衢州九年级数学上册10月月考试题含答案
人教版数学九年级上册10月月考试卷附答案

人教版数学九年级上册10月月考试卷附答案一、选择题(共10小题;共30分)1. 下列四个函数中,一定是二次函数的是A. B.C. D.2. 抛物线的对称轴是直线A. B. C. D.3. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是4. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间都在降雨B. “抛一枚硬币正面朝上的概率为次就有一次正面朝上C. “彩票中奖的概率为”表示买张彩票肯定会中奖D. “抛一枚正方体骰子,朝上的点数为的概率为“抛出朝上的点数为”这一事件发生的频率稳定在附近5. 某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是A. B.C. D.6. 小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字,,,现将标有数字的一面朝下,小明从中任意抽取一张.记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是A. 小亮B. 小明C. 一样D. 无法确定7. 是关于的二次函数,当的取值范围是时,在时取得最大值,则实数的取值范围是A. B. C. D.8. 已知,,为非负实数,且,则代数式的最小值为B. C. D.9. 如图,已知:正方形边长为,,,,分别为各边上的点,且,设小正方形的面积为,为,则关于的函数图象大致是A. B.C. D.10. 如图,已知抛物线和直线.我们约定:当任取一值时,对应的函数值分别为,,若,取,中的较小值记为;若,记.下列判断:①当时,;②当时,值越大,值越大;③使得大于的值不存在;④若,则.其中正确的有A. 个B. 个C. 个D. 个二、填空题(共6小题;共18分)11. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到).12. 抛物线经过点和两点,则.13. 函数:的顶点坐标是.14. 某果园有棵橘子树,平均每一棵树结个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结个橘子.设果园增种棵橘子树,果园橘子总个数为个,则果园里增种棵橘子树,橘子总个数最多.15. 已知和时,多项式的值相等,且,则当时,多项式的值等于.16. 抛物线经过点,,,已知,.(1)如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,点的坐标为;(2)抛物线顶点为,轴于点,是轴上一动点,是线段上一点,若,实数的变化范围是.三、解答题(共8小题;共102分)17. 如图所示,转盘被等分成八个扇形,并在上面依次标有数字,,,,,,,.(1)自由转动转盘,当它停止转动时,指针指向的数正好能被整除的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为18. 已知:抛物线.(1)完成下表:(2)在下面的坐标系中描点画出抛物线的图象.19. 如图,已知二次函数过点,.(1)求此二次函数的式;(2)在抛物线上存在一点使的面积为,请直接写出点的坐标.20. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润(千元)与进货量(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润(千元)与进货量(吨)之间的函数图象如图②所示.(1)分别求出,与之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共吨,设乙种蔬菜的进货量为吨,写出这两种蔬菜所获得的销售利润之和(千元)与(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?21. 一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球个,蓝球个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用"画树状图法"或"列表法",求两次摸出都是红球的概率;(3)现规定:摸到红球得分,摸到黄球得分,摸到蓝球得分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于分的概率.22. 已知二次函数的图象经过点.(1)求的值并写出当时的取值范围;(2)设,,在这个二次函数的图象上,当取不小于的任意实数时,,,一定能作为同一个三角形三边的长,请说明理由.23. 已知,,,,五个点,抛物线经过其中的三个点.(1)求证:,两点不可能同时在抛物线上;(2)点在抛物线上吗?为什么?(3)求和的值.24. 如图,在平面直角坐标系中,矩形的边、分别在轴和轴的正半轴上,且长分别为、,为边的中点,一抛物线经过点、及点.(1)求抛物线的解析式(用含的式子表示);(2)把沿直线折叠后点落在点处,连接并延长与线段的延长线交于点,若抛物线与线段相交,求实数的取值范围;(3)在满足(2)的条件下,求出抛物线顶点到达最高位置时的坐标.答案第一部分1. D2. B3. B4. D5. C6. A7. B8. D9. B10. C第二部分11.13.14.【解析】假设果园增种棵橘子树,那么果园共有棵橘子树,每多种一棵树,平均每棵树就会少结个橘子,这时平均每棵树就会少结个橘子,则平均每棵树结个橘子.果园橘子的总产量为,则,当(棵)时,橘子总个数最多.15.【解析】先将和时,多项式的值相等理解为和时,二次函数的值相等,则抛物线的对称轴为直线,又二次函数的对称轴为直线,得出,化简得,即可求出当时,的值.第三部分17. (1)(2)根据随机事件概率的求法:当自由转动的转盘停止时,指针指向的区域的概率为个即可;如:当自由转动转盘停止时,指针指向区域的数小于的概率(答案不唯一).18. (1)填表如下:(2)如图所示:19. (1)二次函数过点,,解得二次函数的解析式为.(2)或.【解析】当时,,解得:,,,,,设,的面积为,,解得:,当时,,解得:,.当时,,方程无解,故.20. (1)由题意得:,解得.;由;(2)甲种蔬菜进货量为吨,乙种蔬菜进货量为吨时,获得的销售利润之和最大,最大利润是元.21. (1)设口袋中黄球的个数为,根据题意得:,解得.经检验是原分式方程的解.∴ 口袋中黄球的个数为.(2)画树状图,如图,∵ 共有种等可能的结果,两次摸出都是红球的有种情况,∴ 两次摸出都是红球的概率为.(3)∵ 摸到红球得分,摸到蓝球得分,摸到黄球得分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,∴ 乙同学已经得了分,∴ 若随机再摸一次,共有种等可能的结果,乙同学三次摸球所得分数之和不低于分的有种情况,∴ 若随机再摸一次,乙同学三次摸球所得分数之和不低于分的概率为22. (1)把代入二次函数得:,,,抛物线的开口方向向上,对称轴是直线,把代入得:,把代入得:,当时的取值范围是.(2)把,,代入得:,,,,,,根据三角形的三边关系定理:三角形的任意两边之和大于第三边(也可求出两小边的和大于第三边),当取不小于的任意实数时,,,一定能作为同一个三角形三边的长.23. (1)抛物线的对称轴为,而,两点纵坐标相等,由抛物线的对称性可知,,关于直线对称,又与对称轴相距,与对称轴相距,,两点不可能同时在抛物线上.(2)假设点在抛物线上,则,解得,抛物线经过个点中的三个点,将,,,代入,得出的值分别为,,,,抛物线经过的点是,,又,与矛盾,假设不成立.不在抛物线上.(3)将,两点坐标代入中,得解得或将,两点坐标代入中,得解得综上所述,或24. (1)设抛物线的解析式为.将,,,得解得所以抛物线的解析式为.(2)过点作轴于点,设交轴于点.由折叠的性质可得..又,..设,则,在中,,解得.,..点坐标为.易求直线的解析式为,当时,.点坐标为.当抛物线经过点时,解得.当抛物线与经过点时,解得.的取值范围为.(3).抛物线开口向下,最大时,顶点达到最高位置.当时,随的增大而增大,在内,当时,.最高点的坐标为.。
人教版初三九年级上学期10月月考数学试题(含答案)

人教版初三九年级上学期10月月考数学试题(含答案)一、选择题(每小题3分,共30分)1.下列方程一定是一元二次方程的是( ) A .22310x x+-= B .25630x y --=C .20ax bx c ++=D .23210x x --=2.下列说法正确的是( ) A .矩形对角线相互垂直平分 B .对角线相等的菱形是正方形 C .两邻边相等的四边形是菱形D .对角线分别平分对角的四边形是平行四边形3.若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ) A .1-B .14-C .0D .14.若菱形ABCD 的一条对角线长为8,边CD 的长是方程210240x x -+=的一个根,则该菱形ABCD 的周长为( ) A .16B .24C .16或24D .485.如图,矩形ABCD 的对角线8AC =,120BOC ∠=︒,则BC 的长为( )A .B .4C .D .86.如图,在ABC ∆中,点E 、D 、F 分别在边AB 、BC 、CA 上,且//DE CA ,//DF BA ,下列四个判断中,不正确的是( ) A .四边形AEDF 是平行四边形B .如果AD EF =,那么四边形AEDF 是矩形C .如果AD 平分EAF ∠,那么四边形AEDF 是菱形 D .如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是正方形7.如图,一块长方形绿地的长为100m ,宽为50m ,在绿地中开辟两条道路后剩余绿地面积为24704m 。
