九年级数学下册27.1 图形的相似同步练习2 新人教版 (含答案)

合集下载

人教版九年级数学下册27.1 图形的相似同步练习2 及答案【新】

人教版九年级数学下册27.1 图形的相似同步练习2 及答案【新】

相似多边形
1. 若线段c满足a c
c b
=,且线段a=4 cm,b=9 cm,则线段c=()
A.6 cm B.7 cm
C.8 cm D.9 cm
2. 在下列四个命题中:①所有的等腰直角三角形都相似;②所有的等边三角形都相似;③所有的
正方形都相似;④所有的菱形都相似.其中真命题有()
A.4个B.3个
C.2个D.1个
3. 有一多边形草坪,在市政建设设计图纸上的周长为50 cm,其中一条边的长度为5 cm.经测量,
这条边的实际长度为15 m,则这块草坪的实际周长是()
A.100 m B.150 m
C.200 m D.250 m
4. 图中的两个四边形是相似图形,若∠N=125º,则∠M=__.
5.(2013枣庄)如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD= .
参考答案
1.A
2.B
3.B
4.125º
551 +。

新人教版九年级数学下《第27章相似》专项训练(2)含答案

新人教版九年级数学下《第27章相似》专项训练(2)含答案

第27章相似专项训练专训1证明三角形相似的方法名师点金:要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)考虑平行线截三角形相似定理及相似三角形的“传递性...”.利用平行线判定两三角形相似1.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP PQ QR.(第1题)利用边或角的关系判定两直角三角形相似2.下面关于直角三角形相似叙述错误的是()A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似3.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1,求证:△ABC∽△DEC.(第3题)利用角判定两三角形相似4.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD 并延长,与CE交于点E.1(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长.(第4题)利用边角判定两三角形相似5.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(第5题)求证:△ABD∽△CAE.利用三边判定两三角形相似6.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.(第6题)2专训2巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD 分别交AE,AF于点P,Q,求BP PQ QD.(第1题)过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB上一点,BF AF=32,取CF的中点D,连接AD并延长交BC于点E,求BEEC的值.(第2题)3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE ED=2AF FB.(第3题)34过一边上的点作平行线构造相似三角形4.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BDEC .(第4题)过一点作平行线构造相似三角形5.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD. 作辅助线的方法一:(第5题①)作辅助线的方法二:(第5题②)作辅助线的方法三:(第5题③)作辅助线的方法四:(第5题④)专训3用线段成比例法解四边形问题名师点金:利用线段成比例不仅能解三角形问题,还能解四边形问题.在中考中涉及相似、线段成比例的四边形的题型有填空题、选择题、解答题,是中考热门命题点之一.一、选择题1.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM =2,ME=3,则AN=()(第1题)A.3 B.4 C.5 D.62.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为()56(第2题)A .12B .98 C .2 D .43.如图,在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG =42,则△EFC 的周长为( ) A .11 B .10 C .9 D .8(第3题)(第4题)二、填空题4.如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB =4,BC =2,那么线段EF 的长为________. 三、解答题5.如图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1,Rt △BFC 的面积为S 2,Rt △DCE 的面积为S 3,则S 1________S 2+S 3(填“>”“=”或“<”);(2)写出图中的三对相似三角形,并选择其中一对进行证明.(第5题)6.如图,在矩形ABCD 中,AB =6,BC =8,沿直线MN 对折,使A ,C 重合,直线MN 交AC 于O.(1)求证:△COM ∽△CBA ; (2)求线段OM 的长度.(第6题)7.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F 为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.(第7题)8.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE 为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF.(2)若E为CD的中点,求证:Q为CF的中点.(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.(第8题)9.如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(第9题)(1)CG=BH;(2)FC2=BF·GF;(3)FC2AB2=GFGB.710.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF FA=12,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.(第10题)专训4用线段成比例法解与圆有关问题名师点金:线段成比例法求解有关线段问题在三角形、四边形中有着广泛的应用,是近几年中考命题的必考内容;在中考中,它的另一重点是与圆的知识相结合进行考查;题型既有选择题、填空题,也有解答题,也常以压轴题的形式出现.一、选择题1.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.256D.258(第1题)(第2题)2.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()8A.2.5 B.2.8 C.3 D.3.23.如图,A,B,C,D是⊙O上的四个点,AB=AC,AD交BC于点E,AE =3,ED=4,则AB的长为()A.3 B.2 3 C.21 D.3 5(第3题)(第4题)二、填空题4.如图,AB是⊙O的直径,点C在圆上,CD⊥AB,DE∥BC,则图中与△ABC 相似的三角形有________个.5.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则x-y的最大值是________.(第5题)三、解答题6.