舞)(划龙舟,广场舞)腰鼓 (广场舞,腰鼓) 无 (花鼓戏,腰鼓) (划龙舟,腰鼓)花鼓戏(广场舞,花鼓戏)(腰鼓,花鼓戏)无(划龙舟,花鼓戏) 划龙舟 (广场舞,划龙舟)(腰鼓,划龙舟) (花鼓戏,划龙舟)无由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:61122=. 【知识点】列表法求概率,求扇形的圆心角21.(2018湖南岳阳,21,8分) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米? 【思路分析】首先设原计划平均每天施工x 平方米,根据题意列出分式方程11213300033000=-x.x ,解出分式方程,然后根据“实际工作效率比原计划每天提高了20%”得出答案. 【解题过程】解:设原计划平均每天施工x 平方米,则11213300033000=-x.x ,解得x =500, 经检验,x =500是原分式方程的解,∴实际平均每天施工为500×(1+20%)=600平方米. 答:实际平均每天施工为600平方米. 【知识点】分式方程的应用22.(2018湖南岳阳,22,8分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),60AOM ∠=.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考3 1.73≈,结果精确到0.01米)【思路分析】(1)首先过点M 作MN ⊥AB 于N ,根据三角函数的定义可得出ON 的长,然后根据线段的加减运算即可得出M 到地面的距离;(2)首先根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,过E 点作EF ⊥BC 交OM 于F 点,过O 点作OG ⊥DF ,然后根据含30°角的直角三角形的性质可得出FG 的长,进而得出EF 的长,进而得出答案.【解题过程】解:(1)过点M 作MN ⊥AB 于N , ∵OM=1.2,∠MON=60°, ∴ON=OM ·sin60°=533, ∴M 到地面的距离d =ON+OB=533+3.3=103633+.(2)根据题意可得货车的右端应该在图中E点处,此时BE=0.7m,∴EF=FG+GE=3.3+0.404=3.704>3.5,∴能通过.【知识点】锐角三角函数的定义,含30°角的直角三角形的性质23.(2018湖南岳阳,23,10分)已知在Rt ABC∆中,90BAC∠=,CD为ACB∠的平分线,将ACB∠沿CD所在的直线对折,使点B落在点'B处,连结'AB,'BB,延长CD交'BB于点E,设2(045)ABCαα∠=<<.(1)如图1,若AB AC=,求证:2CD BE=;(2)如图2,若AB AC≠,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(45α+),得到线段FC,连结EF交BC 于点O,设COE∆的面积为1S,COF∆的面积为2S,求12SS(用含α的式子表示).【思路分析】(1)首先根据轴对称的性质可得CE⊥BB′且BE=21BB′,进而得出∠B′=∠ADC,进而得出△ABB′≌△ACD,然后根据全等三角形的性质可得BB′=CD,进而证明出结论;(2)首先根据(1)可得出∠B′=∠ADC,进而得出△ABB′∽△ACD,进而得出ACABCDBB=',然后根据锐角三角函数的定义得出CD 与BE 的数量关系;(3)首先根据题意可得出∠ECF=90°,进而得出△OBE ∽△OCF ,然后根据等高的三角形的面积比等于底的比可得出OFOE S S =21,最后利用锐角三角函数的定义得出答案. 【解题过程】解:(1)根据题意可得CE ⊥BB ′且BE=21BB ′, ∵CE ⊥BB ′, ∴∠EBD+∠BDE=90°. ∵∠BDE=∠ADC , ∴∠ADC+∠EBD=90°. ∵∠BAB ′=90°, ∴∠EBD+∠B ′=90°, ∴∠B ′=∠ADC , 在△ABB ′和△ACD 中⎪⎩⎪⎨⎧∠='∠=∠='∠ADC B ACAB CAD BAB ∴△ABB ′≌△ACD (ASA ), ∴BB ′=CD , ∴CD=2BE.(2)由(1)可知,∠B ′=∠ADC , ∵∠BAB ′=∠CAD=90°, ∴△ABB ′∽△ACD , ∴ACABCD BB ='. ∵AB=BC ·cos ∠ABC==BCcos2α,AC=BC ·sin ∠ABC=BCsin2α,∴ααsin2cos CD BB 2=', ∴CD=BE cos 2sin2αα2. (3)由(1)(2)可知,CE ⊥BB ′,∠B ′BA=∠BCE , ∵∠EBC+∠BCE=90°,即∠B ′BA+∠ABC+∠BCE=90°, ∴∠BCE=45°-α.∵∠BCF=45°+α,∴∠ECF=∠BCE+∠BCF=90°, ∴CF ∥BE , ∴△OBE ∽△OCF , ∴CFBEOF OE =. ∵OF OE S S =21,sin ∠BCE=BC BE ,BC=CF , ∴21S S =sin (45°-α). 【知识点】轴对称的性质,锐角三角函数的定义,相似三角形的判定与性质,全等三角形的判定与性质24.(2018湖南岳阳,24,10分)已知抛物线F :2y x bx c =++的图象经过坐标原点O ,且与x 轴另一交点为3(,0)3-.(1)求抛物线F 的解析式; (2)如图1,直线l :3(0)y x m m =+>与抛物线F 相交于点11(,)A x y 和点22(,)B x y (点A 在第二象限),求21y y -的值(用含m 的式子表示); (3)在(2)中,若43m =,设点'A 是点A 关于原点O 的对称点,如图2. ①判断'AA B ∆的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、'A 、P 为顶点的四边形是菱形.若存在,求出点P 的坐标;若不存在,请说明理由. 【思路分析】(1)将原点和点3(代入抛物线2y x bx c =++,解出b 和c 即可;(2)首先联立m x y +=33与x x y 332+=,解出x 1和x 2,然后将x 1和x 2代入m x y +=33解出y 1和y 2,进而得出结果;(3)①首先根据题意得出A ′的坐标,进而得出A ′B 的长度,根据点A 的坐标得出OA 的长,进而得出AA ′,然后根据三角函数的定义得出sin ∠A ′,进而得出∠A ′的度数,进而得出△AA ′B 的形状;②分别以AA ′,A ′B 和AB 为菱形的对角线,根据菱形的性质得出点P 的坐标即可. 【解题过程】解:(1)根据题意,得⎪⎩⎪⎨⎧=+-=033310c b c ,解得⎪⎩⎪⎨⎧==33c b , ∴F 的解析式为x x y 332+=. (2)联立m x y +=33与x x y 332+=,解得m x -=1,m x =2, ∴m m m x y +-=+=333311,m m m x y +=+=333322, ∴m m m m m y y 332333312=+--+=-)(, (3)①当43m =时,3321-=x ,3322=x ,∴321=y ,22=y ∴A (332-,32),B (332,2). ∵点A 与点A ′关于原点对称, ∴A ′(332,32-), ∴A ′B=2-(32-)=38.∵OA=343233222=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-,∴OA ′=34, ∴AA ′=38,∴A ′B=AA ′.∵点A 到BA ′的距离d =332+332=334, ∴sin ∠A ′=2338334='AA d , ∴∠A ′=60°,∴△AA ′B 是等边三角形. ②存在.若以AA ′为菱形的对角线,则点P 与点B 关于原点对称,此时点P 坐标为(-332,-2); 若以A ′B 为菱形的对角线,则点P 为将点A 向右移动2d 个单位长度,此时点P 的坐标为(334,32); 若以AB 为菱形的对角线,则点P 为将点A 向上移动A ′B 个单位长度,此时点P 的坐标为(332-,310).【知识点】待定系数法求二次函数的解析式,一次函数与二次函数的交点问题,中心对称图形的性质,锐角三角函数的定义,等边三角形的判定,在平面直角坐标平面内的点的平移,菱形的性质。
2018年全国各地中考数学真题汇编:数与式、方程不等式(解析卷)