则根据题意可列出方程( ) A .50001504704x -=B .250001504704x x -+= C .250001504704x x --=D .21500015047042x x -+=8.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若140ABC ∠=︒,则OED ∠=( ) A .20︒B .30︒C .40︒D .50︒9.如图Rt ABC ∆中,90ABC ∠=︒,6AB cm =,8BC cm =,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 移动,点Q 从点B 出发,沿BC 边以2cm /秒的速度向点C 移动,如果点P ,Q 分别从点A ,B 同时出发,在运动过程中,设点P 的运动时间为t ,则当BPQ ∆的面积为8cm 时,t 的值( ) A .2或3B .2或4C .1或3D .1或410.如图,P 为正方形ABCD 的对角线BD 上任一点,过点P 作PE BC ⊥于点E ,PF CD ⊥于点F ,连接EF 。
九年级(上)数学月考试题(10月)有答案)

西瓜每降 0.1 元 /kg ,每天可多售出 40kg ,另外,每天的房租等固定成本共
元,应将每千克小型西瓜的售价降低多少元?
23.(10 分 ) 如图,在△ ABC中, AD 是∠ BAC 的平分线, EF 垂直平分 AD 交 A 求证:四边形 AEDF是菱形 .
24 . (14 分 ) 将两块全等的含 30 °角的三角尺如图 1 摆放在一起,设较短直角边长
( 4)( x+8 )( x+1 ) =-12 (运
20. ( 8 分)如图,在宽为 20 米、长为 30 米的矩形地面上修建两条同样宽的道路,
下部分作为耕地.若耕地面积需要
2
551 米 ,则修建的路宽应为多少米?
3 元 /kg 的价格出售,每天可售出
200kg ,为了尽快销售,该经营户决定降低销售价
参考答案
一.选择题(每题 3 分,共 30 分)
题号
1
2
3
4
5
6
7
答案
C
D
D
D
A
B
B
二.填空题(每题 3 分,共 24 分)
11. 1,1 12.3,-10 13. 18. ① ②④ ⑤
1
14. 24CM
3
三.解答题(本题共 5 题,总 66 分)
19 .( 1) x=1.x=5 (2) x=
3 21 , x= 3 21
A
PFE= ∠ BAP ; ⑤ PD= 2 EC . 其 中 正 确 结 论 的 序 号
M
是
.
三、解答题(本题共 5 题,总 66 分) 19. 解方程( 16 分)
2
( 1 ) 2 (x 3) 8 (直接开平方法)
人教版数学九年级上册10月月考试卷附答案

人教版数学九年级上册10月月考试卷附答案一、选择题(共10小题;共30分)1. 下列四个函数中,一定是二次函数的是A. B.C. D.2. 抛物线的对称轴是直线A. B. C. D.3. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是4. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间都在降雨B. “抛一枚硬币正面朝上的概率为次就有一次正面朝上C. “彩票中奖的概率为”表示买张彩票肯定会中奖D. “抛一枚正方体骰子,朝上的点数为的概率为“抛出朝上的点数为”这一事件发生的频率稳定在附近5. 某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是A. B.C. D.6. 小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字,,,现将标有数字的一面朝下,小明从中任意抽取一张.记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是A. 小亮B. 小明C. 一样D. 无法确定7. 是关于的二次函数,当的取值范围是时,在时取得最大值,则实数的取值范围是A. B. C. D.8. 已知,,为非负实数,且,则代数式的最小值为B. C. D.9. 如图,已知:正方形边长为,,,,分别为各边上的点,且,设小正方形的面积为,为,则关于的函数图象大致是A. B.C. D.10. 如图,已知抛物线和直线.我们约定:当任取一值时,对应的函数值分别为,,若,取,中的较小值记为;若,记.下列判断:①当时,;②当时,值越大,值越大;③使得大于的值不存在;④若,则.其中正确的有A. 个B. 个C. 个D. 个二、填空题(共6小题;共18分)11. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到).12. 抛物线经过点和两点,则.13. 函数:的顶点坐标是.14. 某果园有棵橘子树,平均每一棵树结个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结个橘子.设果园增种棵橘子树,果园橘子总个数为个,则果园里增种棵橘子树,橘子总个数最多.15. 已知和时,多项式的值相等,且,则当时,多项式的值等于.16. 抛物线经过点,,,已知,.(1)如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,点的坐标为;(2)抛物线顶点为,轴于点,是轴上一动点,是线段上一点,若,实数的变化范围是.三、解答题(共8小题;共102分)17. 如图所示,转盘被等分成八个扇形,并在上面依次标有数字,,,,,,,.。
浙江省九年级上学期数学10月月考试卷

浙江省九年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2020七上·寿宁月考) 下列等式变形正确的是()A . 由2x+7=0,得2x=-7B . 由2x-3=0,得2x-3+3=0C . 由,得D . 由5x=4,得x=202. (2分)已知P是线段AB上一点,且AP:PB=2:5,则AB:PB等于().A . 7:5B . 5:2C . 2:7D . 5:73. (2分) (2019九上·耒阳期中) 如图,在△ABC中,DE//BC,AD=1,DB=2,DE=2,则BC=()A . 2B . 4C . 6D . 84. (2分)(2020·长丰模拟) 如图,在中,为边上任意点,于点交于点G连接若四边形为平行四边形,则()A . 2B .C .D . 35. (2分)(2021·长春) 如图,在平面直角坐标系中,点A、B在函数的图象上,x过点A作x轴的垂线,与函数的图象交于点C ,连结BC交x轴于点D .若点A的横坐标为1,,则点B的横坐标为()A .B .C .D .6. (2分)(2017·乌鲁木齐模拟) 如图,O是菱形ABCD的对角线AC,BD的交点,E,F分别是OA,OC的中点.下列结论:①S△ADE=S△EOD;②四边形BFDE是中心对称图形;③△DEF是轴对称图形;④∠ADE=∠EDO.其中错误的结论有多少个()A . 1个B . 2个C . 3个D . 4个二、填空题 (共12题;共20分)7. (2分) (2018八上·启东开学考) 已知方程租与有相同的解,则m+n=________.8. (1分) (2018九上·金山期末) 如果两个相似三角形对应边上的高的比为1∶4,那么这两个三角形的周长比是________.9. (2分) (2019八上·莎车期末) 已知三角形三个内角的度数比是2:3:4,则这个三角形中最大角的度数是________.10. (2分)如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i= ,则AC的长度是________cm.11. (2分)如图,原点O是△ABC和△A’B’C’的位似中心,点A(1,0)与点A’(-2,0)是对应点,△ABC 的面积是,则△A’B’C’的面积是________12. (1分)(2017·昌乐模拟) 如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:________(写出一个即可).13. (2分)(2011·嘉兴) 如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE•AB.其中正确结论的序号是________.14. (2分)(2019·丹阳模拟) 如图,在中,,点在上,且,的平分线交于点,点是的中点,连结 .