如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC 的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.(第6题)7.如图,在△ABC中,BA=BC,以AB为直径作半圆O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为点E.9(第7题)(1)求证:DE为半圆O的切线;(2)求证:DB2=AB·BE.8.如图,AB是圆O的直径,点C,D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与圆O相切;(2)若AB=6,AD=42,求EF的长.(第8题)9.如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.(第9题)1010.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.(第10题)11.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB PC=1 2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.(第11题)答案专训11.解:(1)△BCP∽△BER,△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形.∴BC=AD=CE,AC∥DE,∴△BCP∽△BER,则PCRE=BPBR=BCBE=12,∴BP=PR,PCRE=12.11∵点R是DE的中点,∴DR=RE.又PC∥DR,∴PQQR=PCDR=PCRE=12.∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP PQ QR=31 2. 2.C3.证明:∵AD=6.4,CD=1.6,∴AC=AD-CD=6.4-1.6=4.8.∴ACCD=4.81.6=3.又∵BCEC=9.33.1=3,∴ACCD=BCEC.又∵BC⊥AD,∴∠ACB=∠DCE=90°,∴△ABC∽△DEC.(第4题) 4.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°.∴∠ACF=120°.∵CE是外角平分线,∴∠ACE=12∠ACF=12×120°=60°.∴∠A=∠ACE.又∵∠ADB=∠CDE,∴△ABD∽△CED.(2)解:如图,作BM⊥AC于点M,则AM=CM=3,BM=3 3. ∵AD=2CD,∴CD=2,AD=4.则MD=1.在Rt△BDM中,BD=BM2+MD2=27.由△ABD∽△CED得BDED=ADCD,即27ED=2,∴ED=7.∴BE=BD+ED=37.5.证明:∵BD∥AC,点B,A,E在同一条直线上,∴∠DBA=∠CAE,又∵AB AC=BDAE=3,∴△ABD∽△CAE.方法规律:本题运用了数形结合思想和演绎推理,通过已知条件寻找两边成比例并且夹角相等,从而证明两三角形相似.6.证明:∵AD是△ABC的高,∴AD⊥BD.12又∵E,F分别是AB,AC的中点.∴在Rt△ABD中,DE为斜边AB上的中线.∴DE=12AB,即DEAB=12.同理DFAC=12.∵EF为△ABC的中位线,∴EF=12BC,即EFBC=12.∴DEAB=EFBC=DFAC.∴△DEF∽△ABC.专训21.解:如图,连接DF,∵E,F是边BC上的两个三等分点,∴BE=EF=FC.∵D是AC的中点,∴AD=CD.∴DF是△ACE的中位线.∴DF∥AE,且DF=12AE.∴DF∥PE.∴△BEP∽△BFD.∴BEBF=BPBD.∵BF=2BE,∴BD=2BP.∴BP=PD.∴DF=2PE. ∵DF∥AE,∴∠APQ=∠FDQ,∠PAQ=∠DFQ.∴△APQ∽△FDQ.∴PQQD=APDF.设PE=a,则DF=2a,AP=3a.∴PQ QD=AP DF=3 2.∴BP PQ QD=53 2.(第1题)(第2题)2.解:如图,过点C作CG∥AB交AE的延长线于点G.1314∵CG ∥AB ,∴∠DAF =∠G. 又∵D 为CF 的中点,∴CD =DF.在△ADF 和△GDC 中,⎩⎨⎧∠DAF =∠G ,∠ADF =∠CDG ,DF =CD ,∴△ADF ≌△GDC(AAS ).∴AF =CG. ∵BF AF =32,∴AB AF =5 2. ∵AB ∥CG.∴△ABE ∽△GCE. ∴BE EC =AB CG =AB AF =52.3.证明:如图,过点B 作BN ∥CF 交AD 的延长线于点N. ∴AF FB =AEEN ,∠ECD =∠NBD.又∵∠CDE =∠BDN ,∴△EDC ∽△NDB.∴ED DN =CDBD .∵BD =CD ,∴ED =DN =12EN. ∴AF FB =AE2ED .∴AE ED =2AF FB.(第3题)(第4题)4.证明:如图,过点C 作CF ∥AB 交DP 于点F ,∴△PCF ∽△PBD.∴BP CP =BDCF . ∵AD ∥CF ,∴∠ADE =∠EFC. ∵AD =AE ,∴∠ADE =∠AED.∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF. ∴BP CP =BD EC .5.证明:(方法一)过点C 作CF ∥AB ,交DE 于点F ,∴△CDF ∽△BDE.∴CF BE =CDBD .∵点M 为AC 边的中点,∴AM =CM.15∵CF ∥AB ,∴∠BAC =∠MCF.又∵∠AME =∠CMF ,∴△AME ≌△CMF.∴AE =CF.∵AE =14AB ,BE =AB -AE ,∴BE =3AE.∴AE BE =13. ∵CF BE =CD BD ,∴AE BE =CD BD =13,即BD =3CD. 又∵BD =BC +CD ,∴BC =2CD.(方法二)过点C 作CF ∥DE ,交AB 于点F , ∴AE AF =AM AC .又∵点M 为AC 边的中点,∴AC =2AM. ∴2AE =AF.∴AE =EF.又∵AE =14AB ,∴BFEF =2.又∵CF ∥DE ,∴BF FE =BCCD =2.∴BC =2CD. (方法三)过点E 作EF ∥BC ,交AC 于点F , ∴△AEF ∽△ABC.由AE =14AB ,知EF BC =AE AB =AF AC =14,∴EF =14BC ,AF =14AC.∵EF ∥CD ,∴△EFM ∽△DCM ,∴EF CD =MFMC .又∵AM =MC ,∴MF =12MC ,∴EF =12CD.∴BC =2CD.(方法四)过点A 作AF ∥BD ,交DE 的延长线于点F ,∴△AEF ∽△BED.∴AE BE =AFBD .∵AE =14AB ,∴AE =13BE.∴AF =13BD. 由AF ∥CD ,易证得△AFM ∽△CDM. 又∵AM =MC ,∴AF =CD.∴CD =13BD.∴BC =2CD.点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形.16专训3一、1.B 2.C 3.D 二、4. 5三、5.解:(1)=(2)△BCF ∽△DBC ∽△CDE ;选△BCF ∽△CDE ,证明:在矩形ABCD 中,∠BCD =90°,且点C 在边EF 上,∴∠BCF +∠DCE =90°.在矩形BDEF 中,∠F =∠E =90°,∴在Rt △BCF 中,∠CBF +∠BCF =90°,∴∠CBF =∠DCE ,∴△BCF ∽△CDE.(答案不唯一)6.(1)证明:由折叠可知,∠COM =90°,∴∠B =∠COM. 又∠MCO =∠ACB ,∴△COM ∽△CBA.(2)解:∵AB =6,BC =8,∴AC =10,∴OC =12AC =5,∵△COM ∽△CBA ,∴OM AB =CO BC ,即OM 6=58,∴OM =154.7.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C.在△ADF 与△DEC 中,⎩⎨⎧∠AFD =∠C ,∠ADF =∠DEC ,∴△ADF ∽△DEC.(2)解:∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=6.8.