九年级数学10月月考试题新人教版

合集下载

新人教版九年级数学10月考试卷及答案

新人教版九年级数学10月考试卷及答案

九年级数学学科阶段性质量调研(2011.10)命题人:朱建成 审核人:赵志林卷面分值:满分120分,考试时间: 90分钟一、填空题(本大题共有12小题,每小题2分,满分24分)= ▲ , 2)2(-= ▲ ;2.2(= ▲ , 2)32(= ▲ ;3.当x ▲ 时,5+x 在实数范围有意义;当a ▲ 时,2a -在实数范围有意义;4.计算:28-= ▲ , 1232⨯= ▲ ;5.化简下列各式:=312▲ ,32= ▲ ; 6.已知菱形ABCD 中对角线B D 、AC 相交于点O ,添加条件 ▲ ,可使菱形ABCD 成为正方形(填一个即可);7.矩形的两条对角线的夹角为600,较短的边长为12cm ,则对角线长为 ▲ cm ;8.等腰梯形的腰长为cm 5,它的周长是cm 22,则它的中位线长为_____▲____cm ; 9.矩形ABCD 的周长是14cm ,对角线相交于O ,ΔAOD 与ΔAOB 的周长的差是1cm ,那么这个矩形的面积是__ ▲ __;10.如图,已知E 为平行四边形ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4cm ,ED 为3cm ,则平行四边形ABCD 的周长为__ ▲ __;11.如图,F 、E 分别是正方形ABCD 的边C B 、CD 上的点,CF B E =,连接AE 、B F ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为α(0°<α<180°),则∠α= ▲ .12.如图,矩形纸片ABCD 中,AB =2,点E 在BC 上,且EC AE =.若将纸片沿AE 折叠,点B 恰好与AC 上的点'E 重合,则AC = ▲ cm .12题11题10题F二、选择题(本大题共有5小题,每小题3分,满分15分)13.下列图形中,既是中心对称图形,又是轴对称图形的是 …………………【 ▲ 】A 、平行四边形B 、矩形C 、等边三角形D 、等腰梯形 14.式子1313--=--x xx x 成立的条件是 ………………………………………【 ▲ 】 A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤315.满足55<<-x 的非正整数x 是 ………………………………………【 ▲ 】A 、-1B 、0C 、-2,-1,0D 、1,-1,016.等腰三角形的一个外角等于110°,则顶角的度数是 ……………………【 ▲ 】A 、70°B 、40°C 、70°或40°D 、以上都不对 17.正方形具有而菱形不一定具有的性质 ……………………………………【 ▲ 】 A 、 对角线相等B 、 对角线互相垂直平分C 、 对角线平分一组对角D 、 四条边相等 三、解答题(本大题共有9小题,满分81分) 18. (每小题5分,满分20分)计算 (1) 631332⨯⎪⎪⎭⎫⎝⎛- (2)0)a > (3)()632+-()632-+(4)01)1-+-19. (本题满分7分)如图,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E . (1) 求证:△ABD ≌△ECB ;(2) 若∠DBC =50°,求∠DCE 的度数.19题20. (本题满分7分) 如果023=-+-b a ,求ba63+的值.21. (本题满分7分) 若32,132--+=x x x 求的值.22. (本题满分7分)如图,菱形ABCD 中,M 、N 、E 、F 分别是四条边的中点,060=∠A ,cm AB 8=.求四边形MNEF 的周长和面积.23. (本题满分7分) 当12441,212-++-≤a a a a 化简.24. (本题满分8分)在平面直角坐标系中描出下列各点)1,2(A ,)1,0(B ,)4,4(--C ,)4,6(-D ,并将各点用线段一次连接构成一个四边形ABCD .(1)四边形ABCD 时什么特殊的四边形?答:(2)在四边形ABCD22题BAo25. (本题满分8分)如图所示,在Rt △ABC 中,∠ACB=900,BC 的垂直平分线FD ,交BC 于D ,交AB 于E ,且CE AF // (1) 求证:四边形ACEF 是平行四边形. (2) 当∠B 的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.26.(本题满分10分) 在平面直角坐标系xoy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动【x 轴、y 轴的正半轴都不包含原点O 】,顶点C 、D 都在第一象限。

人教版九年级上学期数学10月月考试卷

人教版九年级上学期数学10月月考试卷

人教版九年级上学期数学10月月考试卷一、选择题(共10题;共20分)1.相距125千米的两地在地图上的距离为25cm,则该地图的比例尺为( )A. 1∶5000B. 1∶50000C. 1∶500000D. 1∶50000002.如图,是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是()A. B. C. D.3.若反比例函数y=(2m-1)x m²-2的图象经过第二、四象限,则m为( )A. 1B. -1C.D.4.如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A. 小莉的影子比小玉的影子长B. 小莉的影子比小玉的影子短C. 小莉的影子与小玉的影子一样长D. 无法判断谁的影子长5.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A. 18B.C.D.6.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. ∠ABP=∠CB. ∠APB=∠ABCC. =D.7.如果两个相似多边形的面积比是4:9,那么它们的周长比是()A. 4:9B. 2:3C.D. 16:818.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A. AD:DB=AE:ECB. DE:BC=AD:ABC. BD:AB=CE:ACD. AB:AC=AD:AE9.如图,菱形ABCD中,AB=AC,点E,F在AB,BC上,AE=BF,AF,CE交于G,GD和AC交于H,则下列结论中成立的有()个.①△ABF≌△CAE;②∠AGC=120°;③DG=AG+GC;④AD2=DH•DG;⑤△ABF≌△DAH.A. 2B. 3C. 4D. 510.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③二、填空题11.若2x=3y,且x≠0,则的值为________.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x=________ ,y=________ .13.如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是________.14.如图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为________ .15.已知线段a、b、c、d,如果,那么=________。

河北省邯郸市临漳县2024-—2025学年上学期10月月考九年级数学试题

河北省邯郸市临漳县2024-—2025学年上学期10月月考九年级数学试题

河北省邯郸市临漳县2024-—2025学年上学期10月月考九年级数学试题一、单选题1.根据表格,判断关于x 的方程()230ax bx c a ++=≠的一个解的范围是()x1.1 1.2 1.3 1.42ax bx c ++0.59-0.842.293.76A .1.1 1.2x <<B .1.2 1.3x <<C .1.3 1.4x <<D .0.590.84x <<2.利用公式法解一元二次方程22510x x +-=可得两根为1x 、2x ,且12x x <,则1x 的值为()A B C D 3.若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为()A .﹣3B .0C .3D .94.若实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根,且k b >,则一次函数y kx b =+的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.已知a ,b ,c 为常数,点(,)P a c 在第四象限,则关于x 的一元二次方程20ax bx c ++=的根的情况为()A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判定6.如图,F 是正方形ABCD 对角线B 上一点,连接AF ,C ,并延长C 交B 于点E ,若150AFC ∠=︒,则DEC ∠的度数为()A .60︒B .75︒C .70︒D .65︒7.如图,剪两张等宽且对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是()A .四边形ABCD 周长不变B .AB BC =C .四边形ABCD 面积不变D .AC BD=8.某儿童乐园摩天轮的正面示意图如图所示,若每个舱看作一个点,任意选择四个点,则以这四个点为顶点的四边形是矩形的有()A .1个B .2个C .3个D .4个9.如图,在Rt ABC △中,6AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若36AMEF S =正方形,则ABC S = ()A .B .18C .D .1210.如图,在正方形ABCD 中,点E ,F 分别在边AB ,CD 上,∠EFC =120°,若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则AEB '∠为()A .70°B .65°C .30°D .60°11.如图,在MON ∠的边上分别截取OA 、OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、B 、OC .若6cm =AB ,四边形AOBC 的面积为215cm ,则OC 的长为()A .4cmB .8cmC .5cmD .10cm12.如图,三个边长为6cm 的正方形按如图所示的方式重叠在一起,点O 是其中一个正方形的中心,则重叠部分(阴影)的面积为()A .29cmB .218cmC .212cmD .224cm 13.如图,四边形ABCD 是边长为5的菱形,对角线AC ,B 的长度分别是一元二次方程2120x mx ++=的两个实数根,DH 是B 边上的高,则DH 的长为()A .4.8B .3.6C .2.4D .1.214.如图,在菱形ABCD 中,AC BD 、交于O 点,8,6AC BD ==,点P 为线段AC 上的一个动点.过点P 分别作PM AD ⊥于点M ,作PN DC ⊥于点N ,则PM PN +的值为()A .485B .15C .245D .2315.“立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程()A .()22001728x +=B .()()220012001728x x +++=C .()22001728x x ++=D .()()220020012001728x x ++++=16.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如24x =和()()230x x -+=有且仅有一个相同的实数根2x =.所以这两个方程为“同伴方程”,若关于x 的方程20(a 0)++=≠ax bx c 的参数同时满足0a b c ++=和0a b c -+=.且该方程与()()20x x n +-=互为“同伴方程”,则n 的值为()A .1或1-B .1-C .1D .2二、填空题17.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,动点E 以每秒1个单位长度的速度从点A 出发沿AC 方向运动,点F 同时以每秒1个单位长度的速度从点C 出发沿CA 方向运动,若AC =12,BD =8,则经过秒后,四边形BEDF 是矩形.18.20世纪70年代,数学家罗杰·彭罗斯使用两种不同的菱形,完成了非周期性密铺,如下图,使用了A ,B 两种菱形进行了密铺,则菱形B 的锐角的度数为°.19.《代数学》中记载,形如21039x x +=的方程,求正数解的几何方法是:“如图①,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x 的方程2140x x m ++=,构造图②,已知阴影部分的面积为72,则该方程的正数解为.三、解答题20.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BG AE ⊥,垂足为点G ,延长BG 交CD 于点F ,连接AF .(1)求证:BE CF =.(2)若正方形边长是5,2BE =,求AF 的长.21.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m 的羊圈?(2)羊圈的面积能达到6502m 吗?如果能,请你给出设计方案;如果不能,请说明理由.22.阅读理解题:定义:如果一个数的平方等于-1,记为2i 1=-①,这个数i 叫做虚数单位,那么和我们所学的实数对应起来就叫做复数,复数一般表示为i a b +(a ,b 为实数),a 叫做这个复数的实部,b 叫做这个复数的虚部,它与整式的加法,减法,乘法运算类似.例如:解方程21x =-,解得:1i x =,2i x =-.2i ===.读完这段文字,请你解答以下问题:(1)填空:3i =______,4i =______,2342021i i i i +++⋅⋅⋅+=______.(2)已知()()i i 13i a b ++=-,写出一个以a ,b 的值为解的一元二次方程.(3)在复数范围内解方程:2480x x -+=.23.【操作感知】如图1,在矩形纸片ABCD 的AD 边上取一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接60PM BM DPM ∠=︒、.,则MBC ∠的大小为______度.【迁移探究】如图2,将矩形纸片换成正方形纸片,将正方形纸片ABCD 按照【操作感知】进行折叠,并延长PM 交CD 于点Q ,连接BQ .(1)判断MBQ V 与CBQ △的关系并证明;(2)若正方形ABCD 的边长为4,点P 为AD 中点,则CQ 的长为______.24.如图,在矩形ABCD 中,6cm =AB ,12cm BC =,点P 从点A 开始以1cm/s 的速度沿B 边向点B 移动,点Q 从点B 开始以2cm/s 的速度沿BC 向点C 移动.如果P ,Q 分别从A ,B 同时出发,设移动的时间为s t .求:(1)当t 为多少时,PBQ 的面积等于28cm ?(2)当t 为多少时,PQD △是以PD 为斜边的直角三角形?25.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,每件工艺品售价应为多少元?(3)公司每天销售这种工艺品获利能否达到2000元?请说明理由.。