若四边形DCFE和△BDE的面积都为3,则△ABC的面积为________.15. (1分)如图:铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.4m时,长臂端点升高________m.16. (2分) (2020七下·大埔期末) 如图,把一块直角三角尺的直角顶点放在直尺的一边上,如果,那么的度数是________.17. (1分)(2020·安徽模拟) 如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点在边CD上,连结、,,则点为直角点.若点、分别为矩形ABCD边、CD上的直角点,且,,则线段的长为________.18. (2分) (2020八上·巨野期末) 如图,直线,将三角尺的直角顶点放在直线b上,若,则等于________三、解答题 (共7题;共62分)19. (2分)(2017·湖州模拟) 如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D 作DE//BC,交AC于点E.现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD= ,求AD的长;(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设,若CD=1,BD=2,AD=3,求k的值;(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若,设CD=m , BD=n ,AD=p ,试探究m , n , p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)20. (5分) (2019九上·余杭期末) 周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.已知:,,测得,, .测量示意图如图所示.请根据相关测量信息,求河宽 .21. (10分)(2021·铜仁) 如图,已知内接干,是的直径,的平分线交于点,交于点,连接,作,交的延长线于点 .(1)求证:是的切线;(2)若,,求的半径和的长.22. (5分) (2019九上·新蔡期末) 如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O 开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?23. (10分) (2021九上·海曙期末) 定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知,,,请直接写出一个的值________,使四边形ABCD为幸福四边形;(2)如图1,中,D,E分别是边AB,AC上的点, .求证:四边形DBCE为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC交于点G,且 .①求证:EG是⊙O的直径;②连结FG,若,,,求EG的长和幸福四边形DBCE的周长.24. (15分) (2016九上·昌江期中) 如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.25. (15分)(2017·临沭模拟) 如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1)求该抛物线的解析式;(2)判断△BCM的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形与△BCM相似?若存在,请求出点P的坐标,若不存在,请说明理由.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共12题;共20分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共7题;共62分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
人教版九年级数学上学期(第一学期)10月份月考试题及答案解析.docx

九年级数学10月份月考试题一、单项选择题(本大题共6小题,每小题3分,共18分)1.在下列方程中,一元二次方程的个数是( )①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④2530x x -= A.1个 B.2个 C.3个 D.4个2.若关于x 的一元二次方程2420kx x -+=有实数根,则k 的非负整数值为( )A.0B.0,1C.1,2D. 0,1,23.方程223(6)x x =-化为一般形式后二次项系数、一次项系数、常数项分别是( )A.2,3,-6B. 2,-3,1C.2,-3,6D.2,3,64.已知二次函数26y x x m =-+的最小值是-3,那么m 的值是( )A.10B.4C.5D.65.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单位的抛物线的解析式是( )A.23(1)2y x =++B. 23(1)2y x =+-C. 23(1)2y x =-+D. 23(1)2y x =--6.若A (134-,y 1),B (54-,y 2),C (14,y 3)为二次函数245y x x =+-的图象上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 3<y 1<y 2D. y 1<y 3<y 2二填空题(本大题共6小题,每小题3分,共18分)7.抛物线223y x x =++的顶点坐标是 .8.若27(3)m y m x -=-是二次函数,则m= 。
9.若x=-2是关于x 的一元二次方程x 2-4mx-8=0的一个根,则另一个根是 。
10.若一元二次方程2310x x -+=的两根为1x 和2x ,则1x +2x = 。
11.如果关于x 的一元二次方程260(x x c c -+=是常数)没有实根,那么c 的取值范围是12.二次函数2y (0)ax bx c a =++≠的图象如图所示,下列结论:①2a+b=0;②a+c >b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号)三(本大题共5小题每小题6分,共30分)13.解方程(1)2250x x +-=(2)(8)16x x -=(3)2(2)40x --=14.已知关于x 的方程24(2)10x k x k -++-=有两个相等的实数根,(1)求k 的值;(2)求此时方程的根.15.先化简,再求值:221(1)121m m m m -÷---+,其中m 满足一元二次方程2430m m -+=.16.(本题6分)已知关于x 的方程220x mx m ++-=.(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.17.(本题6分)利用一面长18米的墙,另三边用30米长的篱笆围成一个面积为100平方米的矩形场地,求矩形的长和宽.四、(本大题共4小题,每小题8分,共32分)18.(本题8分)已知关于x 的一元二次方程2(1)20x m x m --++=.(1)若方程有两个相等的实数根,求m 的值;(2)若方程的两实数根之积等于292m m -+,求6m +的值.19.(本题8分)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P,使△ABP的面积为10,请求出点P的坐标。
10月九年级上月考数学试卷 (有答案)

10月九年级上月考数学试卷 (有答案)一、填空题(每题2分,共24分)1.已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a= .2.如果,那么= .3.一元二次方程x 2﹣2x ﹣1=0的根的情况为 .4.已知关于x 的二次三项式4x 2﹣mx +25是完全平方式,则常数m 的值为 . 5.关于x 的一元二次方程(a ﹣1)x 2+x +|a |﹣1=0的一个根是0,则实数a 的值是 . 6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是 . 7.若a 是方程x 2﹣2x ﹣2=0的一个根,则2a 2﹣4a= .8.如图∠DAB=∠CAE ,请补充一个条件: ,使△ABC ∽△ADE .9.如图,点P 是△ABC 中AB 边上的一点,过P 作直线(不与AB 重合)截△ABC ,使截得的三角形与原三角形相似,满足条件的直线最多有 条.10.如图△ABC 中,DE ∥BC ,AD :BD=1:2,则DE :BC= .11.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN :S △CEM 等于.12.已知如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则S△COB:S△COD=.二.选择题(每题3分,共15分)13.若关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤1 D.k≤1且k≠014.根据下列表格对应值:)A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.2815.在△ABC中,点D、E分别在AB、AC边上.下列各比例式中,能够判定DE∥BC的是()A.