(1)证明:由AD =CD ,∠ADE =∠DCF =90°,DE =CF 得 △ADE ≌△DCF.(2)证明:易证△ADE ∽△ECQ ,所以CQ DE =CE AD .因为CE AD =CE CD =12,所以CQ DE =CQCF =12,即点Q 是CF 的中点.(3)解:S 1+S 2=S 3成立.理由:因为△ADE ∽△ECQ ,所以CQ DE =QE AE ,所以CQCE =QEAE .因为∠C =∠AEQ =90°,所以△AEQ ∽△ECQ ,所以△AEQ ∽△ECQ ∽△ADE ,所以S 1S 3=⎝ ⎛⎭⎪⎫EQ AQ 2,S 2S 3=⎝ ⎛⎭⎪⎫AE AQ 2,所以S 1S 3+S 2S 3=⎝ ⎛⎭⎪⎫EQ AQ 2+⎝ ⎛⎭⎪⎫AE AQ 2=EQ 2+AE 2AQ 2.因为EQ 2+AE 2=AQ 2,所以S 1+S 2=S 3.179.证明:(1)∵BF ⊥AE ,CG ∥AE ,∴∠BAH +∠ABH =90°,CG ⊥BF.∴∠CBG +∠BCG =90°.∵在正方形ABCD 中,∠ABH +∠CBG =90°,∴∠BAH =∠CBG ,∠ABH =∠BCG.∵AB =BC ,∴△ABH ≌△BCG ,∴CG =BH.(2)∵∠BFC =∠CFG ,∠BCF =∠CGF =90°,∴△CFG ∽△BFC ,∴FC BF =GFFC ,即FC 2=BF·GF.(3)∵∠CBG =∠FBC ,∠CGB =∠BCF =90°,∴△BCG ∽△BFC ,∴BC BF =BGBC ,即BC 2=BG·BF.∵AB =BC ,∴AB 2=BG·BF ,∴FC 2AB 2=FG·BF BG·BF =FG BG ,即FC 2AB 2=GF GB .10.(1)证明:∵点P 是菱形ABCD 对角线AC 上的一点, ∴∠DAP =∠PAB ,AD =AB.在△APB 和△APD 中,⎩⎨⎧AB =AD ,∠PAB =∠PAD ,AP =AP ,∴△APB ≌△APD(SAS ).(2)解:①∵△APB ≌△APD ,∴DP =PB ,∠ADP =∠ABP.在△DFP 和△BEP 中,⎩⎨⎧∠FDP =∠EBP ,DP =BP ,∠FPD =∠EPB ,∴△DFP ≌△BEP(ASA ),∴PF =PE ,DF =BE.∵GD ∥AB ,∴△FDG ∽△FAB ,∴DF FA =GDAB .∵DF FA =12,∴GD AB =12,BE AB =13,∴DG BE =32.∵DG ∥BE ,∴△DPG ∽△EPB ,∴DP PE =DGEB .∵PE =PF ,∴32=x y ,∴y =23x.②当x =6时,y =23×6=4,∴PF =PE =4,DP =PB =6,∵△FDG ∽△FAB ,∴FG BF =DG AB =12,∴FG 10=12,解得FG =5,故线段FG 的长为5.方法规律:本题运用了演绎推理,考查了相似三角形、全等三角形和函数知识,是一个综合性的问题.推出DG AB =12,BE AB =13是解题的关键.专训4一、1.D 2.B 3.C二、4.4 5.2三、6.(1)证明:∵⊙O与DE相切于点B,AB为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠E=90°.又∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E.(2)解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°.∵AC=8,AB=2×5=10,∴BC=AB2-AC2=6.又∵∠BCA=∠ABE=90°,∠BAC=∠E,∴△ABC∽△EAB,∴ACEB=BCAB.∴8EB=610.∴BE=403.(第6题)(第7题)7.证明:(1)如图,连接OD.∵AB为半圆O的直径,∴∠ADB=90°.∵AB=BC,∴D为AC中点.∵O为AB中点,∴OD∥BC.∵DE⊥BC,∴∠ODE=∠CED =90°,∴DE为半圆O的切线.(2)∵AB=BC,∠ADB=90°,∴∠CBD=∠DBA.又∠ADB=∠DEB=90°,∴△ADB∽△DEB.∴ABDB=DBBE,即DB2=AB·BE.8.(1)证明:连接OD,如图.因为OA=OD,所以∠OAD=∠ODA.又因为AD平分∠BAC,所以∠OAD=∠CAD,所以∠ODA=∠CAD.所以OD∥AE.又因为EF垂直于AE,所以OD垂直于EF,所以EF与圆O相切.(2)解:如图,连接CD,BD,BC,则CD=BD.因为AB是直径,所以∠ACB=∠ADB=90°.又因为AB=6,AD=42,所以BD=AB2-AD2=62-(42)2=2,所以CD=2.因为∠OAD=∠CAD,∠ADB=∠E=90°,所以△ADE∽△ABD,所以ABAD=BDDE,所以642=2DE,所以DE=423.在Rt△CDE中,CE=1819CD 2-DE 2=22-⎝⎛⎭⎪⎫4232=23.易得四边形CEDG 是矩形,所以DG =CE ,∠OGB =90°.所以DG =23,OG =3-23=73.在Rt △OGB 中,GB =OB 2-OG 2=32-⎝ ⎛⎭⎪⎫732=423.因为∠ACB =∠E =90°,所以BC ∥EF ,所以△OGB ∽△ODF ,所以OG OD =GB DF ,所以733=423DF ,所以DF =1227.所以EF =DE +DF =423+1227=64221.(第8题)(第9题)9.解:(1)ED 与⊙O 相切.证明:如图,连接OD.∵OA =OD ,∴∠1=∠2.∵AD 平分∠CAB ,∴∠2=∠3.∴∠1=∠3.∴OD ∥AE.∵AE ⊥DE ,∴OD ⊥DE.∵D 在⊙O 上,∴DE 是⊙O 的切线.(2)如图,连接BD.∵AB 是⊙O 的直径,∴∠ADB =90°,则BD 2=AB 2-AD 2=11.∵∠3=∠4,∠3=∠2,∴∠2=∠4.∵∠ADB =∠BDF =90°,∴△DFB ∽△DBA.∴BD AD =DF BD ,∴DF =BD 2AD =115.则AF =AD -DF =5-115=145. 10.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°.又∵∠BAD =∠BED ,∠BED =∠DBC ,∴∠BAD =∠DBC ,∴∠BAD +∠ABD =∠DBC +∠ABD =90°,∴∠ABC =90°,∴BC 是⊙O 的切线.(2)解:∵∠BAD =∠DBC ,∠C =∠C ,∴△ABC ∽△BDC ,∴BC CD =CABC,即BC 2=AC·CD =(AD +CD)·CD =10, ∴BC =10.20(第11题)11.(1)证明:如图,连接OC.∵PE 与⊙O 相切,∴OC ⊥PE.∴∠OCP =90°.∵AE ⊥PE ,∴∠AEP =90°=∠OCP.∴OC ∥AE.∴∠CAD =∠OCA.∵OA =OC ,∴∠OCA =∠OAC.∴∠CAD =∠OAC.∴AC 平分∠BAD.(2)解:PB ,AB 之间的数量关系为AB =3PB.理由如下:∵AB 为⊙O 的直径,∴∠ACB =90°.∴∠BAC +∠ABC =90°.∵OB =OC ,∴∠OCB =∠ABC.∵∠PCB +∠OCB =90°,∴∠PCB =∠PAC.∵∠P =∠P.∴△PCA ∽△PBC.∴PCPB =PA PC.∴PC 2=PB·PA.∵PB PC =12,∴PC =2PB.∴PA =4PB.∴AB =3PB. (3)解:过点O 作OH ⊥AD 于点H ,如图,则AH =12AD =32,四边形OCEH 是矩形.∴OC =HE.∴AE =32+OC.∵OC ∥AE ,∴△PCO ∽△PEA.∴OC AE =POPA .∵AB =3PB ,AB =2OB ,∴OB =32PB.∴OC 32+OC =PB +OB PB +AB =PB +32PBPB +3PB=58,∴OC=52,∴AB =5.∵△PBC ∽△PCA ,∴PB PC =BC AC =12,∴AC =2BC. 在Rt △ABC 中,AC 2+BC 2=AB 2,∴(2BC)2+BC 2=52,∴BC =5,∴AC =2 5. ∴S △ABC =12AC·BC =5,即△ABC 的面积为5.。