江苏省扬州市江都区第三中学2024—-2025学年九年级上学期10月月考数学试题

江苏省扬州市江都区第三中学2024—-2025学年九年级上学期10月月考数学试题

江苏省扬州市江都区第三中学2024—-2025学年九年级上学期10月月考数学试题一、单选题1.下列关于x 的方程中,一定属于一元二次方程的是()A .x ﹣1=0B .x 2+5=0C .x 3+x=3D .ax 2+bx+c=02.下列说法中,错误的是()A .直径相等的两个圆是等圆B .平分弦的直径垂直于弦,并且平分弦所对的弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧3.下列各条件中,能判断ABC A B C '''∽△△的是()A .AB A B ''=,A A '∠=∠B .ABBCA B A C ='''',B B '∠=∠C .ABA B BC B C ''='',∠+∠=∠+∠''A C A C D .40A ∠=︒,80B ∠=︒,80∠'=︒A ,70B '∠=︒4.如图,ABC V 与DEF 是位似三角形,位似比为2:3,已知3AB =,则D 的长等于()A .49B .2C .92D .2745.如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=︒,则ACO ∠的度数为()A .42︒B .44︒C .46︒D .48︒6.如图,在O 中,C 是 AB 上一点,OA OB ⊥,过点C 作弦CD 交OB 于E ,若OA DE =,则C ∠与AOC ∠满足的数量关系是()A .13C AOC ∠=∠B .12C AOC ∠=∠C .23C AOC ∠=∠D .34C AOC ∠=∠7.如图,a b c ∥∥,若32AD DF =,则下面结论错误的是().A .35AD AF =B .32BC CE =C .23AB EF =D .35BC BE =8.如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是()A .6B .C .D .6.25二、填空题9.若一条弦把圆分成15∶两部分,则劣弧所对的圆心角为.10.若32a b =,则22a b a b +-的值为.11.已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为.12.如图,AB 是直径, BCCD DE ==,40BOC ∠=︒,AOE ∠的度数是.13.关于x 的方程2210kx x --=有两个不相等的实数根,则k 的最小整数值为.14.如图,矩形OABC 的对角线OB 与反比例函数9(0)y x x =>相交于点D ,且35OD OB =,则矩形OABC 的面积为.15.已知O 的半径为5,弦8AB =,则O 上到弦AB 所在直线的距离等于1的点有个.16.对于一元二次方程()200ax bx c a ++=≠,下列说法:①若方程有一根1x =-,则0b a c --=;②若0a b c ++=,则240b ac -≥;③若方程()2(1)10a x b x c -+-+=的两个根是12x =,25x =,那么方程20ax bx c ++=的两个根为11x =,24x =;④若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立.其中正确的有个.(填个数)17.已知E 是矩形ABCD 的边BC 上一点,23BE CE =,连接AE ,将ABE 沿AE 翻折.若点B 的对应点B '正好落在矩形的对角线上,则AB BC 的值为.18.如图所示,O 的半径为6,点P 在O 上,点A 在O 内,且3AP =,过点A 作AP 的垂线交O 于点B ,C .设PB x =,PC y =,则y 与x 的函数表达式为.三、解答题19.选用适当方法解下列方程(1)2(1)2(1)x x -=-;(2)22530x x --=.20.已知关于x 的一元二次方程22(1)210x m x m -+++=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根分别为αβ、,且2αβ=,求m 的值.21.在Rt ABC △中,90BAC ∠=︒,B 是斜边BC 上的高.(1)证明:ABD CBA △△∽;(2)若9:25ABD ABC S S =:△△,6AB =,求B 的长.22.如图,ABC V 的顶点均为网格中的格点.(1)选择合适的格点(包括边界)为点D 和点E ,请画出一个ADE V ,使ADE ABC △△∽(相似比不为1).(2)在图2中画一个EFG ,使其与ABC V 相似,且面积为2.23.如图,ABC V 中,AB AC =,以AB 为直径作O ,交BC 于点D ,交AC 于点E .(1)求证: BDDE =;(2)若50BAC ∠=︒,求AOE ∠的度数.24.图I 是大拇指广场示意图及测量其高度的方案,图II 是求大拇指高度AB 的示意图.如图II ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.25.如果关于x 的一元二次方程()200ax bx c a ++=≠有两个不相等的实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”,(1)方程2680x x -+=“2倍根方程”(填“是”或“不是”);(2)若一元二次方程290x x c -+=是“2倍根方程”,求出c 的值.(3)若()()()300x ax b a --=≠是“2倍根方程”,求代数式32a b a b -+的值.26.公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?27.【阅读材料】如图1所示,对于平面内P ,在P 上有弦AB ,取弦AB 的中点M ,我们把弦AB 的中点M 到某点或某直线的距离叫做弦AB 到这点或者这条直线的“密距”.例如:图1中线段MO 的长度即为弦AB 到原点O 的“密距”.过点M 作y 轴的垂线交y 轴于点N ,线段MN 的长度即为弦AB 到y 轴的“密距”.【类比应用】已知P 的圆心为(0,8)P ,半径为4,弦AB 的长度为4,弦AB 的中点为M .(1)如图2所示,如果弦AB 在P 上运动,在运动过程中,圆心P 到弦AB 的中点M 的距离变化吗?若不变化,请求出PM 的长,若变化,请说明理由.(2)如图2所示,当AB y ∥轴时,弦AB 到原点O 的“密距”是____________.(3)如图2所示,如果弦AB 在P 上运动,在运动过程中直接写出弦AB 到原点的“密距”d 的取值范围___________;28.如图,在矩形ABCD 中,6AB =,10BC =,E 是AB 上一点,2BE =.F 是BC 上的动点,连接EF ,H 是CF 上一点且HF k CF=(k 为常数,0k ≠),分别过点F ,H 作EF ,BC 的垂线,交点为G .设BF 的长为x ,GH 的长为y .(1)若4x =,6y =,则k 的值是______.(2)若1k =时,求y 的最大值.(3)在点F 从点B 到点C 的整个运动过程中,若线段AD 上存在唯一的一点G ,求此时k 的值.。

湖北荆州2024-2025学年九年级上学期10月月考数学试题(解析版)

湖北荆州2024-2025学年九年级上学期10月月考数学试题(解析版)