=B.= C.= D.=16.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.1217.下列四个三角形中,与图中的三角形相似的是()A. B.C.D.三、解答题(共81分)18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).19.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?20.已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.21.如图,在▱ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.22.两棵树的高度分别是AB=16米,CD=12米,两棵树的根部之间的距离AC=6米.小强沿着正对这两棵树的方向从右向左前进,如果小强的眼睛与地面的距离为1.6米,当小强与树CD 的距离等于多少时,小强的眼睛与树AB、CD的顶部B、D恰好在同一条直线上,请说明理由.23.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.24.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?25.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)试说明△ABD≌△BCE;(2)△AEF与△ABE相似吗?说说你的理由;(3)BD2=AD•DF吗?请说明理由.26.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O 出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.27.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.九年级(上)月考数学试卷(10月份)参考答案与试题解析一、填空题(每题2分,共24分)1.已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a= 4 . 【考点】比例线段.【分析】由线段a 是线段b 与c 的比例中项,根据线段比例中项的概念,可得b :a=a :c ,可得a 2=bc=16,故a 的值可求.【解答】解:∵线段a 是线段b 与c 的比例中项, ∴a 2=bc=2×8=16, 解得a=±4, 又∵线段是正数, ∴a=4. 故答案为:4.2.如果,那么=.【考点】分式的基本性质.【分析】由可知:若设a=2x ,则b=3x .代入所求式子就可求出.【解答】解:∵,∴设a=2x,则b=3x,∴.故答案为.3.一元二次方程x2﹣2x﹣1=0的根的情况为两个不相等的实数根.【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△>0,由此即可得出结论.【解答】解:∵在方程x2﹣2x﹣1=0中,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程x2﹣2x﹣1=0有两个不相等的实数根.故答案为:两个不相等的实数根.4.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为±20.【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是2x和5这两个数的平方,那么中间一项为加上或减去2x和5的积的2倍.【解答】解:∵4x2﹣mx+25是一个完全平方式,∴mx=±2•2x×5=±20x,∴m=±20,故答案为±20.5.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值是﹣1.【考点】一元二次方程的解.【分析】把x=0代入已知方程,得到关于a的方程,通过解新方程求得a的值.注意二次项系数不等于零.【解答】解:依题意得:|a|﹣1=0且a﹣1≠0,解得a=﹣1.故答案是:﹣1.6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【考点】根的判别式.【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.7.若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=4.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=a代入方程得到a2﹣2a﹣2=0,则a2﹣2a=2,然后把2a2﹣4a变形为2(a2﹣2a),再利用整体代入的方法计算.【解答】解:把x=a代入方程得a2﹣2a﹣2=0,则a2﹣2a=2,所以2a2﹣4a=2(a2﹣2a)=2×2=4.故答案为4.8.如图∠DAB=∠CAE,请补充一个条件:∠D=∠B(答案不唯一),使△ABC∽△ADE.【考点】相似三角形的判定.【分析】根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角可该角的两个边对应成比例即可推出两三角形相似.【解答】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B(答案不唯一).9.如图,点P是△ABC中AB边上的一点,过P作直线(不与AB重合)截△ABC,使截得的三角形与原三角形相似,满足条件的直线最多有4条.【考点】相似三角形的判定.【分析】两个角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似.利用相似三角形的判定方法分别得出符合题意的图形即可.【解答】解:第一种情况如图1所示,过点P作PD∥BC,理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.第二种情况如图2所示,以PA为角的一边,在△ABC内作∠APE=∠C,理由:因为△APE与△ACB中还有公共角∠A,所以这两个三角形也相似.第三种情况如图3所示,过点P作PF∥AC,理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.第四种情况如图4所示,作∠BPG=∠C,理由:因为△GBP与△ACB中还有公共角∠B,所以这两个三角形也相似.故答案为:4.10.如图△ABC中,DE∥BC,AD:BD=1:2,则DE:BC=1:3.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理进行解答. 【解答】解:∵DE ∥BC , ∴AD :AB=DE :BC , ∵AD :BD=1:2, ∴AD :AB=1:3, ∴DE :BC=1:3.11.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN :S △CEM 等于1:3 .【考点】相似三角形的判定与性质.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,可以求出DE=BC ,又点M 是DE 的中点,可以求出DM :BC 的值,也就等于MN :NC 的值,从而可以得到MN :MC 的比值,也就是点N 到DE 的距离与点C 到DE 的距离之比,又DM=ME ,所以S △DMN :S △CEM =MN :MC .【解答】解:∵DE 是△ABC 的中位线,∴DE ∥BC ,DE=BC , ∵M 是DE 的中点,∴DM=ME=BC ,∴==,∴==,即:点N 到DE 的距离与点C 到DE 的距离之比为,∵DM=ME ,∴S △DMN :S △CEM =1:3.故答案为:1:3.12.已知如图,梯形ABCD 中,AB ∥CD ,△COD 与△AOB 的周长比为1:2,则S △COB :S △COD = 2:1 .【考点】相似三角形的判定与性质;梯形.【分析】先证明△COD 与△AOB 相似,再根据相似三角形周长的比等于相似比,推出DO 与OB 的比值,又△COB ,△COD 是等高三角形,所以面积的比等于底边BO 与OD 的比.【解答】解:∵AB ∥CD ,∴△COD ∽△AOB ,∵△COD 与△AOB 的周长比为1:2,∴DO :OB=1:2;∵△COB ,△COD 是等高三角形,∴S △COB :S △COD =BO :OD=2:1.故答案为2:1.二.选择题(每题3分,共15分)13.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k ≥﹣1B .k ≥﹣1且k ≠0C .k ≤1D .k ≤1且k ≠0【考点】根的判别式.【分析】分两种情况讨论:(1)当k=0时,方程为一元一次方程,必有实数根;(2)当k≠0时,方程为一元二次方程,当△≥0时,必有实数根.【解答】解:(1)当k=0时,方程为一元一次方程,必有实数根;(2)当k≠0时,方程为一元二次方程,当△≥0时,方程有实数根:△=4﹣4k(﹣1)≥0,解得k≥﹣1,综上所述,k≥﹣1.故选A.14.根据下列表格对应值:)A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.28【考点】估算一元二次方程的近似解.