九年级数学下27.1图形的相似课时练习(新人教版含答案)

九年级数学下27.1图形的相似课时练习(新人教版含答案)

九年级数学下27.1图形的相似课时练习(新人教版含答案)人教版数学九年级下册27.1图形的相似课时练习一、单选题(共15题) 1.已知2x=5y(y≠0),则下列比例式成立的是() A. B.C. D. 答案:B 知识点:比例的性质解析:解答:∵2x=5y,∴ 分析: 本题须根据比例的基本性质对每一项进行分析即可得出正确结论. 2. 若3a=2b,则的值为() A. B. C. D. 答案:A 知识点: 比例的性质解析:解答: 由3a=2b,得出于是可设a=2k,则b=3k,代入 = = 故选:A.分析: 本题考查了比例的基本性质,是基础题 3. 不为0的四个实数a、b,c、d满足ab=cd,改写成比例式错误的是() A. B. C. D.答案:D 知识点: 比例的性质.解析:解答: A、故A正确 B、故B正确 C、故C正确 D、故D错误故选:D.分析: 本题考查了比例的性质,利用了比例的性质:分子分母交叉相乘,乘积相等. 4. 如果a=3,b=2,且b是a和c的比例中项,那么c=() A. B. C. D.答案:C 知识点: 比例线段解析:解答: 根据题意,可知 a:b=b:c, b2=ac,当a=3,b=2时 22=3c, 3c=4, c= 故选:C.分析: 比例中项,也叫“等比中项”,即如果a、b、c三个量成连比例,即a:b=b:c,则b叫做a和c的比例中项.据此代数计算得解. 5. 比例尺为1:1000的图纸上某区域面积400cm2,则实际面积为() A.4×105m2 B.4×104 m2 C.1.6×105 m2D.2×104 m2 答案:B 知识点: 比例线段解析:解答: 设实际面积为xcm2,则400:x=(1:1000)2,解得x=4×108.4×108cm2=4×104m2.故选B.分析: 根据面积比是比例尺的平方比,列比例式求得该区域的实际面积. 6、如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A. B.1: C. D.答案:D 知识点: 比例线段.解析:解答: 连接AC,设AO=x,则BO=x,CO=x,故AC=AP= x,∴线段AP与AB的比是: x 故选:D.分析: 利用已知表示出AC的长,即可得出AP以及AB的长,即可得出答案. 7. 下列各组中得四条线段成比例的是() A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cm C.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm 答案:D 知识点: 比例线段.解析:解答:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意; B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意; C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意; D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.分析: 四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例. 8. 已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A. B. C. D.答案:A 知识点: 黄金分割.解析:解答: 根据黄金分割的定义,知AC:AB= 故选A.分析: 此题主要考查了黄金分割比的概念. 9. 若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为() A.0.191 B.0.382 C.0.5 D.0.618 答案:D 知识点: 黄金分割.解析:解答: 由于P为线段AB=1的黄金分割点,且PA>PB,则PA=0.618×1=0.618.故选D.分析: 根据黄金分割点的定义,知PA是较长线段;则PA=0.618AB,代入数据即可. 10. 主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20米,一个主持人现站在舞台AB的黄金分割点点C处,则下列结论一定正确的是()①AB:AC=AC:BC;②AC≈6.18米;③AC=10( )米;④BC=10(3− )米或10( −1)米. A.①②③④ B.①②③ C.①③ D.④ 答案:D 知识点: 黄金分割.解析:解答: AB的黄金分割点为点C处,若AC>BC,则AB:AC=AC:BC,所以①不一定正确;AC≈0.618AB≈12.36或AC≈20-12.36=7.64,所以②错误;若AC为较长线段时,AC= AB=10( -1),BC=10(3- );若BC为较长线段时,BC= AB=10( -1),AC=10(3- ),所以③不一定正确,④正确.故选D.分析: 根据黄金分割的定义和AC为较长线段或较短线段进行判断. 11. 等腰△ABC中,AB=AC,∠A=36°,D是AC上的一点,AD=BD,则以下结论中正确的有()①△BCD是等腰三角形;②点D是线段AC的黄金分割点;③△BCD∽△ABC;④BD平分∠ABC. A.1个 B.2个 C.3个 D.4个答案:D 知识点: 黄金分割;等腰三角形的性质;相似三角形的判定与性质.解析:解答: ∵AB=AC,∴∠ABC=∠C= (180°-∠A)= (180°-36°)=72°,∵AD=BD,∴∠DBA=∠A=36°,∴∠BDC=2∠A=72°,∴∠BDC=∠C,∴△BC D为等腰三角形,所以①正确;∴∠DBC=∠ABC-∠ABD=36°,∴∠ABD=∠DBC,∴BD平分∠ABC,所以④正确;∵∠DBC=∠A,∠BCD=∠ACB,∴△BCD∽△ABC,所以③正确;∴BD:AC=CD:BD,而AD=BD,∴AD:AC=CD:AD,∴点D是线段AC的黄金分割点,所以②正确.分析: 先根据等腰三角形的性质和三角形内角和定理计算出∠ABC=∠C= (180°-∠A)=72°,再计算出∠BDC=72°,∠DBC=36°,则可对①③④进行判断;利用△BCD∽△ABC得BD:AC=CD:BD,而AD=BD,则AD:AC=CD:AD,于是根据黄金分割的定义可对②进行判断. 12. 用一个2倍放大镜照一个△ABC,下面说法中错误的是() A.△ABC放大后,是原来的2倍 B.△ABC放大后,各边长是原来的2倍 C.△ABC放大后,周长是原来的2倍 D.△ABC放大后,面积是原来的4倍答案:A 知识点: 相似图形解析:解答: ∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍.故本题选A.分析: 用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变 13. 