2024年10月学情监测试卷九年级数学(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1. 方程224135x x x +−=+化为一般形式后,二次项系数和一次项系数分别为( )A. 2和1B. 2和7C. 1和6−D. 1和4 【答案】A【解析】 【分析】本题考查了一元二次方程的一般式,根据()200ax bx c a ++=≠进行判定即可求解. 【详解】解:根据题意,2243150x x +−−−=,整理得,2260x x +−=,∴二次项系数和一次项系数分别为21,,故选:A .2. 若方程220x kx −+=的一个根是2−,则k 的值是( )A. 1−B. 1C. 3−D. 3 【答案】C【解析】【分析】本题考查了一元二次方程的解,根据题意,把2x =−代入计算即可求解.【详解】解:根据题意,把2x =−代入得,()()22220k −−−+=,解得,3k =−,故选:C .3. 一元二次方程2530x x −+=的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根【答案】B【解析】 【分析】本题考查了根的判别式,根据方程的系数结合根的判别式即可得出0∆>,从而得出方程有两个不相等的两个实数根,掌握“当0∆>时,方程有两个不相等的两个实数根”是解题的关键.【详解】解:∵方程2530x x −+=,∴()2Δ5413130=−−××=>,∴方程有两个不相等的两个实数根.故选:B .4. 对于二次函数()22y x =−−,下列说法错误的是( )A. 它的图象的开口向下B. 它的图象的对称轴是直线2x =C. 当2x =时,y 取最大值D. 当2x >时,y 随x 的增大而增大【答案】D【解析】【分析】本题考查了二次函数顶点式的性质,根据二次函数顶点式的解析式()2y a x h k =−+进行分析即可求解.【详解】解:已知二次函数顶点式()22y x =−−,10−<,图象开口向下,顶点坐标为()2,0,对称轴为xx =2, ∴A 、B 选项正确,不符合题意;当xx =2时,函数有最大值,最大值为0,故C 选项正确,不符合题意;当xx >2时,y 随x 的增大而减小,故D 选项错误,符合题意;故选:D .5. 若抛物线()22110ya x a −−+经过原点,则a 的值是( ) A. 1±B. 1C. 1−D. 0【答案】C【解析】【分析】本题考查二次函数的性质,将()0,0代入解析式求出a 的值,再根据二次项系数不能为0对a 的值进行取舍,即可得出答案.【详解】解: 抛物线()22110y a x a −−+经过原点()0,0,∴210a −+=,解得1a =±,当1a =时,二次项系数10a −=,不合题意,∴1a =−,故选C .6. 用配方法解方程2640x x −+=时,变形结果正确的是( )A. ()2314x −=B. ()235x −=C. ()2640x −=D. ()2632x −= 【答案】B【解析】【分析】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.先移项化为264x x −=−,可得2695x x −+=,再进一步求解即可.【详解】解:∵2640x x −+=,∴264x x −=−,∴2695x x −+=,∴()235x −=,故选:B .7. 有一种“微信点名”活动,需要回答一系列问题,并将问题和自己答案在朋友圈中发布,同时还规定“@”一定数量的其他人,邀请他们也参与活动,小智被邀请参加一次“微信点名”活动,他决定参与并按规定“@”其他人,如果收到小智邀请的人也同样参与了活动并按规定“@”其他人,且从小智开始算起,转发两轮后共有111人被邀请参与该活动.设参与该活动后规定“@”x 人,则可列出的方程为( )A. 2111x =B. 21111x +=C. 21111x x ++=D. ()21111x += 【答案】C的【解析】【分析】本题考查了由实际问题抽象出一元二次方程,理解题意,根据从小智开始算起,转发两轮后共有111人被邀请参与该活动列出一元二次方程即可.【详解】解:设参与该活动后规定“@”x 人,则可列出的方程为:21111x x ++=,故选:C .8. 某抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为()232y x =−−,则原抛物线的解析式为( )A. ()211y x =−+B. ()251y x =−+C. yy =(xx −1)2−5D. ()255y x =−− 【答案】A【解析】【分析】本题考查了二次函数图象的平移,根据平移规律“左键右键,上加下减”即可求解.【详解】解:A 、()()22121332y x x =−−+−=−−,符合题意; B 、()()22521372y x x =−−+−=−−,不符合题意;C 、()()22125338y x x =−−−−=−−,不符合题意; D 、()(22525378y x x −−−−−−,不符合题意; 故选:A .9. 若a 是关于x 的方程22310x x −+=的一个根,则2202446a a −+的值是( )A. 2025B. 2026C. 2022D. 2023【答案】B【解析】【分析】本题考查了一元二次方程的解,以及已知式子的值,求代数式的值等知识内容,难度较小,正确掌握相关性质内容是解题的关键.依题意,把x a =代入22310x x −+=,得2231a a −=−,再把2231a a −=−代入()222024462024223a a a a −+=−−中计算,即可作答. 【详解】解:∵a 是关于x 的方程22310x x −+=的一个根,∴把x a =代入22310x x −+=,得2231a a −=−,∴()()2220244620242232024212026a a a a −+=−−=−×−=, 故选:B .10. 二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),对称轴为直线2x =−.下列结论:①0abc >;②0a b c −+>;③若点11,2M y − 、点25,2N y −是函数图象上的两点,则12y y >;④3255a −<<−;其中正确的结论是( )A. ②③④B. ②③C. ①④D. ①②④【答案】D【解析】【分析】本题考查了二次含图象的性质,根据图象与x 轴交于点()1,0A ,对称轴为直线2x =−,可得另一个交点为()5,0−,4b a =,根据二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点),可得23c <<,由此可得5c a =−,分别代入计算,再根据二次函数图象的增减性即可求解.【详解】解:二次函数()20y ax bx c a ++≠的图象与x 轴交于点()1,0A ,对称轴为直线2x =−, ∴另一个交点为()5,0−,22b x a=−=−, ∴4b a =,∴a b ,同号,即0ab >, ∵二次函数与y 轴的交点B 在()0,2与()0,3之间(不包括这两点), ∴23c <<,∴0abc >,故①正确;当xx =1时,0y a b c =++=,且4b a =,∴50a c +=,则5c a =−,∵23c <<,∴253a <−<,则3255a −<<−,即0a <, ∵4580abc a a a a −+=−−=−>,∴0a b c −+>,故②,④正确;∵对称轴为2x =−,0a <,∴当2x <−时,y 随x 的增大而增大;当2x >−时,y 随x 的增大而减小;即离对称轴越远,值越小,∵()5113222222 −−−=−−−= ,, ∴12y y <,故③错误;综上所述,正确的有①②④,故选:D .二、填空题(共5题,每题3分,共15分)11. 抛物线2(2)1y x =+−的顶点坐标为________.【答案】(2,1)−−【解析】【分析】根据二次函数的解析式的顶点式即可得.【详解】抛物线2(2)1y x =+−的顶点坐标为(2,1)−−,故答案为:(2,1)−−.【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的图象与性质是解题关键.12. 已知方程2320x x −−=的两根分别为1x ,2x ,则1212x x x x ++的值为_________.【答案】1【解析】【分析】本题主要考查了根与系数的关系,对于()200ax bx c a ++=≠的两个根分别为12,x x ,则1212b c a x x x x a+=−=,. 利用根与系数的关系得到12x x +,21x x 的值,然后代入计算即可.【详解】解:∵方程2320x x −−=的两个根分别为1x ,2x ,∴123x x +=,122x x =− ∴1212231x x x x =−++=+. 故答案为:1.13. 加工爆米花时,爆开且不糊颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =−+−,则最佳加工时间为________min .【答案】3.75的【解析】 【分析】根据二次函数的对称轴公式2b x a=−直接计算即可. 【详解】解:∵20.2 1.52y x x =−+−的对称轴为()1.5 3.75220.2b x a =−=−=×−(min ), 故:最佳加工时间为3.75min ,故答案为:3.75. 【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键. 14. 如图,某涵洞的截面是抛物线形状,抛物线在如图所示的平面直角坐标系中,对应的函数解析式为2516y x =-,当涵洞水面宽为12m 时,涵洞顶点O 至水面的距离为_________m .【答案】454【解析】 【分析】本题考查了二次函数的运用,根据题意,()()6,06,0A B −,,代入计算即可求解.【详解】解:根据题意,12AB =,∴()()6,06,0A B −,,把xx =6代入得,25456164y =−×=−, ∴顶点O 至水面的距离为45m 4, 故答案为:454 . 15. 已知关于x 的一元二次方程()()2530x x n −−−=的两个实数根为1x ,2x ,且213x x =,则n 的值为__________.【答案】【解析】【分析】本题考查了一元二次方程根与系数的关系,先化为一般形式,根据一元二次方程根与系数的关系可得128x x +=,21215x x n =−,结合已知条件得出122,6x x ==,进而根据21526n −=×,即可求解. 【详解】解:()()2530x x n −−−= ∴228150x x n −+−=∴128x x +=,21215x x n =− 又∵213x x =∴148x =,∴122,6x x == ∴21526n −=×解得:n =故答案为:.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16. 解下列方程:(1)2310x x −+=;(2)22150x x +−=.【答案】(1)1x =,2x =(2)15x =−,23x =【解析】【分析】本题考查了解一元二次方程,熟练掌握直接开平方法,因式分解法,公式法和配方法是解题的关键. (1)运用公式法求解;(2)运用因式分解法求解.【小问1详解】解:∵1,3,1a b c ==−= ∴()2341150∆=−−××=>,∴x ,∴1x =2x = 【小问2详解】解:()()530x x +−=∴50x +=,30x −=, ∴15x =−,23x =.17. 已知关于x 的方程260x kx −+=有两个实数根α,β,其中3α=−,求另一个根β和k 的值.【答案】2β=−,5k =−【解析】【分析】本题主要考查一元二次方程根与系数的关系,根据一元二次方程的两根12x x ,,1212b c x x x x a a+=−=,即可求解. 详解】解:∵6αβ=,3α=−,∴2β=−,∵k αβ+=, ∴325k =−−=−.18. 已知函数231y x x =−−+.(1)该函数图象的开口方向是________;(2)求出函数图象的对称轴和顶点坐标;(3)当x 取何值时,y 随x 的增大而减小?【答案】(1)向下 (2)对称轴是32x =−,顶点坐标是313,24 − (3)32x >−【解析】【分析】本题主要考查了二次函数的图象和性质,熟练掌握二次函数开口方向,增减性,顶点坐标和对称轴是解题的关键.【(1)根据10a =−<,即可判定抛物线的开口方向; (2)根据1a =−,3b =−,1c =,结合顶点坐标公式进行求解即可; (3)根据0a <时,二次函数的增减性进行求解即可.