2018年全国各地中考数学真题汇编(华北东北专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•河北)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.2.(2018•北京)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.4解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.3.(2018•山西)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.4.(2018•河北)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁解:∵÷=•=•=•==,∴出现错误是在乙和丁,故选:D.5.(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.6.(2018•赤峰)代数式+中x的取值范围在数轴上表示为()A.B.C.D.解:由题意,得3﹣x≥0且x﹣1≠0,解得x≤3且x≠1,在数轴上表示如图,故选:A.7.(2018•阜新)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4 C.=4 D.=4×2解:设特快列车的平均行驶速度为xkm/h,由题意得,故选:C.8.(2018•赤峰)2017﹣2018赛季中国男子篮球职业联赛,采用双循环制面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.二.填空题(共10小题)11.(2018•包头)若a﹣3b=2,3a﹣b=6,则b﹣a的值为﹣2.解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.12.(2018•北京)某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.13.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是a≤﹣2.5.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴①或②,解得:①a≤﹣2.5,②无解,故答案为:a≤﹣2.5.14.(2018•包头)化简:÷(﹣1)=﹣.解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.15.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5516.(2018•呼和浩特)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款486元.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.17.(2018•赤峰)观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是n2+n+2.解:∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.18.(2018•通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21.解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.19.(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.解:由题意可得,,故答案为:.20.(2018•抚顺)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边,在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为(21010﹣2,21009).解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O2018的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O2018的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).三.解答题(共18小题)21.(2018•葫芦岛)先化简,再求值:(﹣)÷,其中a=3﹣1+2sin30°.解:当a=3﹣1+2sin30°时,∴a=+1=原式=[]•=()•=•==722.(2018•北京)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.23.(2018•河北)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.24.(2018•天津)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.解:(I)当x=20时,方式一的总费用为:100+20×5=200,方式二的费用为:20×9=180,当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,故答案为:200,100+5x,180,9x;(II)方式一,令100+5x=270,解得:x=34,方式二、令9x=270,解得:x=30;∵34>30,∴选择方式一付费方式,他游泳的次数比较多;(III)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25,∴当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,但x>25时,小明选择方式一的付费方式.25.(2018•河北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.26.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.27.(2018•呼和浩特)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,请用配方法探索有实数根的条件,并推导出求根公式,证明x1•x2=.解:∵ax2+bx+c=0(a≠0),∴x2+x=﹣,∴x2+x+()2=﹣+()2,即(x+)2=,∵4a2>0,∴当b2﹣4ac≥0时,方程有实数根,∴x+=±,∴当b2﹣4ac>0时,x1=,x2=;当b2﹣4ac=0时,x1=x2=﹣;∴x1•x2====,或x1•x2=(﹣)2===,∴x1•x2=.28.(2018•包头)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元. (2)设该商品的进价为y 元, 根据题意得:(40﹣a)×=900,解得:a=25, ∴(40×0.9﹣25)×=990(元). 答:该商店4月份销售这种商品的利润是990元.29.(2018•赤峰)小明同学三次到某超市购买A 、B 两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第 三 次购买有折扣; (2)求A 、B 两种商品的原价;(3)若购买A 、B 两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A 、B 两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A 商品多少件.解:(1)观察表格数据,可知:第三次购买的A 、B 两种商品均比头两次多,总价反而少,∴第三次购买有折扣. 故答案为:三.(2)设A 商品的原价为x 元/件,B 商品的原价为y 元/件, 根据题意得:,解得:.答:A 商品的原价为30元/件,B 商品的原价为40元/件. (3)设折扣数为z ,根据题意得:5×30×+7×40×=258,解得:z=6.答:折扣数为6.(4)设购买A商品m件,则购买B商品(10﹣m)件,根据题意得:30×m+40×(10﹣m)≤200,解得:m≥,∵m为整数,∴m的最小值为7.答:至少购买A商品7件.30.(2018•吉林)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)写出此题正确的解答过程.