对一个图形进行放缩时,下列说法中正确的是() A.图形中线段的长度与角的大小都保持不变 B.图形中线段的长度与角的大小都会改变 C.图形中线段的长度保持不变、角的大小可以改变D.图形中线段的长度可以改变、角的大小保持不变答案:D 知识点: 相似图形解析:解答:根据相似多边形的性质:相似多边形的对应边成比例,对应角相等,∴对一个图形进行收缩时,图形中线段的长度改变,角的大小不变,故选D.分析: 根据相似图形的性质得出相似图形的对应边成比例,对应角相等,即可得出答案. 14. 下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似. A.1 个 B.2个 C.3个 D.4个答案: C 知识点: 相似图形;命题与定理.解析:解答:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.分析: 利用相似图形的性质分别判断得出即可. 15. 下列说法不一定正确的是() A.所有的等边三角形都相似 B.所有的等腰直角三角形都相似 C.所有的菱形都相似 D.所有的正方形都相似答案:C 知识点: 相似图形解析:解答:A、所有的等边三角形都相似,正确; B、所有的等腰直角三角形都相似,正确; C、所有的菱形不一定都相似,故错误; D、所有的正方形都相似,正确.故选C.分析: 利用“对应角相等,对应边的比也相等的多边形相似”进行判定即可.二、填空题(共5题) 1. 给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有( )(填序号).答案:①②④⑤ 知识点: 相似图形解析:解答: 下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有①②④⑤.故答案为:①②④⑤.分析: 根据相似图形的定义,形状相同的图形是相似图形.具体的说就是对应的角相等,对应边的比相等,对每个命题进行判断. 2. 在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是()答案: 1:3 知识点: 相似图形.解析:解答: 由题意可知,相似多边形的边长之比=相似比=2:6=1:3,故答案为:1:3 分析:本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比. 3. 若用一个2倍放大镜去看△ABC,则∠A的大小();面积大小为()答案: 不变,4倍知识点: 相似图形.解析:解答: ∵放大后的三角形与原三角形相似∴∠A的度数不变∵放大前后,两相似三角形的相似比为1:2 ∴它们的面积比为1:4 即放大后面积为原来的4倍.分析: 本题考查相似三角形的性质:相似三角形的对应角相等,面积比等于相似比的平方. 4、如果图形甲与图形乙相似,图形乙与图形丙相似,那么图形甲与图形丙()答案:相似知识点: 相似图形.解析:解答:∵图形甲与图形乙相似,图形乙与图形丙相似,∴图形甲与图形丙相似.故答案为:相似分析: 本题考查了相似图形,熟记相似图形具有传递性是解题的关键. 5. 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=()答案:2 知识点: 比例线段解析:解答:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.分析: 根据比例中项的定义可得b2=ac,从而易求b.三、解答题(共5题) 1. 如图,在△ABC中,若DE∥BC,,DE=4cm,求BC的长答案:12cm 知识点: 平行线分线段成比例解析:解答: 解:∵DE∥BC,∴ ,又∵ ∴,∴ ∴BC=12cm.故答案为:12cm.分析:本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键. 2. 如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD=6,DF=3,BC=5,求BE的长答案:7.5 知识点: 平行线分线段成比例.解析:解答:∵AB∥CD∥EF,∴ ,即,解得CE=2.5,∴BE=BC+CE=5+2.5=7.5,故答案为:7.5.分析:本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键. 3. 如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果,求m与n满足的关系式(用含n的代数式表示m).答案:m=2n+1 知识点: 平行线分线段成比例;旋转的性质.解析:解答:作DH⊥AC于H,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵ ,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC,∴ ,即m= 故答案为:2n+1.分析: 本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质. 4. 有一块三角形的草地,它的一条边长为25m.在图纸上,这条边的长为5cm,其他两条边的长都为4cm,求其他两边的实际长度答案:都是20m.知识点: 比例线段解析:解答:设其他两边的实际长度分别为xm、ym,由题意得, x 解得x=y=20.即其他两边的实际长度都是20m.分析: 设其他两边的实际长度分别为xm、ym,然后根据相似三角形对应边成比例列式求解即可. 5. 如图,直线y=3x+3与x轴交于点A,与y轴交于点B.过B点作直线BP与x轴正半轴交于点P,取线段OA、OB、OP,当其中一条线段的长是其他两条线段长度的比例中项时,求P点的坐标答案:P(,9),(9,0),(,0)知识点: 比例线段;一次函数图象上点的坐标特征.解析:解答:∵直线y=3x+3与x轴交于点A,与y轴交于点B,∴点A的坐标是(-1,0),点B的坐标是(0,3),∴|OA|=1,OB=3,∵点P在x轴正半轴上,∴设点P的坐标是(x,0),∵当线段OA线段的长是其他两条线段长度的比例中项时,∴OA2=OB•OP,∴1=3•x,解得x= ,∴点P的坐标是(,0),当线段OB线段的长是其他两条线段长度的比例中项时,∴OB2=OA•OP,∴9=1•x,解得x=9,∴点P的坐标是(9,0),当线段OP线段的长是其他两条线段长度的比例中项时,∴OP2=OB•OA,∴x2=3×1,解得x= ∴点P的坐标是(,0),综上所述,点P的坐标是(,0),(9,0),(,0).故答案为:(,0),(9,0),(,0).分析: 根据|题意得出OA|=1,OB=3,再根据点P在x轴正半轴上,设出点P的坐标是(x,0),再分三种情况讨论当线段OA线段的长是其他两条线段长度的比例中项时,当线段OB线段的长是其他两条线段长度的比例中项时,当线段OP线段的长是其他两条线段长度的比例中项时,分别求出x的值,即可得出答案.。