【小问1详解】解:∵10a =−<,∴函数图象的开口方向是向下;小问2详解】解:∵1a =−,3b =−,1c =, ∴33222b a −−=−=−−, 244913444ac b a −−−==−, ∴函数图象的对称轴是32x =−,顶点坐标是313,24 − ; 【小问3详解】解:∵开口向下, ∴当32x >−时,y 随x 的增大而减小. 19. 已知关于x 的一元二次方程()222120x k x k k −−+−=有两个实数根1x ,2x . (1)求实数k 的取值范围;(2)是否存在实数k ,使得2212129x x x x +−=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】(1)14k ≥−(2)存在,2k =【解析】【分析】本题主要考查一元二次方程根与系数的关系, (1)根据一元二次方程有两个实数根可得240b ac ∆=−≥,由此即可求解; (2)运用一元二次方程根与系数的关系12b x x a +=−,12c x x a =,乘法公式的变形,代入求值即可. 【小问1详解】【解:根据题意得()()2221420k k k ∆=−−−−≥ , 解得,14k ≥−; 【小问2详解】解:根据题意得1221x x k +=−,2122x x k k =−, ∵2212129x x x x +−=, ∴()212121229x x x x x x +−−=,即()2121239x x x x +−=, ∴()()2221329k k k −−−=,整理得2280k k +−=, ∴()()240k k −+=,且14k ≥− 解得,12k =,24k =−(不符合题意,舍去), ∴2k =.20. 阅读下列材料:为解方程4260x x −−=,可将方程变形为()22260x x −−=,然后设2x t =,则()222x t =,原方程化为260t t −−=①,解①得12t =−,23t =.当12t =−时,22x =−无意义,舍去;当23t =时,23x =,解得x =1x =2x =;这种方法称为“换元法”,则能使复杂的问题转化成简单的问题.利用换元法解方程()()2227180x xx x −+−−=. 【答案】12x =,21x =−【解析】【分析】本题考查的是利用换元法解一元二次方程,设2x x t −=,于是原方程化为27180t t +−=,求解t ,再进一步求解即可.【详解】解:设2x x t −=,于是原方程化为27180t t +−=,∴()()290t t −+=, 解得12t =,29t =−;当2t =时,22x x −=,∴220x x −−=,∴()()210x x −+=, 解得12x =,21x =−;当9t =−时,29x x −=−,∴290x x −+=,此时2(1)4190=−−××<△,方程无解,故原方程的解为12x =,21x =−.21. 如图,抛物线2y x bx c =++与直线1y x =−交于点()1,A m −和(),2B n .(1)求抛物线的解析式;(2)根据图象直接写出不等式21x bx c x ++>−的解集.【答案】(1)24y x x =−−(2)1x <−或3x >【解析】【分析】本题考查了待定系数法求二次函数解析式,函数与不等式的关系等知识.(1)先求出点A 、B 的坐标为()1,2−−,()3,2,再代入2y x bx c =++即可求解;(2)根据函数与不等式的关系结合图象即可求解.【小问1详解】解:把()1,A m −和(),2B n 代入1y x =−,得112m =−−=−,21n =−,∴3n =,∴()1,2A −−,()3,2B ,把()1,2A −−,()3,2B 代入2y x bx c =++,得12932b c b c −+=− ++=, 解得14b c =− =−, ∴抛物线的解析式为24y x x =−−;【小问2详解】解:求不等式21x bx c x ++>−的解集可以看作当抛物线24y x x =−−的图象位于直线1y x =−的上方时求自变量x 的取值范围,∴由图象得不等式21x bx c x ++>−的解集为1x <−或3x >.22. 羽毛球作为国际球类竞技比赛的一种,发球后羽毛球的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,羽毛球从发出到落地的过程中竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()()20y a x h k a =−+≠.某次发球时,羽毛球的水平距离x 与竖直高度y 的几组数据如下:请根据上述数据,解决问题:(1)直接写出羽毛球飞行过程中竖直高度的最大值,并求出满足的函数关系()()20y a x h k a =−+≠; (2)已知羽毛球场的球网高度为1.55m ,当发球点距离球网5m 时,羽毛球能否越过球网?请说明理由. 【答案】(1)()225042727y x =−−+,50 m 27(2)能,理由见解析【解析】【分析】本题考查的是二次函数的实际应用,理解题意是解本题的关键;(1)先求解抛物线的对称轴与顶点坐标,再设设抛物线的关系式为()250427y a x =−+,再代入0x =,23y =即可得到答案; (2)把5x =代入()225042727y x =−−+可得169y =,再比较即可. 【小问1详解】解:根据表格中的数据可知,当2x =时,149y =,当6x =时,149y =, ∴点142,9 与146,9关于抛物线的对称轴对称, ∴抛物线的对称轴为直线2642x +=,根据表格中的数据可知,当4x =时,5027y =, ∴抛物线的顶点坐标为504,27, 即羽毛球飞行过程中竖直高度的最大值为50m 27;设抛物线的关系式为()250427y a x =−+,把0x =,23y =代入得:()225004327a =−+, 解得:227a =−, ∴抛物线的关系式为()225042727y x =−−+.【小问2详解】解:把5x =代入()225042727y x =−−+得:225016(54)27279y =−−+=, ∵161.559>,∴羽毛球能越过球网.23. 一人一盔安全守规,一人一带平安常在!某摩托车配件店经市场调查,发现进价为80元的新款头盔每月的销售量y (件)与售价x (元)的相关信息如下: 售价x (元)100 110 120 130 …销售量y(件)180160 140 120 … (1)试用你学过函数来描述y 与x 的关系,这个函数可以是_______(填“一次函数”或“二次函数”),直接写出这个函数解析式为______;(2)若物价局规定,该头盔最高售价不得超过140元,当售价为多少元时,月销售利润达到5600元? (3)若获利不得高于进价的60%,那么售价定为多少元时,月销售利润达到最大? 【答案】(1)一次函数,2380y x =−+ (2)120元 (3)128元【解析】【分析】本题主要考查一次函数,二次函数,一元二次方程的运用,(1)根据表格信息可得当售价x 增大时,销售量y 逐渐减小,可得这个函数是一次函数,运用待定系数即可求解;(2)根据题意得()()8023805600x x −−+=,解一元二次方程,结合题意取值即可; (3)设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−,根据获利不得高于进价的60%,即获利不得高于808060%128+×=(元),可得80128x ≤≤,结合二次函数图象的性质即可求解. 【小问1详解】解:根据表格信息,当售价x 增大10时,销售量y 减小20,∴这个函数是一次函数,设该一次函数解析式为()0y kx b k =+≠,把100180x y =,,110160x y =,代入得, 100180110160k b k b += +=, 解得,2380k b =− =, ∴一次函数解析式为2380y x =−+, 的当120x =时,2120380120y =−×+=,符合题意, ∴该函数是一次函数,解析式为2380y x =−+; 【小问2详解】解:根据题意得()()8023805600x x −−+=, 解得1120x =,2150x =,∵物价局规定,该头盔最高售价不得超过140元,∴150x =不合题意舍去,答:当售价为120元时,月销售利润达到5600元;【小问3详解】解:设利润为w 元,则2(80)(2380)254030400w x x x x =−−+=−+−, ∴当54013524b x a =−=−=−时,w 取最大值, ∵获利不得高于进价的60%,即获利不得高于808060%128+×=(元), ∴80128x ≤≤,∵20−<,∴当135x ≤时,w 随x∴当128x =时,w 最大,答:售价定为128元时,月销售利润达到最大.24. 如图1,抛物线22y ax x c =−+与x 轴交于点()30A −,和B ,与y 轴交于点()0,3C .(1)求该抛物线的解析式及顶点的坐标;(2)如图2,若P 是线段OA 上一动点,过P 作y 轴的平行线交抛物线于点H ,交AC 于点N ,设点P 的横坐标为t ,ACH 的面积为S .求S 关于t 的函数关系式;当t 取何值时,S 有最大值,求出S 的最大值;(3)若P 是x 轴上一个动点,过P 作直线PQ BC ∥交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以B P Q C ,,,为顶点的四边形为平行四边形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−+,()1,4−; (2)23922S t t =−−,32t =−时,S 有最大值,最大值是278;(3)存在,P 点坐标为()1,0−或()2−−或()2−+.【解析】【分析】(1)利用待定系数法求出抛物线的解析式,再把解析式转化为顶点式可得到顶点的坐标; (2)求出直线AC 的函数解析式,用含t 的式子表示出点N H 、的坐标,得出NH ,再根据12AHN CHN S S S HN OA =+=×× 求出S 关于t 的函数关系式,最后根据二次函数的性质解答即可求解; (3)求出B 点坐标,得到OB 的长,再分CQ BP ∥、点P 在点A 的左侧,CP BQ ∥和当点P 点A 的右侧,CP BQ ∥三种情况,画出图形解答即可求解.【小问1详解】解:把()3,0A −,()0,3C 代入22y ax x c =−+得,9603a c c ++= =, 解得13a c =− = , ∴该抛物线的解析式为223y x x =−−+, ∵()222314y x x x =−−+=−++,∴该抛物线的顶点坐标为()1,4−;【小问2详解】 解:设直线AC 的函数解析式为y kx b =+,把()3,0A −,()0,3C 代入得, 033k b b=−+ = ,解得13k b = =, ∴直线AC 的函数解析式为3y x ,把x t =代入3y x 得,3y t =+,∴(),3N t t +,∵点P 的横坐标为t ,∴PH y ∥轴,∴点H 的横坐标为t ,∴()2,23H t t t −−+, ∴()222333HN t t t t t =−−+−+=−−, ∴()22211393327332222228AHN CHNS S S HN OA t t t t t =+=××=×−−×=−−=−++ , ∵302−<, ∴当32t =−时,S 有最大值,最大值为278; 【小问3详解】解:存在,理由如下:把0y =代入223y x x =−−+得,2023x x =−−+,解得13x =−,21x =,∴()1,0B ,∴1OB =,如图,当CQ BP ∥时,四边形BCQP 为平行四边形,∴CQ PB =,把3y =代入223y x x =−−+得,2233x x −−+=,解得10x =,22x =−,∴()2,3Q −,∴2CQ =,∴2BP =,∴211OP =−=,∴()1,0P −;如图,当点P 在点A 的左侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QM x ⊥轴于M ,则90∠=∠=°QMP COB , ∵四边形BCPQ 是平行四边形,∴PQ BC =,PQ BC ∥,∴QPM CBO ∠=∠, ∴()AAS QPM CBO ≌,∴1MP OB ==,3MQOC ==, ∴点Q 的纵坐标为3−,把=3y −代入223y x x =−−+得,2323x x −=−−+,解得11x =−21x =−(不符合,舍去),∴点P 的横坐标为2−−∴()2P −;如图,当点P 在点A 的右侧,CP BQ ∥时,四边形BCPQ 是平行四边形,过点Q 作QN x ⊥轴于N ,则90QNP COB ∠=∠=°,同理可得()2P −+;综上,点P 的坐标为()1,0−或()2−或()2−.【点睛】本题考查了用待定系数法求二次函数解析式,求二次函数图象的顶点坐标,二次函数与几何图形,二次函数的性质,平行四边形的性质,全等三角形的判定和性质,坐标与图形,正确画出图形并运用分类讨论思想解答是解题的关键.。