【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【解答】解:由图表可知,ax2+bx+c=0时,3.24<x<3.25.故选B.15.在△ABC中,点D、E分别在AB、AC边上.下列各比例式中,能够判定DE∥BC的是()A.=B.= C.= D.=【考点】平行线分线段成比例.【分析】根据对应线段成比例,两直线平行,可得出答案.【解答】解:∵,∴DE∥BC,故选D.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.12【考点】相似三角形的判定与性质;正方形的性质.【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解答】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.故选C.17.下列四个三角形中,与图中的三角形相似的是()A. B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.三、解答题(共81分)18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)直接利用公式法求出方程的根即可;(2)先移项,使方程的右边化为零,再利用提取公因式法分解因式得出即可.【解答】解:(1)x2﹣5x+1=0,∵△=b2﹣4ac=25﹣4×1×1=21>0,∴x=;(2)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3.19.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】一元二次方程的应用;平行四边形的性质;菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.20.已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.【考点】相似三角形的判定.【分析】根据两角对应相等的三角形是相似三角形可得△AEC∽△AFB,根据两边对应成比例且夹角相等的三角形是相似三角形可证明△AEF∽△ACB.【解答】证明:∵CE⊥AB于E,BF⊥AC于F,∴∠AFB=∠AEC.∵∠A为公共角,∴△ABF∽△ACE(两角对应相等的两个三角形相似).∴AB:AC=AF:AE,∠A为公共角.∴△AEF∽△ACB(两边对应成比例且夹角相等的两个三角形相似).21.如图,在▱ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据AD∥BC,可以证得∠ADE=∠DEC,然后根据∠CDE=∠DAE即可证得;(2)根据相似三角形对应边的比相等,即可求得EC的长,则BE即可求解.【解答】(1)证明:∵▱ABCD中AD∥BC,∴∠ADE=∠DEC,又∵∠CDE=∠DAE,∴△ADE∽△DEC;(2)解:∵△ADE∽△DEC,∴=,∴=,∴EC=.又∵BC=AD=6,∴BE=6﹣=.22.两棵树的高度分别是AB=16米,CD=12米,两棵树的根部之间的距离AC=6米.小强沿着正对这两棵树的方向从右向左前进,如果小强的眼睛与地面的距离为1.6米,当小强与树CD 的距离等于多少时,小强的眼睛与树AB、CD的顶部B、D恰好在同一条直线上,请说明理由.【考点】相似三角形的应用.【分析】本题需先过O点作平行于地面的线段交CD于E,交AB于F,再根据△ODE∽△OBF,列出方程即可求出结果.【解答】解:设小强的眼睛的位置为O,过O点作平行于地面的线段交CD于E,交AB于F,连接O、D、E得△ODE和△OBF,设小强与树CD的距离为x,有OE=x,OF=6+x.因为△ODE∽△OBF,所以:=,解得x=15.6米.23.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】一元二次方程的应用.【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.24.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【考点】一元二次方程的应用.【分析】(1)先求出每件的利润.再乘以每月销售的数量就可以得出每月的总利润;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)由题意,得60=4800元.答:降价前商场每月销售该商品的利润是4800元;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由题意,得(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.25.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)试说明△ABD≌△BCE;(2)△AEF与△ABE相似吗?说说你的理由;(3)BD2=AD•DF吗?请说明理由.【考点】相似三角形的判定与性质;全等三角形的判定;等边三角形的性质.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=AD•DF.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△ABE相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴,即BD2=AD•DF.26.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O 出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB 的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当PE⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.27.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.2017年2月11日。
【最新】人教版九年级数学上册10月月考试卷(含答案)

人教版九年级数学上册10月月考试卷(含答案)(时间:120分钟满分:120分)一、选择题(单项选择,每题2分,共24分)1.用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6 B.(x+2)2=6C.(x﹣2)2=2 D.(x+2)2=22.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±23.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3 4.方程x2﹣ax+4=0有两个相等的实数根,则a的值为()A.2 B.±2 C.±4 D.45.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2016﹣a﹣b的值是()A.2018 B.2011 C.2014 D.20216.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182C.x(x+1)=182×2 D.x(x﹣1)=182×27.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠0 8.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD9.下列四边形中,对角线一定相等的是()A.菱形 B.矩形 C.平行四边形 D.梯形10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④11.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cmC.4cm和11cm D.7cm和8cm12.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1),再打开,得到如图2所示的小菱形的面积为()A.10cm2 B.20cm2 C.40cm2 D.80cm2二、填空题(每空3分,共18分)13.若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值范围是.14.一元二次方程(x+1)(3x﹣2)=10的一般形式是.15.方程x2=3x的解为:.16.如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.18.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC 长和BD长之比为.三、解答题:本题共有8个小题,共78分.解答需用文字或符号说明演算过程或推理步骤.19.(6分)计算:|﹣2|+(﹣1)2+(﹣5)0﹣.20.(8分)先化简,然后选取一个你喜欢的x 的值代入计算.21.