人教版九年级数学下册 27.1 图形的相似 同步测试题(有答案)

人教版九年级数学下册 27.1  图形的相似 同步测试题(有答案)

27.1 图形的相似同步测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法正确的个数有()①同一底片印出来的不同尺寸的照片是相似的②放电影时胶片上的图象和它映射到屏幕上的图象是相似的③放大镜放大后的图形与原来的图形是相似的④水平观看装在带有水的透明玻璃杯中的金鱼所组成的像与金鱼本身的像是相似的A.1个B.2个C.3个D.4个2. 下列各组线段中,四条线段能成比例的是()A.3 cm,5 cm,6 cm,9 cmB.3 cm,6 cm,9 cm,18 cmC.3 cm,6 cm,7 cm,9 cmD.3 cm,6 cm,8 cm,9 cm3. 如果把三角形的三边按一定的比例扩大,则下列说法正确的是()A.三角形的形状不变,三边的比变大B.三角形的形状变,三边的比变大C.三角形的形状变,三边的比不变D.三角形的形状不变,三边的比不变4. 如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.2 3B.12C.√5−12D.3−√525. 三条线段满足ab =bc,若a=2,c=8,则b的长度为()A.±4B.4C.2D.66. 下列说法错误的是()A.两个等腰直角三角形一定相似B.所有的圆都相似C.所有的菱形都相似D.国旗上的大五角星与小五角星是相似的7. 如果a+b−cc =a−b+cb=−a+b+ca=k成立,那么k的值为()A.1B.−2C.−2或1D.以上都不对8. 如图,已知线段AB=10,点P是线段AB的黄金分割点,那么线段PB的长约为()A.6.18B.0.382C.0.618D.3.829. 若x:y=6:5,则下列等式中不正确的是()A.x+yy =115B.x−yy=15C.xx−y=6 D.yy−x=510. 如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为()A.3B.4C.5D.6二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 已知x−5yy−2x =112,则xy=________.12. 已知点P是线段MN黄金分割点,PM是被分线段中较长部分,PM=√5−12,则线段PN=________.13. 用同一张底片洗出的两张照片,一张为2寸,另一张为6寸,则这两张照片上的图象的相似比是________.14. 在1:500000的地图上,A、B两地的距离是64 cm,则这两地间的实际距离是________km.15. 线段AB=a,C点在AB的延长线上,B点是AC的黄金分割点,则BC=________a,AC=________a.16. 一个五边形的周长和面积分别为20cm,18cm2,另一个和它相似的五边形的周长是40cm,则另一个五边形的面积是________cm2.17. 研究表明:当人的下肢与身高之比成0.618时(含鞋跟的高),看起来最美.小明妈妈的身高为160cm,下肢为96cm,要使妈妈看起来最美,小明应建议妈妈的鞋跟高度约________cm (精确到0.1cm).18. 已知点C为线段AB的黄金分割点且AB=10,则AC≈________(精确到0.1).19. 在比例尺为1:38000的昆明交通图上,西昌立交桥的长约7cm,此立交桥的实际长度约为________m.20. 利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是________.三、解答题(本题共计6 小题,共计60分,)21. 已知a:b:c=2:3:7,且a+b+c=24,求a、b、c的值.22. (1)已知ab =35,求a+bb的值;(2)已知点P是线段AB的黄金分割点,PA>PB,AB=2,求PA、PB的长.23. 已知ab =bc=cd=da,求a+b+c+da+b+c−d的值.24. 如图,四边形ABCD和四边形EFGH相似,求∠α、∠β的大小和EH的长度.25. 如图,在矩形ABCD中,AD=8cm,E,F分别是AD,BC的中点,连接E,F、所得新矩形ABEF与原矩形ABCD相似,求EF的长.26. “黄金分割”在人类历史上有着重要的作用和影响,世界上许多著名的建筑和艺术品中都蕴涵着“黄金分割”.下面我们就用黄金分割来设计一把富有美感的纸扇:假设纸扇张开到最大时,扇形的面积与扇形所在圆的剩余部分的比值等于黄金比,请你来求一求纸扇张开的角度.(黄金比取0.6)参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:①同一底片印出来的不同尺寸的照片,形状相同,但大小不一定相同,符合相似性的定义,故正确;②放电影时胶片上的图象和它映射到屏幕上的图象,形状相同,但大小不一定相同,符合相似性的定义,故正确;③放大镜放大后的图形与原来的图形,形状相同,但大小不一定相同,符合相似性的定义,故正确;④水平观看装在带有水的透明玻璃杯中的金鱼所组成的像与金鱼本身的像,形状相同,但大小不一定相同,符合相似性的定义,故正确.故选D.2.【答案】B【解答】解:A,3×9≠5×6,故选项A不符合题意;B,3×18=6×9,故选项B符合题意;C,3×9≠6×7,故选项C不符合题意;D,3×9≠6×8,故选项D不符合题意.故选B.3.【答案】D【解答】解:根据相似三角形的性质可得;如果把三角形的三边按一定的比例扩大.则三角形的形状不变,三边比不变.故选D.4.【答案】C【解答】∵ C是线段AB的黄金分割点C,AC>CB,∵ AC=√5−12AB=√5−12,【答案】B【解答】解;∵ ab =bc,∵ b2=ac=2×8=16,∵ b>0,∵ b=4,故选:B.6.【答案】C【解答】解:A、两个等腰直角三角形,边的比一定相等,而对应角对应相等,是相似形,故正确;B、所有的圆,形状相同,但大小不一定相同,符合相似形的定义,故正确;C、所有的菱形,边的比一定相等,而对应角不一定对应相等,不一定相似,故错误;D、国旗上的大五角星与小五角星,形状相同,但大小不同,符合相似形的定义,故正确.