九年级数学上学期10月月考试卷含解析新人教版1

九年级数学上学期10月月考试卷含解析新人教版1

2015-2016学年黑龙江省哈尔滨市荣智学校九年级(上)月考数学试卷一、选择题(每小题3分,共计30分)1.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)2.下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a3.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.抛物线y=3(x﹣4)2+5的极点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)5.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.6.已知反比例函数y=的图象通过点P(﹣1,2),则那个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限 D.第二,四象限7.一个扇形的弧长为20πcm,半径是24cm,则此扇形的圆心角是()A.30° B.150°C.60° D.120°8.如图,在Rt△ABC中,∠BA C=90°,∠B=60°,△ADE能够由△ABC绕点A顺时针旋转90°取得(点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是()A.45° B.30° C.25° D.15°9.如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A.5 B.5 C.5 D.1010.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a<0;②b>0;③b >2a;④a+b+c=2.其中正确的结论是()A.①② B.②③ C.②④ D.③④二、填空题(每小题3分,共计30分)11.将258 000那个数用科学记数法表示为______.12.函数y=中,自变量x的取值范围是______.13.计算: =______.14.分解因式:﹣x3﹣2x2﹣x=______.15.抛物线y=2x2﹣bx+3的对称轴是直线x=﹣1,则b的值为______.16.如图,CD是⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.17.为了改善居民住房条件,某市计划用两年的时刻,将城镇居民的住房面积由此刻的人均约为10m2提高到,若每一年的年增加率相同,则年增加率为______.18.如图,已知AC与BD相交于点O,且AO:OC=BO:OD=2:3,AB=5,则CD=______.19.如图,在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD•DC,则∠BCA的度数为______.20.如图,△ABC内接于⊙O,OD交BC于点H,且OH=DH,连接AD,过点B作BE⊥AD于点E,连接EH,若OH=,EH=,则AC=______.三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21.先化简,再求代数式的值,其中x=sin60°﹣1.22.已知△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针旋转90°取得△A1B1C1,请画出△A1B1C1;(2)将△ABC沿x轴翻折取得△A2B2C2,请画出△A2B2C2.23.已知:如图,在圆O中,弦AB,CD交于点E,AD=CB.求证:AB=CD.24.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)求△AOB的面积.25.如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F别离是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.26.如图,在半圆O中,AB是直径,DC与半圆O相切于点C,AD⊥DC于点D,AD交半圆O 于点E.(1)如图1,求证:∠ACD=∠ABC;(2)若AE:AB=3:5,如图2,求证:DC=2DE;(3)在(2)的条件下,过点E作EG⊥AB于G,交AC于F,连接DF,若OG=,如图3,求△DEF的面积.27.如图,抛物线y=ax2+3ax﹣4a(a≠0)交x轴于A,B(A左B右)两点,点C任线段OA 上,且AC:BC=1:4.(1)求点C的坐标;(2)过C点作x轴垂线交于抛物线于点D,直线OD的解析式是y=x,求抛物线的解析式;(3)在(2)的条件下,在直线CD上是不是存在点P,使得△OPD为等腰三角形?若是存在,请求出知足条件的P点坐标;若是不存在,请说明理由.2015-2016学年黑龙江省哈尔滨市荣智学校九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每小题3分,共计30分)1.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】按照关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.2.下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】按照同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;单项式乘单项式:把系数和相同字母别离相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.【解答】解:A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、应为a6÷a2=a4,故本选项错误;C、(a2)3=a6,正确;D、应为2a×3a=6a2,故本选项错误.故选C.3.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【考点】中心对称图形;轴对称图形.【分析】按照轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.4.抛物线y=3(x﹣4)2+5的极点坐标为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(4,5)【考点】二次函数的性质.【分析】直接按照二次函数的极点坐标式进行解答即可.【解答】解:∵二次函数的解析式为y=3(x﹣4)2+5,∴其极点坐标为:(4,5).故选D.5.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】锐角三角函数的概念;互余两角三角函数的关系.【分析】本题能够利用锐角三角函数的概念求解,也能够利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的概念及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.6.已知反比例函数y=的图象通过点P(﹣1,2),则那个函数的图象位于()A.第二,三象限 B.第一,三象限 C.第三,四象限 D.第二,四象限【考点】反比例函数的性质;待定系数法求反比例函数解析式.【分析】先把点代入函数解析式,求出k值,再按照反比例函数的性质求解即可.【解答】解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.7.一个扇形的弧长为20πcm,半径是24cm,则此扇形的圆心角是()A.30° B.150°C.60° D.120°【考点】弧长的计算.【分析】按照弧长公式l=求解.【解答】解:∵l=,∴n==150.故选B.8.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE能够由△ABC绕点A顺时针旋转90°取得(点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是()A.45° B.30° C.25° D.15°【考点】旋转的性质.【分析】先按照旋转的性质得出AE=AC,∠DAE=∠BAC=90°,那么△CAE为等腰直角三角形,则∠CEA=45°.再按照直角三角形的两个锐角互求出∠BCA=30°,那么∠DEA=∠BCA=30°,那么按照∠CED=∠CEA﹣∠DEA即可求解.【解答】解:∵△ADE能够由△ABC绕点A顺时针旋转90°取得,∴△ADE≌△ABC,∴AE=AC,∠DAE=∠BAC=90°,∴△CAE为等腰直角三角形,则∠CEA=45°.∵Rt△ABC中,∠BAC=90°,∠B=60°,∴∠BCA=30°,∴∠DEA=∠BCA=30°.∴∠CED=∠CEA﹣∠DEA=45°﹣30°=15°.故选D.9.如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A.5 B.5 C.5 D.10【考点】解直角三角形;矩形的性质.【分析】本题的关键是利用等边三角形和矩形对角线的性质求长度.【解答】解:因为在矩形ABCD中,所以AO=AC=BD=BO,又因为∠AOB=60°,所以△AOB是等边三角形,所以AO=AB=5,所以BD=2AO=10,所以AD2=BD2﹣AB2=102﹣52=75,所以AD=5.故选B.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a<0;②b>0;③b >2a;④a+b+c=2.其中正确的结论是()A.①② B.②③ C.②④ D.③④【考点】二次函数图象与系数的关系.【分析】由抛物线开口向下,知a>0,对称轴知足﹣1<﹣<0,可知0<b<2a,由抛物线通过点(1,2),代入解析式取得a+b+c=2,即可判断.【解答】解:由抛物线开口向上,知a>0,由图象可知对称轴﹣1<﹣<0,∴0<b<2a,∵抛物线通过点(1,2),∴当x=1时,y=a+b+c=2,故正确的为:②④.故选C.二、填空题(每小题3分,共计30分)11.将258 000那个数用科学记数法表示为×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.肯定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258 000用科学记数法表示为:×105.故答案为:×105.12.函数y=中,自变量x的取值范围是x≠2 .【考点】函数自变量的取值范围;分式成心义的条件.【分析】求函数自变量的取值范围,就是求函数解析式成心义的条件,分式成心义的条件是:分母不为0.【解答】解:要使分式成心义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.13.计算: = 3.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后归并.【解答】解: =2+=3.故答案为:3.14.分解因式:﹣x3﹣2x2﹣x= ﹣x(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式﹣x,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a ±b)2.【解答】解:﹣x3﹣2x2﹣x,=﹣x(x2+2x+1),=﹣x(x+1)2.15.