(10分)用适当的方法解下列一元二次方程:(1)2x2﹣50=0;(2)x2﹣3x﹣1=0.22.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为.23.(10分)已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.24.(10分)2020年王先生在某住宅小区购买了一套140平方米的住房,当时该住房的价格是每平方米2500元,两年后,该住房价格已变成每平方米3600元.(1)问该住房价格的年平均增长率是多少?(2)王先生准备进行室内装修,在购买相同质量的材料时,甲、乙两建材商店有不同的优惠方案:在甲商店累计购买2万元材料后,再购买的材料按原价的90%收费.在乙商店累计购买1万元材料时后,再购买的材料按原价95%的收费.当王先生计划累计购买此材料超过2万元时,请你帮他算一算在何种情况下选择哪家建材商店购买材料可获得更大优惠.25.(12分)某公司销售智能机器人,售价每台为10万元,进价y 与销售量x的函数关系式如图所示.(1)当x=10时,公司销售机器人的总利润为万元;(2)当10≤x≤30时,求出y与x的函数关系式;(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元.26.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A的坐标为(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△BCM的面积为5时,请直接写出M的坐标.答案一、选择题1.用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6 B.(x+2)2=6 C.(x﹣2)2=2 D.(x+2)2=2 【考点】解一元二次方程-配方法.【专题】压轴题.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项一般的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x2﹣4x=﹣2在等号两边加上4,得x2﹣4x+4=﹣2+4∴(x﹣2)2=2.故C答案正确.故选C.【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法﹣﹣配方法的运用,解答过程注意解答一元二次方程配方法的步骤.2.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2【考点】一元二次方程的定义.【专题】压轴题.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选D.【点评】本题考查了解一元关键是能把一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.4.方程x2﹣ax+4=0有两个相等的实数根,则a的值为()A.2 B.±2 C.±4 D.4【考点】根的判别式.【分析】利用方程有两个相等的实数根时,△=0,建立关于a的等式,求出a的值.【解答】解:由题意知,方程有两个相等的实数根.则△=a2﹣16=0∴a=±4故选C【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2016﹣a﹣b的值是()A.2018 B.2011 C.2014 D.2021【考点】一元二次方程的解.【分析】根据方程解的定义,求出a+b,利用整体代入的思想即可解决问题.【解答】解:∵关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,∴a+b=﹣5,∴2016﹣a﹣b=2016﹣(a+b)=2016+5=2021故选D.【点评】本题考查一元二次方程的解,解题的关键是理解方程的解的定义,属于基础题,中考常考题型.6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182C.x(x+1)=182×2 D.x(x﹣1)=182×2【考点】由实际问题抽象出一元二次方程.【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选B.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.7.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠0 【考点】根的判别式;一元二次方程的定义.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组,解得a≥﹣且a≠0.故选C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.9.下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形【考点】多边形.【分析】根据菱形、矩形、平行四边形、梯形的性质对各个选项进行判断即可.【解答】解:菱形的对角线不一定相等,A错误;矩形的对角线一定相等,B正确;平行四边形的对角线不一定相等,C错误;梯形的对角线不一定相等,D错误;故选:B.【点评】本题考查的是特殊四边形的性质,掌握菱形、矩形、平行四边形、梯形的性质是解题的关键.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm 【考点】矩形的性质.【分析】根据已知条件以及矩形性质证△ABE为等腰三角形得到AB=AE,注意“长和宽分别为15cm和10cm”说明有2种情况,需要分类讨论.【解答】解:∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选B.【点评】此题考查了矩形的性质与等腰三角形的判定与性质.注意出现角平分线,出现平行线时,一般出现等腰三角形,需注意等腰三角形相等边的不同.12.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1),再打开,得到如图2所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】剪纸问题.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出即可.【解答】解:如图2,由题意可得:AC=4cm,BD=5cm,故小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.二、填空题13.若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值范围是m≠3 .【考点】一元二次方程的定义.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:把方程mx2+3x﹣4=3x2转化成一般形式,(m﹣3)x2+3x ﹣4=0,(m﹣3)是二次项系数不能为0,即m﹣3≠0,得m≠3.故答案为:m≠3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.14.一元二次方程(x+1)(3x﹣2)=10的一般形式是3x2+x﹣12=0 .【考点】一元二次方程的一般形式.【分析】先把一元二次方程(x+1)(3x﹣2)=10的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.【解答】解:∵一元二次方程(x+1)(3x﹣2)=10可化为3x2﹣2x+3x ﹣2=10,∴化为一元二次方程的一般形式为3x2+x﹣12=0.【点评】去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.15.方程x2=3x的解为:x1=0,x2=3 .【考点】解一元二次方程-因式分解法.【分析】首先把方程移项,把方程的右边变成0,然后对方程左边分解因式,根据几个式子的积是0,则这几个因式中至少有一个是0,即可把方程转化成一元一次方程,从而求解.【解答】解:移项得:x2﹣3x=0,即x(x﹣3)=0,于是得:x=0或x﹣3=0.则方程x2=3x的解为:x1=0,x2=3.故答案是:x1=0,x2=3.【点评】本题考查了因式分解法解二元一次方程,理解因式分解法解方程的依据是关键.16.如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是 4 .【考点】矩形的性质.【分析】根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,求出AO,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=2,即AC=2AO=4,故答案为:4.【点评】本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC的长,难度适中.18.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC 长和BD长之比为1:..【考点】菱形的性质.