解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;(2)原式=a2+2ab﹣(a2﹣b2)=a2+2ab﹣a2+b2=2ab+b2.31.(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.32.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.33.(2018•沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.34.(2018•大连)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900,并用你学过的知识加以证明.解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.35.(2018•抚顺)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.36.(2018•盘锦)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.37.(2018•葫芦岛)某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建7个足球场.38.(2018•通辽)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m (筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是()解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.二.填空题(共10小题)11.(2018•自贡)分解因式:ax2+2axy+ay2=a(x+y)2.解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)12.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,。
2018年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(解析卷)

2018年全国各地中考数学真题汇编(湖南专版)数与式、方程不等式参考答案与试题解析一.选择题(共13小题)1.(2018•长沙)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.2.(2018•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=10解:把x=4代入方程,得+=0,解得a=10.故选:D.3.(2018•长沙)不等式组的解集在数轴上表示正确的是()A.B.C.D.解:解不等式x+2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组的解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.4.(2018•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.5.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1解:∵方程x2﹣2x+m=0有两个不相同的实数根,∴△=(﹣2)2﹣4m>0,解得:m<1.故选:D.6.(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=10解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.7.(2018•张家界)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,则2+22+23+24+25+…+22018的末位数字是()A.8 B.6 C.4 D.0解:∵2n的个位数字是2,4,8,6四个一循环,2018÷4=504…2,∴22018的个位数字与22的个位数字相同是4,故2+22+23+24+25+…+22018的末位数字是2+4+8+6+…+2+4的尾数,则2+22+23+24+25+…+22018的末位数字是:2+4=6.故选:B.8.(2018•娄底)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.9.(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.10.(2018•娄底)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3解:根据题意得:,解得:x≥2且x≠3.故选:C.11.(2018•怀化)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=解:江水的流速为v km/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,根据题意得,,故选:C.12.(2018•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D 选项的结论正确;故选:C.13.(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.二.填空题(共9小题)14.(2018•长沙)化简:=1.解:原式==1.故答案为:1.15.(2018•长沙)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为2.解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.16.(2018•湘潭)阅读材料:若a b=N,则b=log a N,称b为以a为底N的对数,例如23=8,则log28=log223=3.根据材料填空:log39=2.解:∵32=9,∴log39=log332=2.故答案为2.17.(2018•常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.18.(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.解:log216=log2(2×2×2×2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.19.(2018•娄底)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n ﹣1)2,则a2018=4035.解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n﹣1)2=(a n﹣1)2+4a n=(a n+1)2,+1∵a1,a2,a3……是一列正整数,﹣1=a n+1,∴a n+1=a n+2,∴a n+1∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.20.(2018•湘西州)按照如图的操作步骤,若输入x的值为2,则输出的值是2.(用科学计算器计算或笔算)解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.21.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.22.(2018•怀化)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…a n…(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即=q(常数),那么这一列数a1,a2,a3,…,a n,…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,所以S=即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52018的和为解:令S=1+5+52+53+…+52017+52018则5S=1+5+52+53+…+52017+52019因此,5S﹣S=52019﹣1,所以S=.