抛物线y=2x2﹣bx+3的对称轴是直线x=﹣1,则b的值为﹣4 .【考点】二次函数的性质.【分析】按照对称轴方程,列出关于b的方程即可解答.【解答】解:∵﹣=﹣1,∴b=﹣4,故答案为:﹣4.16.如图,CD是⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB= 8 cm.【考点】垂径定理;相交弦定理.【分析】由AB⊥CD得,AE=BE,再按照相交弦定理,求得AB的长即可.【解答】解:∵CD是⊙O的直径,AB⊥CD于E,∴AE2=CE•DE,∵DE=8cm,CE=2cm,∴AE=4cm,∴由垂径定理得,AB=2AE=2×4=8cm,故答案为8.17.为了改善居民住房条件,某市计划用两年的时刻,将城镇居民的住房面积由此刻的人均约为10m2提高到,若每一年的年增加率相同,则年增加率为10% .【考点】一元二次方程的应用.【分析】此题可设年增加率为x,第一年为10(1+x)m2,那么第二年为10(1+x)(1+x)m2,列出一元二次方程解答即可.【解答】解:设年增加率为x,按照题意列方程得10(1+x)2=解得x1=,x2=﹣(不符合题意舍去)所以年增加率为,即10%.18.如图,已知AC与BD相交于点O,且AO:OC=BO:OD=2:3,AB=5,则CD= .【考点】相似三角形的判定与性质.【分析】由题意得△AOB∽△COD,则,从而求得CD即可.【解答】解:∵AO:OC=BO:OD=2:3,∠AOB=∠COD,∴△AOB∽△COD,∴AO:OC=BA:CD=2:3,∵AB=5,∴CD=.故答案为:.19.如图,在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD•DC,则∠BCA的度数为65°.【考点】相似三角形的判定与性质.【分析】解答此题的关键的是利用AD2=BD×CD,推出△ABD∽△ADC,然后利用对应角相等即可知∠BCA的度数.【解答】解:如图:∵∠B=25°,AD是BC边上的高,∴∠BAD=90°﹣∠B=65°,∵AD2=BD.CD,∴=,又∵AD⊥BC,∴∠ADB=∠CDA=90°,∴△ABD∽△CDA,∴∠BCA=∠BAD=65°.故填:65°.20.如图,△ABC内接于⊙O,OD交BC于点H,且OH=DH,连接AD,过点B作BE⊥AD于点E,连接EH,若OH=,EH=,则AC= 5 .【考点】三角形的外接圆与外心.【分析】延长BE、AC交于点P,连接OB,过点C作CR⊥AB,在Rt△BOH中按照半径及∠BOH 求得BH、BC的长,证△ABE≌△APE得BE=PE、AB=AP,结合BH=CH可得CP=2HE=3,设AC=m,则AB=m+3,在Rt△ACR中表示出CR、AR的长,在Rt△BCR中按照勾股定理可求得m的值,即AC的长.【解答】解:如图,延长BE、AC交于点P,连接OB,过点C作CR⊥AB于点R,在Rt△BOH中,OB=OD+OH=,∴∠BOH=60°,∴BH=OB•sin60°=,∵OH⊥BC,∴BH=CH,∴BC=2BH=7,∵BE⊥AD,∴∠AEB=∠AEP=90°,在△ABE和△APE中,,∴△ABE≌△APE(ASA),∴BE=PE,AB=AP,∵BH=CH,∴HE是△BCP的中位线,∴CP=2HE=3,设AC=m,则AB=AP=m+3,在Rt△ACR中,∠RAC=60°,∴AR=m,CR=m,∴BR=AB﹣AR=m+3﹣m=m+3,在Rt△BCR中,BR2+CR2=BC2,即(m+3)2+(m)2=72,解得:m=5或m=﹣8(舍),∴AC=5.故答案是:5.三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21.先化简,再求代数式的值,其中x=sin60°﹣1.【考点】分式的化简求值;特殊角的三角函数值.【分析】先按照分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=sin60°﹣1=﹣1时,原式==.22.已知△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针旋转90°取得△A1B1C1,请画出△A1B1C1;(2)将△ABC沿x轴翻折取得△A2B2C2,请画出△A2B2C2.【考点】作图-旋转变换.【分析】(1)按照图形旋转的性质画出△A1B1C1即可;(2)作出各点关于x轴的对称点,按序连接各点即可.【解答】解:(1)如图所示;(2)如图所示.23.已知:如图,在圆O中,弦AB,CD交于点E,AD=CB.求证:AB=CD.【考点】圆周角定理;全等三角形的判定与性质.【分析】同弧所对的圆周角相等,可得出△ADE和△CBE中两组对应角相等,已知两组对应角的夹边相等,可证得△ADE≌△CBE,得AE=CE,DE=BE,从而证得AB=CD.【解答】证明:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,∴△ADE≌△CBE.∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.24.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把点A(m,6),B(3,n)别离代入y=(x>0)可求出m、n的值,肯定A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数法求一次函数的解析式;(2)别离过点A、B作AE⊥x轴,BC⊥x轴,垂足别离是E、C点.直线AB交x轴于D点.S△AOB=S△AOD ﹣S△BOD,由三角形的面积公式能够直接求得结果.【解答】解:(1)把点(m,6),B(3,n)别离代入y=(x>0)得m=1,n=2,∴A点坐标为(1,6),B点坐标为(3,2),把A(1,6),B(3,2)别离代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x+8;(2)别离过点A、B作AE⊥x轴,BC⊥x轴,垂足别离是E、C点.直线AB交x轴于D点.令﹣2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,∴S△AOB=S△AOD﹣S△BOD=×4×6﹣×4×2=8.25.如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F别离是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.【考点】梯形;平行四边形的判定与性质;相似三角形的判定与性质.【分析】(1)能够按照已知条件证明四边形BCDE是平行四边形,从而取得DE∥BC,即可证明相似;(2)按照相似三角形的性质求得相似比,即可求得线段的长.【解答】(1)证明:∵点E、F别离是AB、BC的中点且AB=2CD,∴BE=CD.∵AB∥CD,∴四边形BEDC是平行四边形.∴DE∥BF.∴∠EDM=∠FBM.∵∠DME=∠BMF,∴△EDM∽△FBM.(2)解:∵△EDM∽△FBM,∴BF=DE.∵,∴DM=2BM.∵BD=DM+BM=9,∴BM=3.26.如图,在半圆O中,AB是直径,DC与半圆O相切于点C,AD⊥DC于点D,AD交半圆O 于点E.(1)如图1,求证:∠ACD=∠ABC;(2)若AE:AB=3:5,如图2,求证:DC=2DE;(3)在(2)的条件下,过点E作EG⊥AB于G,交AC于F,连接DF,若OG=,如图3,求△DEF的面积.【考点】圆的综合题.【分析】(1)如图1,连结OC,先按照切线的性质取得∠ACD+∠2=90°,再按照圆周角定理取得∠2+∠1=90°,则∠ACD=∠1,加上∠1=∠B,所以∠ACD=∠ABC;(2)如图2,连结OC、BE,它们相交于点H,先证明四边形CDEH为矩形取得CD=EH,DE=CH,设AE=3x,则AB=4x,利用勾股定理计算出BE=4x,利用垂径定理,由OH⊥BE取得EH=BH=BE=2x,则CD=EH=2x,接着在Rt△OHB中利用勾股定理计算出OH=x,则CH=OC﹣OH=x,所以DE=x,于是可判断DC=2DE;(3)作FP⊥AD于P,如图3,先证明Rt△AEG∽Rt△ABC,利用相似比计算出AG=x,则OG=OA﹣AG=x=,解得x=5,则DE=5,AG=9,CD=10,AD=AE+DE=20,接着利用勾股定理计算出AC=10,BC=5,然后证明Rt△AFG∽Rt△ABC,利用相似比计算出FG=,再证明∠DAC=∠BAC,则按照角平分线的性质取得FP=FG=,最后利用三角形面积公式求解.【解答】(1)证明:如图1,连结OC,∵DC与半圆O相切于点C,∴OC⊥CD,∴∠ACD+∠2=90°,∵AB是直径,∴∠ACB=90°,即∠2+∠1=90°,∴∠ACD=∠1,而OB=OC,∴∠1=∠B,∴∠ACD=∠ABC;(2)证明:如图2,连结OC、BE,它们相交于点H,∵AB为直径,∴∠AEB=90°,而AD⊥DC,∴四边形CDEH为矩形,∴CD=EH,DE=CH,设AE=3x,则AB=4x,∴BE==4x,∴OH⊥BE,∴EH=BH=BE=2x,∴CD=EH=2x,在Rt△OHB中,∵BH=2x,OB=x,∴OH==x,∴CH=OC﹣OH=x,∴DE=x,∴DC=2DE;(3)解:作FP⊥AD于P,如图3,∵EG⊥AB,∴∠AGE=90°,∵∠EAG=∠BAC,∴Rt△AEG∽Rt△ABC,∴=,即=,解得AG=x,∴OG=OA﹣AG=x﹣x=x,∴x=,解得x=5,∴DE=5,AG=9,CD=10,∴AD=AE+DE=20,在Rt△ACD中,AC==10,在Rt△ABC中,BC==5,,∵∠FAG=∠BAC,∴Rt△AFG∽Rt△ABC,∴=,即=,解得FG=,∵∠ACD=∠ABC,∴∠DAC=∠BAC,∴FP=FG=,∴△DEF的面积=FP•DE=××5=.27.如图,抛物线y=ax2+3ax﹣4a(a≠0)交x轴于A,B(A左B右)两点,点C任线段OA 上,且AC:BC=1:4.(1)求点C的坐标;(2)过C点作x轴垂线交于抛物线于点D,直线OD的解析式是y=x,求抛物线的解析式;(3)在(2)的条件下,在直线CD上是不是存在点P,使得△OPD为等腰三角形?若是存在,请求出知足条件的P点坐标;若是不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令y=0,求出点A,B坐标,计算线段AB长度,按照AC:BC=1:4,可求OC长度为3,即可肯定点C坐标;(2)先求出点D坐标,再代入抛物线解析式求解即可;(3)分OP=OD,DP=OD,OP=DP,别离求解即可.【解答】解:如图1(1)抛物线y=ax2+3ax﹣4a,当y=0时,ax2+3ax﹣4a=0,解得:x=﹣4,或x=1,∴A(﹣4,0),B(1,0),∴AC=5,由AC:BC=1:4,解得:AC=1,OC=3,∴C(﹣3,0),(2)如图2把x=﹣3代入y=,得,y=﹣4,∴D(﹣3,﹣4),代入抛物线y=ax2+3ax﹣4a得,a=1,所以抛物线解析式为:y=x2+3x﹣4,(3)如图3在直角三角形OCD 中,OC=3,CD=4,可求OD=5,cos∠CDO=,当OP=OD时,CP=CD=4,现在点P坐标为(﹣3,4),当OD=DP=5时,若点P在点D上方,﹣4+5=1,点P坐标为(﹣3,1),若点P在点D下方,﹣4﹣5=﹣9,点P坐标为(﹣3,﹣9),当OP=DP时,由OD=5,cos∠CDO=,可求,DP=,﹣4+=,现在点P坐标为(﹣3,).综上所述,知足条件的P点坐标有:(﹣3,4),(﹣3,1),(﹣3,﹣9),(﹣3,).。