【分析】首先设设AC,BD相较于点O,由菱形ABCD的周长为8cm,可求得AB=BC=2cm,又由高AE长为cm,利用勾股定理即可求得BE 的长,继而可得AE是BC的垂直平分线,则可求得AC的长,继而求得BD的长,则可求得答案.【解答】解:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB=(cm),∴BD=2OB=2cm,∴AC:BD=1:.故答案为:1:.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的四条边都相等,对角线互相平分且垂直.三、全面答一答:本题共有8个小题,共78分.解答需用文字或符号说明演算过程或推理步骤.19.计算:|﹣2|+(﹣1)2+(﹣5)0﹣.【考点】实数的运算;零指数幂.【分析】原式利用绝对值的代数意义,乘方的意义,零指数幂法则,以及立方根定义计算即可得到结果.【解答】解:原式=2+1+1﹣3=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,然后选取一个你喜欢的x的值代入计算.【考点】分式的化简求值.【分析】先对x2﹣2x+1分解因式,再进行通分化简,最后求值.【解答】解:==,(x≠1)当x=2时,原式=2.【点评】主要考查分式的化简求值比较简单,不过选择喜欢的值时,一定要使分母有意义.21.(10分)用适当的方法解下列一元二次方程:(1)2x2﹣50=0;(2)x2﹣3x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣直接开平方法.【分析】(1)直接开平方法求解可得;(2)公式法求解可得.【解答】解:(1)∵2x2﹣50=0,∴2x2=50,∴x2=25,则x=5或x=﹣5;(2)∵a=,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4××(﹣1)=11>0,则x==3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为(a﹣3,b+2).【考点】作图﹣平移变换.【分析】(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+2.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).故答案为:(a﹣3,b+2).【点评】此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.23.(10分)已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.【考点】平行四边形的判定与性质;菱形的判定与性质.【分析】(1)证明四边形ABDF是平行四边形,再利用平行四边形对角线互相平分可证出结论;(2)首先证明四边形ABCD是菱形,再用菱形的性质可得到AC⊥BD,再根据两直线平行,同位角相等得到∠CAF=∠COD=90°.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.【点评】此题主要考查了平行四边形的判定与性质,菱形的判定与性质,平行线的性质,解决问题的关键是熟练掌握平行四边形的判定方法与性质.24.(10分)2020年王先生在某住宅小区购买了一套140平方米的住房,当时该住房的价格是每平方米2500元,两年后,该住房价格已变成每平方米3600元.(1)问该住房价格的年平均增长率是多少?(2)王先生准备进行室内装修,在购买相同质量的材料时,甲、乙两建材商店有不同的优惠方案:在甲商店累计购买2万元材料后,再购买的材料按原价的90%收费.在乙商店累计购买1万元材料时后,再购买的材料按原价95%的收费.当王先生计划累计购买此材料超过2万元时,请你帮他算一算在何种情况下选择哪家建材商店购买材料可获得更大优惠.【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)根据增长率的公式,列方程求增长率即可;(2)设王先生计划累计购买此材料为y万元,根据题意分别列出在甲、乙两商店购买材料的花费,列方程或不等式求出优惠时,y的取值范围.【解答】解:(1)设该住房价格的年平均增长率为x,依题意,得2500(1+x)2=3600,解得x1=0.2=20%,x2=﹣2.2(舍去);答:设该住房价格的年平均增长率为20%,(2)设王先生计划累计购买此材料为y万元,①当2+90%(y﹣2)>1+95%(y﹣1)时,解得y<3,即当王先生计划累计购买此材料的费用在2~3万元时,在乙建材商店可获得更大优惠,②当2+90%(y﹣2)=1+95%(y﹣1)时,解得y=3,即当王先生计划累计购买此材料为3万元时,在甲、乙两建材商店可获得优惠相同,③当2+90%(y﹣2)<1+95%(y﹣1)时,解得y>3,即当王先生计划累计购买此材料的费用在3万元以上时,在甲建材商店可获得更大优惠.【点评】本题考查了一元二次方程的运用,一元一次不等式的运用.关键是列出购买材料费用的表达式.25.(12分)某公司销售智能机器人,售价每台为10万元,进价y 与销售量x的函数关系式如图所示.(1)当x=10时,公司销售机器人的总利润为20 万元;(2)当10≤x≤30时,求出y与x的函数关系式;(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元.【考点】一次函数的应用;一次函数的图象.【分析】(1)由“总利润=单台利润×销售数量”结合图象即可得出结论;(2)设y与x之间的函数关系式为y=kx+b,由函数图象找出点的坐标,再利用待定系数法即可求出结论;(3)设销售量为m台时,公司销售机器人的总利润为37.5万元.分析销售利润为37.5万元时,销售台数m的范围,再结合此时进价y 与x的函数关系式得出销售m台时的进价,再由“总利润=单台利润×销售数量”即可得出关于m的一元二次方程,解方程即可得出结论..【解答】解:(1)当x=10时,公司销售机器人的总利润为10×(10﹣8)=20(万元).故答案为:20.(2)设y与x之间的函数关系式为y=kx+b,∵函数图象过点(10,8),(30,6),∴有,解得:.∴当10≤x≤30时,y与x的函数关系式为y=﹣x+9.(3)设销售量为m台时,公司销售机器人的总利润为37.5万元.∵37.5>20,∴m>10,又∵m为正整数,∴4m≠37.5.∴只有在10<m<30内,公式销售机器人的总利润才有可能为37.5万元.依题意得:m[10﹣(﹣m+9)]=37.5,解得:m1=15,m2=﹣25(舍去).答:销售量为15台时,公司销售机器人的总利润为37.5万元.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及一次函数的图象,解题的关键是:(1)结合数量关系直接计算;(2)利用待定系数法求函数解析式;(3)根据数量关系得出关于m的方程.本题属于基础题,难度不大,解决该题型题目时,根据函数图象结合数量关系找出方程(或方程组)是关键.26.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A的坐标为(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△BCM的面积为5时,请直接写出M的坐标.【考点】二次函数综合题.【分析】(1)先把A点坐标为(﹣1,0)代入抛物线y=x2+bx﹣2即可求出b的值,进而可求出抛物线的解析式,再由抛物线的顶点式即可求出其顶点坐标;(2)由两点间的距离公式分别求出AC,BC,AB的长,再根据勾股定理即可判断出△ABC的形状;(3)先求出直线BC解析式,求出平行于直线BC到直线BC距离为的直线a的解析式,联立方程组求解即可.【解答】解:(1)A点坐标为(﹣1,0)代入抛物线y=x2+bx﹣2得,0=×(﹣1)2﹣b﹣2,解得b=﹣,∴原抛物线的解析式为:y=x2﹣x﹣2,∴x=,y=﹣,∴D点坐标为:(,﹣);(2)∵抛物线的解析式为:y=x2﹣x﹣2,令x=0,∴y=﹣2,∴C (0,﹣2);令y=0,∴0=x2﹣x﹣2,∴x=﹣1或x=4,∴B(4,0)∵AC=,BC=2,AB=5,∴AC2+BC2=AB2,∴△ABC是直角三角形.(3)如图,过点O作OD⊥BC,由(2)知,BC=2,OC=2,OB=4,∴OD=,设BC边上的高为h,∴S△BCM=×BC×h=×2h=5,∴h=,∵,∴,∴CE=,∵C(0,﹣2);B(4,0)∴直线BC解析式为y=x﹣2,∴直线a的解析式为y=x+②或y=x﹣③,∵抛物线的解析式为:y=x2﹣x﹣2①,联立①②解得,或,∴M(﹣1,0),(5,3);联立①③得x2﹣4x+5=0,此方程无解,∴M(﹣1,0),(5,3).【点评】此题是二次函数综合题,主要考查了抛物线与x轴的交点问题及勾股定理的逆定理,熟知坐标轴上各点坐标的特点及两点间的距离公式是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年衢州九年级数学上册10月月考试
题(含答案)
浙江省衢州地区2012-2013学年第一学期10月月考
九年级数学试卷
卷Ⅰ
一.选择题(共10小题,每题3分,共30分.每题只有一个正确的选项,不选、多选、错选,均不得分.)