故选C.7.【答案】C【解答】解:当a+b+c≠0时,根据比例的等比性质,得k=a+b+ca+b+c=1:当a+b+c=0时,即a+b=−c,则k=−2cc=−2,故选C.8.【答案】D【解答】解:由于P为线段AB=10的黄金分割点,且AP是较长线段;则PB=3−√52AB=3−√52×10≈3.82.故选D.9.【答案】【解答】解:∵ x:y=6:5,∵ 设x=6k,y=5k,A、x+yy =6k+5k5k=115,故本选项错误;B、x−yy =6k−5k5k=15,故本选项错误;C、xx−y =6k6k−5k=6,故本选项错误;D、yy−x =5k5k−6k=−5,故本选项正确.故选D.10.【答案】B【解答】解:∵ 这三个正方形的边都互相平行,∵ 它们均相似,∵ x6=69,解得x=4.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】78【解答】解:由比例的性质,得2(x−5y)=11(y−2x).化简得24x=21y.由等式的性质,得x y =2124=78,故答案为:78.12.【答案】3−√52【解答】解:∵ 点P 是线段MN 黄金分割点,∵ PM 2=MN ⋅PN , 即(√5−12)2=(√5−12+PN)PN ,解得PN =√5−12(舍去)或PN =3−√52. 故答案为3−√52.13.【答案】 1:3【解答】解:∵ 用同一张底片洗出的两张照片,一张为2寸,另一张为6寸, ∵ 这两张照片上的图象的相似比是:2:6=1:3.故答案为:1:3.14.【答案】320【解答】解:设A ,B 两地的实际距离为xkm ,则:1500000=64x ,解得x =32000000cm =320km ,∵ 两地间的实际距离是320km .15.【答案】√5−12,√5+12 【解答】解:∵ 线段AB =a ,C 点在AB 的延长线上,B 点是AC 的黄金分割点, ∵ BC AC =ABBC ,∵ BC =√5−12a , ∵ AC =√5+12a ;故答案为:√5−12,√5+12. 16.【答案】 72【解答】解:设另一个五边形的面积为x ,∵ 两个五边形相似,∵ x 18=(4020)2,解得x =72cm 2.故答案为:72.17.【答案】7.5【解答】解:设小明应建议妈妈的鞋跟高度约为xcm ,由题意得 96+x 160+x =0.618,解得x ≈7.5.答:小明应建议妈妈的鞋跟高度约为7.5cm . 故答案为7.5.18.【答案】6.2或3.8【解答】当AC >BC 时,AC =10×0.618=6.18≈6.2; 当AC >BC 时,AC =10−10×0.618≈3.8, 19.【答案】2660【解答】解:设此立交桥的实际长度约为xcm ,根据题意得:138000=7x ,解得:x =266000,∵ 266000cm =2660m ,∵ 此立交桥的实际长度约为2660m .故答案为:2660.20.【答案】1:4【解答】因为原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4,三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:设a=2t,b=3t,c=7t,代入a+b+c=24,得2t+3t+7t=24,那么12t=24,解得t=2,所以a=4,b=6,c=14.【解答】解:设a=2t,b=3t,c=7t,代入a+b+c=24,得2t+3t+7t=24,那么12t=24,解得t=2,所以a=4,b=6,c=14.22.【答案】解:(1)∵ ab =35,∵ 可设a=3k,则b=5k,∵ a+bb =3k+5k5k=85;(2)∵ 点P是线段AB的黄金分割点,PA>PB,AB=2,∵ PA=√5−12AB=√5−1,PB=3−√52AB=3−√5.【解答】解:(1)∵ ab =35,∵ 可设a=3k,则b=5k,∵ a+bb =3k+5k5k=85;(2)∵ 点P是线段AB的黄金分割点,PA>PB,AB=2,∵ PA=√5−12AB=√5−1,PB=3−√52AB=3−√5.23.【答案】解:设ab =bc=cd=da=x,分情况进行:当a+b+c+d≠0时,根据等比性质,得x=ab =bc=cd=da=a+b+c+da+b+c+d=1,∵ a=b=c=d,∵ a+b+c+da+b+c−d =4d2d=2;当a+b+c+d=0时,则a+b+c+da+b+c−d=0.故a+b+c+da+b+c−d的值为2或0.【解答】解:设ab =bc=cd=da=x,分情况进行:当a+b+c+d≠0时,根据等比性质,得x=ab =bc=cd=da=a+b+c+da+b+c+d=1,∵ a=b=c=d,∵ a+b+c+da+b+c−d =4d2d=2;当a+b+c+d=0时,则a+b+c+da+b+c−d=0.故a+b+c+da+b+c−d的值为2或0.24.【答案】∠α=83∘,∠β=81∘,EH=28cm.【解答】解:∵ 四边形ABCD和四边形EFGH相似,∵ ∠α=∠B=83∘,∠D=∠H=118∘,∠β=360∘−(83∘+78∘+118∘)=81∘,EH:AD= HG:DC,∵ EH21=2418,∵ EH=28(cm).25.【答案】解:∵ E是AD的中点,AD=8cm,∵ AE=4cm,∵ 矩形ABEF与矩形ABCD相似,∵ AEAB =ABAD,∵ AB=4√2cm,∵ EF=AB=4√2cm.【解答】解:∵ E是AD的中点,AD=8cm,∵ AE=4cm,∵ 矩形ABEF与矩形ABCD相似,∵ AEAB =ABAD,∵ AB=4√2cm,∵ EF=AB=4√2cm.26.【答案】解:设扇形的半径为R,圆心角为n,则剩余扇形的圆心角为(360∘−n),由题意得,nπR 2360:(360−n)πR2360=0.6,即n:(360∘−n)=0.6,解得:n=135,故纸扇张开的角度为135∘.【解答】解:设扇形的半径为R,圆心角为n,则剩余扇形的圆心角为(360∘−n),由题意得,nπR 2360:(360−n)πR2360=0.6,即n:(360∘−n)=0.6,解得:n=135,故纸扇张开的角度为135∘.。