人教版九年级上册数学十月份月考试卷含答案

人教版九年级上册数学十月份月考试卷含答案

人教版九年级上册数学十月份月考试卷一、选择题(共10小题,每小题3分,共30分)1. 一个小组有若干人,每人互送贺卡一张,全组共送贺卡72张,则这个小组有( )A. 12人B. 10人 C ・9人D. 18人2. 在抛物线上有£( 一 0. 5, %)、凤2,北)、Q (3, yj 三点,若抛物线与y 轴的交点在正半轴上,则的大小关系为()抛物线y = F_2j!r + 2与坐标轴交点个数为( )一元二次方程H +271丫 +加=0有两个不相等的实数根,飞机着陆后滑行的距离P (单位:m )关于滑行时间f (单位:s )的函数解析式是y = 60/-|z 2.在飞机着陆滑行中,最后6 s 滑行的距离是 ______ m14. _____________ 两年前生产1 r 药品的成本是6000元,现在生产1 r 药品的成本是4860元,则药品成本的年平均 下降率是15. 二次函数y = |x 2的图象如图,点儿位于坐标原点,点儿、Az.儿、…、儿在卩轴的正半轴上,点&、足、&、…、3,在二次函数位于第一象限的图象上,点G 、 G 、G 、…、G 在二次函数位于第二彖限的图象上.四边形儿3儿G 、四边形 四边形四边形都是菱形,上述A : = Z 小£= S 民仏••• = Z 儿 風£=60° ,菱形A 的周长为—16. 如图,平行于*轴的直线M 分别交抛物线(心0)与 〉,2=壬(谤0) B 、C 两点,过点Q 作y 轴的平行线交%于点Q, 三、解答题(共8题,共72分)17. (本题8分)解方程:Y +A —3 = 0A. 3・ A. 4. A. 5. 戶VyiVjtB ・C ・北<乃<戶 二次函数尸一左一2x+c 在一3 W2的范围内有最小值一5, -6 B ・ 2 C ・ 一2 抛物线7=2(^+3):+5的顶点坐标是() (3, 5)B. (一3, 5)C. (一3, 方程X& — 5)= 0化成一般形式后,它的常数项是( 5B. 一 5C. 0D.处<上<戶则c 的值是(D. 3—5) D. (3, -5) D. 1 6. A.B. 1C. 2D. 31. A. 8. A. 9.A. m = 3 B ・ zn >3 C ・ ZZF <3用配方法解方程/一2x —5=0时,原方程应变形为( Cr+l )s =6 B ・(x-l )2=6 C ・ 二次函数 y=2(x-3)3-6 ( ) 最小值为一6 B.最小值为3 C.最大值为一6 -Yix 加是方程2-Y "_4x —1=0的两个根,则必+加=( B ・ 1 或一1 C. —2 )(x-2)s =9 D. C Y +2)2=910. 若 A. 1 二、填空题(本大题共6个小题,每小题3分,共18分) 耙抛物线y=/先向下平移1个单位,再向左平移2个单位, 一元二次方程+—&=0的一个根是2,则a 的值是 ________________________D.最大值为3)D ・211. 得到的抛物线的解析式是. r )p直线应必交北于点丄则丽= --------------------13.18.(本题8分)⑴ 请用描点法画出二次函数y=—空+心一3的图象(2)根据函数图象回答:不等式一£+4x—3>0的解集为____________ :不等式一+4x—3< —3的解集为_______________19.(本题8分)已知关于%的方程/一(2&+1)%+尸+£=0(1)求证:无论&取任何实数值,方程总有两个不相等的实数根(2)若两实数根满足(小+1)(出+1)=12,求&的值20.(本题8分)某商店经销一种销售成本为每千克40元的水产品,据市场分析:若每千克50元销售. 一个月能售岀500 kg.销售单价每涨1元,月销售虽就减少10 kg(1)当销售单价立为每千克55元时,讣算销售量和月销售利润(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?21・(本题8分)已知抛物线y=ay+bx+e的顶点P(2, —1),且过点(0, 3)(1)求抛物线的解析式⑵ 过龙点的直线y=^-2m-3 5<0 )与抛物线y=a^+bx+c交于点"、A:若△£!£¥的而积等于1.求ZZ?的值22.(本题10分)如图,在正方形救P中,疋是边曲上的一动点(不与点小万重合),连接広点/!关于直线力的对称点为尸,连接〃并延长交證于点G,连接%,过点£作曲丄血交%的延长线于点/连接册(1)求证:GF=GC(2)用等式表示线段阳与M的数量关系,并证明(3)若正方形救P的边长为4,取加的中点胚请直接写岀线段3”长的最小值23.(本题10分)投资8000元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长35 m、平行于墙的边的费用为100元/m,垂直于墙的边的费用为250元/皿设平行于墙的边长为x加(1)设垂直于墙的一边长为ym直接写岀y与*之间的函数关系式⑵若菜园面积为300乩求"的值(3)求菜园的最大面积24.(本题12分)如图,抛物线y=/+bY+c (aHO)与直线y=x+1相交于0)、B(4,加)两点,且抛物线经过点C5, 0)(1)求抛物线的解析式(2)点尸是抛物线上的一个动点(不与点么点万重合),过点尸作直线PDLx轴于点2交直线初于点E①当朋=2和时,求P点坐标②是否存在点F使△毗为等腰三角形?若存在,请直接写出点尸的坐标:若不存在,请说明理由人教版九年级上册数学十月份月考试卷一.选择题(共10小题,每小题3分,共30分)二、填空题(共小题,每小题分,共分)11. y=Gr+2尸一1 12. 4 13. 5414. 10% 15. 4n 16.三.解答题(共8题,共72分)18.解:(1) 1<-Y<3: (2) %<0 或正>419.证明:(1) VA = (2A+1):-4 = 1 >0•••求证:无论&取任何实数值,方程总有两个不相等的实数根(2) T・Y>+X:=2&+1, xg=艮+k•••3+1)(£+1)=上上+弘+£+1=2比+1+尸+&+1 = 12,解得人=一5, k尸220.解:(1)销售量:500-5X10=540(kg)销售利润:450X(55-40)=6750 (元)(2)设销售单价应为'元(JT-40) [500-10(x-50)] =8000,解得及=80,挹=60①当<=80时,进货500-10X (80-50)=200滋<250 kg.符合题意②当-Y=60时.进货500-10X (60-50)=400転>250 kg.不符合题意21.解:(1) y=(x-2)3-l(2)过点尸作PQ//y轴交MV于Q设P(2, -1),则0(2, -3):・PQ=2联立< ' A 4x + 3 ,整理得y*—Gz?+4)x+2zz?+6 = 0y = 加一3如+ Xr=也+ 4 > -Y K X V= 2e+ 6:.XN-g J(加+ 4)2 -4(2加 + 6) = 1,解得血=-3,处=3 (舍去)22.证明:(1)连接莎•••点A关于直线加对称点为尸:・DF=DA=DC, ZDFE= ZA=90°可证:Rt\DGF仝Rt'DGC:・GF=GC(2) •:乙 ADE= ZFDE、乙 GDF= ZGDC:.£EDG=^9 JEHA.DE:4EH为等腰直角三角形过点〃作HMA.AB于“由三垂直,得厶ADE^/\MEH (AAS):.HM=AE. EM=AD=AB:.AE=B\f=HM17.:.BH= 41 HM= 41 AE(3)对角互补找疋点轨迹2^223.解:(1) V100x+250y 2 = 8000y =-丄x+165(2)S=xy= -lx2 + 16.v = 300,解得弘=30, £=50••X35••」=30(3)S =-丄(x-40)2+3205•••0W30•••S随X的增大而增大・••当x=30时,S有最大值为30024.解:(1) y=-"+4x+5(2)① 设尸(<•, — F+4r+5),则r+1)、D(t, 0)•••彤=一/+4丫+5 —(r+1) =|-f+3t+4L DE= t+1•: PE=2ED/. |-f+3t+4|=2| t+1 =|2t+2当一F+3r+4=2r+2 时,解得t t=-l (舍去),t==2当一F+3r+4+2r+2=0时,解得仁=一1 (舍去),空=6•••P(2, 9)或(6, -7)② BE = QmE=Jlt2-& + 26 , BC =压当BE=CE时,-41 = 如-8/ + 26 ,解得心丄,此时X-,—) 4 4 16当爾=庞时,V2I/-4I = V26 ,解得『=4士加,此时P(4 + VH, - 4圧- 8) 或(4-713,4713-8)当陽=證时,J力2-& + 26 = 極,解得r=0或4 (舍去),此时F(0, 5)。