1.若反比例函数的图象经过点,则它的函数关系式是()
2.下列各问题情景中均包含一对变量,试判断哪对变量
是成反比例的()
A、圆的周长和圆的半径
B、在压力不变的情况下,压强P和支承面的面积S
C、中,y与x的关系
D、巨化中学的男生人数和女生人数
3.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致()
ABCD
4.⊙O的半径为5厘米,A为线段OP中点,当OP=6厘米时,点A与⊙O的位置关系是()
A.点A在⊙O内
B.点A在⊙O上
C.点A在⊙O外
D.不能确定
5.二次函数的图象的对称轴是()
A.直线x=-2B.直线x=2C.直线x=-1D.直线x=1
6.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()
A.y=2(x-1)2-3B.y=2(x-1)2+3C.y=2(x+1)2
-3D.y=2(x+1)2+3
7.对于的图象下列叙述正确的是()
A顶点坐标为(-3,2)B对称轴为直线y=3
C当时随增大而增大D当时随增大而减小
8.A,B,C是抛物线上三点,,,的大小关系为()A.B.C.D.
9.二次函数的图象如图所示,有下列结论:
①,②,③,④,⑤
其中正确的个数有()
A.1个B.2个C.3个D.4个
10.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()
(A)3cm(B)6cm(C)cm(D)9cm
卷Ⅱ
二.填空题(本大题共有6小题,每小题4分,共24分)11.直角三角形的两直角边分别为和1,那么它的外接圆
的直径是
12.如图,正方形ABOC的边长为2,反比例函数的图象过
点A,则k=
13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为
8mm,如图所示,则这个小圆孔的宽口AB的长度为
_____mm.
14将二次函数化为的形式,则=
15教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是
16.如图,已知双曲线点P为双曲线上的一点,且PA⊥x 轴于点A,PB⊥y轴于点B,PA、PB分别交双曲线于D、C 两点,则△PCD的面积为
三.解答题(本大题共8小题,共66分.请务必写出解答过程)
17.解方程:
18.如图,在A岛附近,半径约为250km的范围内是暗礁区,
往北300km处有一灯塔B,往西400千米处有一灯塔C,现有一渔船沿CB航行,渔船是否会进入暗礁区?说明理由。
19.如图,有一个残缺的圆形轮子,请用直尺和圆规把破轮补完整;(要求保留作图痕迹,不写作法)
20.如图,是⊙O的一条直径,是⊙O的一条弦,交AB与点,
,若AP=1,CD=4,求⊙O的直径。
1.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于
A(-2,1),B(•1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数
的值的x的取值范围.
22.如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。
(1)求抛物线的解析式;
(2)求抛物线顶点D的坐标及△BD E的面积;
23.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了迎接中秋国庆双节来临,商场决
定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?
24.如图,已知二次函数的图像经过点A(3,3),点B(4,0)和原点,P为二次函数图像上的一个动点,过点P做x轴的垂线,垂足为D(m,0),并与直线OA相交于点C
(1)求出二次函数的解析式.
(2)若点P在直线OA的上方时,用含有m的代数式表示线段PC的长度,并求线段PC的最大值
(3)当m>0时,探索是否存在点P,使△PCO成为等腰三角形,若存在求出点P坐标,不存在,说明理由。
参考答案
一.选择题(本题10小题,每题3分,共30分.每题只有一个正确的选项,不选、多选、错选,均不得分.)
题号12345678910
答案BBCABDCACA
二、填空题(本题有6小题,每小题4分,共24分)11.212.-413.814.3
(3)1016.
三、解答题(本题有8小题,共66分)
17.解方程:(本小题满分6分)
(未检验扣1分)
18.(本小题满分6分)
过点A作AD⊥BC
AD=240<250∴会进入暗礁区
19.(本小题满分6分)略
20.(本小题满分8分)
∵=AB是直径
∴AB⊥CD且CP=PD=2
设半径为r,由勾股定理得2r=5
∴直径为5
21.(本小题满分8分)
⑴
⑵
22.(本小题满分10分)
⑴
⑵D(-1,4)
23.(本小题满分10分)
⑴根据题意如果降价X元那么每天的销售数量就为(8+)每台利润(2400-2000-x)
那么y=(8+)(2400-2000-x)
整理的y=-+24x+3200
(2)当y=48004800==-+24x+3200解得x1=100(舍
去),x2=200
(3)当X=150元时利润最高
将x=150代入y==-+24x+3200解得y=5000
24(本小题满分12分)
⑴设当A(3,3)代入得
∴
⑵直线OA解析式PC==当x=时PC最大值=
⑶当OC=PC∴P()
当PC=
PC=OCP
OC=OPCD=PD∴P(5,-5)
PC=OP∴p(4,0)
综上所述,P点坐标为(),,(5,-5),(4,0)。