故答案为:..三.解答题(共14小题)23.(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+4cos45°.解:原式=1﹣2+1+4×=1﹣2+1+2=2.24.(2018•常德)先化简,再求值:(+)÷,其中x=.解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.25.(2018•郴州)解不等式组:并把解集在数轴上表示出来.解:解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:26.(2018•长沙)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.27.(2018•湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.28.(2018•邵阳)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B 型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.29.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.30.(2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.31.(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.32.(2018•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.33.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y人,依题意得:,解得,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.34.(2018•怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.35.(2018•娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.36.(2018•湘西州)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地中考数学真题汇编(湖南专版)数与式、方程不等式一.选择题(共13小题)1.(2018•长沙)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间2.(2018•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=103.(2018•长沙)不等式组的解集在数轴上表示正确的是()A.B.C.D.4.(2018•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0 5.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1 6.(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D.+=107.(2018•张家界)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,则2+22+23+24+25+…+22018的末位数字是()A.8 B.6 C.4 D.0A.﹣1 B.0 C.1 D.29.(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关10.(2018•娄底)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3 11.(2018•怀化)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.= 12.(2018•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1 13.(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()C.大和尚50人,小和尚50人D.大、小和尚各100人二.填空题(共9小题)14.(2018•长沙)化简:=.15.(2018•长沙)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.16.(2018•湘潭)阅读材料:若a b=N,则b=log a N,称b为以a为底N的对数,例如23=8,则log28=log223=3.根据材料填空:log39=.17.(2018•常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.18.(2018•永州)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.19.(2018•娄底)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n ﹣1)2,则a2018=.20.(2018•湘西州)按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)21.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.22.(2018•怀化)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…a n…(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即=q(常数),那么这一列数a1,a2,a3,…,a n,…成等例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,所以S=即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52018的和为三.解答题(共14小题)23.(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+4cos45°.24.(2018•常德)先化简,再求值:(+)÷,其中x=.25.(2018•郴州)解不等式组:并把解集在数轴上表示出来.26.(2018•长沙)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子27.(2018•湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?28.(2018•邵阳)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B 型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?29.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?30.(2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?31.(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?32.(2018•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?33.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.34.(2018•怀化)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.35.(2018•娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?36.(2018•湘西州)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.。