初三十月月考数学试卷

初三十月月考数学试卷

初三十月月考数学试卷篇一:2021届人教版九年级10月月考数学试题及答案本试卷分第Ⅰ卷和第Ⅱ卷两部分。

考试时间120分钟,满分120分Ⅰ(客观卷)24分一、单项选择题(每小题12分,共24分)x?11A、x??且x?12C、x??B、x?1121D、x??且x?122.下列计算正确的是AC、(2?1BD??1 ?3.方程x2?x?1?0的一个根是A、1?B、1? 2C、?1?D、?1?524.已知方程x2?px?q?0的两个根分别是2和?3,则x2?px?q可分解为A、(x?2)(x?3) C、(x?2)(x?3)B、(x?2)(x?3) D、(x?2)(x?3)5.关于x的一元二次方程x2?5x?p2?2p?5?0的一个根为1,则实数p的值是A、4B、0或2C、1D、?16.下列四个选项中的三角形,与图中的三角形相似的是7.将△ABC三个顶点横坐标都乘以-1,纵坐标不变,则所得图形与原图形的关系是A、关于x轴对称 C、关于原点对称B、关于y轴对称 D、不存在对称关系8.在比例尺为1∶6000000的地图上,量得两地的距离是15cm,则这两地的实际距离是A、0.9kmB、9kmC、90kmD、900km9.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD∶AB=3∶4,AE =6,则AC等于10.下列结论不正确的是A、所有的等腰直角三角形都相似 C、所有的矩形都相似B、所有的正方形都相似 D、所有的正八边形都相似11.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是A、2DE=3MNB、3DE=2MNC、3?A?2?FD、2?A?3?F12.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③ A、3个ADAB。

其中正确的有 ?AEACB、2个C、1个D、0个Ⅱ(主观卷)96分二、填空题:(每小题3分,共18分)13.当x<3时,9?6x?x2?x?614.已知x1、x2是方程x-x-2=0的两个实根,则(x1-1)(x2-1)= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省石家庄市复兴中学2017届九年级数学10月月考试题
时间:90分钟 满分:120分
一、选择题(本大题共16小题,1-10每小题3分,11-16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.要判断小强同学的数学考试成绩是否稳定,需要知道他最近几次数学考试成绩的( )
A .方差
B .众数
C .平均数
D .中位数
2.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )
A .12,13
B .12,14
C .13,14
D .13,16
3.某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如图,则关于这50个数据的说法错误的是( ) A .平均数是9 B .众数是9 C .中位数是9 D .方差是9
4.下列方程:① 2x 2
-13x =1;② 2x 2-5xy +y 2=0;③ 7x 2
-1=0;④ y 2
2
=0.其中是一元二次方程
的有( )
A .①和②
B .②和③
C .③和④
D .①和③ 5.方程2x 2
-3x +1=0化为(x +a )2
=b 的形式,正确的是( )
A .(x -32)2=16
B .2(x -34)2=116
C .(x -34)2=1
16 D .以上都不对
6.方程x (x -2)+x -2=0的解是( )
A .2
B .-2,1
C .-1
D .2,-1
7.已知一元二次方程x 2
-6x +c =0有一个根为2,则另一根为( )
A .2
B .3
C .4
D .8
8.关于x 的一元二次方程x 2
+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )
A .0
B .8
C .4±2 2
D .0或8
9. 已知x 1,x 2是一元二次方程x 2
-2x =0的两根,则x 1+x 2的值是( )
A .0
B .2
C .-2
D .4
10.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组有x 名同学,则根据题意列出的方程是( )
A .x (x +1)=182
B .x (x -1)=182
C .2x (x +1)=182
D .x (x -1)=182×2
11.已知关于x 的一元二次方程x 2
-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为
( )
A .b =-1,c =2
B .b =1,c =-2
C .b =1,c =2
D .b =-1,c =-2 12、△ABC 与△DEF 的相似比为1:4,则△DEF 与△ABC 的相似比为( )
A .1:2
B .1:3
C .4:1
D .1:16
13、如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于A 、B 、C 和点D 、E 、F .若3
2
=BC AB ,DE =4,则EF 的长是( ) A .
38 B .3
20 C 、6 D .10 14、已知x 1,x 2是一元二次方程x 2
-2x =0的两根,则x 21+x 2
2的值是( )
A .0
B .2
C .-2
D .4
15、一个等腰三角形的两条边长分别是方程2
7100x x -+=的两根,则该等腰三角形的周长是( )
A .12
B .9
C .13
D .12或9
16、绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,
并且长比宽多10米.设绿地的宽为x 米,根据题意,可列方程为( ).
A .()10900x x -=
B .()10900x x +=
C .()1010900x +=
D .()210900x x ++=⎡⎤⎣⎦
石家庄市复兴中学2016——2017学年度第一学期10月份月考
九年级数学试题
时间:90分钟 满分:120分
姓名 班级 考号 座位号 分数
选择题答题卡
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17.已知一个样本-1,0,2,x,3,它们的平均数是2,则这个样本的方差s2=________.18.若m是方程x2-x-2=0的一个根,则代数式m2-m的值为________
19、如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点
A、B、C都在横格线上,若线段AB=4 cm,则线段BC= cm
20、如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.
三、解答题(本大题共6小题,共66分.解答时应写出必要的文字说明、证明过程或演算步骤)
21. (本小题满分8分) 用恰当的方法解下列方程:
(1)x2+4x-2=0; (2)4x2-25=0;
(3)(2x+1)2+4(2x+1)+4=0. (4)x2-2x+1=0
22、(本小题满分10分)关于x的一元二次方程x2+(m-2)x+m+1=0有两个相等的实数根,求m的值。

23.(本小题满分11分) 某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考试成绩统计如下:
候选人教学技能考核专业知识考核成绩
甲8592
乙9185
丙8090
如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.
24.(本小题满分10分) 李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首
cm.你认为他的说法尾相连各围成一个正方形.李明认为这两个正方形的面积之和不可能等于482
正确吗?请说明理由.
25、(本小题满分13分)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点
出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.
(1)求运动时间t的取值范围;
(2)t为何值时,Rt△P0Q与Rt△AOB相似?
26、(本小题满分14分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?。

相关文档
最新文档