人教版九年级数学下册27.1 图形的相似 同步练习 含答案

人教版九年级数学下册27.1 图形的相似 同步练习  含答案

九年级数学(下)自主学习达标检测[图形的相似、相似三角形](时间60分钟 满分100分)一、选择题(每题4分,共32分)1.下列各种图形相似的是 ( )A .(1)、(2)B .(3)、(4)C .(1)、(3)D .(1)、(4)2.下列图形相似的是 ( )(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与相机拍摄的长城照片. A .4组 B .3组 C .2组 D .1组3.下列说法不一定正确的是 ( )A .所有的等边三角形都相似B .有一个角是100°的等腰三角形相似C .所有的正方形都相似D .所有的矩形都相似4.一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为 ( ) A .7.5米 B .8米 C .14.7米 D .15.75米5.两个相似三角形的周长比为4︰9,则面积比为 ( ) A .4︰9 B .8︰18 C .16︰81 D .2︰36.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( ) A .小明的影子比小强的影子长 B .小明的影子比小强的影子短 C .小明的影子和小强的一样长 D .谁的影子长不确定 7.如图,能使△ACD ∽△BCA 全等的条件是( ) A .BC AB CD AC =B .CB CD AC •=2C .CDBD AC AB =D .BD AD CD •=28.如图所示的测量旗杆的方法,已知AB 是标杆,BC 表示AB 在太阳光下的影子,•叙述错误的是( )A .可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B .只需测量出标杆和旗杆的影长就可计算出旗杆的高C .可以利用△ABC ∽△EDB ,来计算旗杆的高D .需要测量出AB 、BC 和DB 的长,才能计算出旗杆 的高二、填空题(每题4分,共32分)9. 下列情形:①用眼睛看月亮和用望远镜看月亮,看到的图象是相似的图形;②用彩笔在黑板上写上三个大字1、2、3,它们是相似图形;③用粉笔在黑板上写上“天”和用毛笔在纸上写上“天”,这两个字是相似图形;以上说法你认为正确的是 ,错误的是 .(填序号)(1)(2)(3)(4)BCDA第7题EDC BA第8题10. 若a , x ,b , y 成比例线段,则比例式为 ;若a =1,x =2,b =2.5,则y = .11.三角形三边之比为3︰5︰7,与它相似的三角形最长边为21cm ,那么与它相似的三角形周长为 .12.如图,∠ADC =∠ACB =90°,∠ACD =∠B ,AC =5,AB =6,则AD =____ __. 13.直线CD ∥EF ,若OC =3,CE =4,则ODOF的值是 . 14.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.15.△ABC 的三边长为2,10,2,△A'B'C '的两边为1和5,若△ABC ∽△A'B'C',则△A'B'C'的笫三边长为________.16.两个相似三角形的面积之比为1∶5,小三角形的周长为4,则另一个三角形的周长为___ __.三、解答题(共36分)17.在如图所附的格点图中画出两个相似的三角形.18.两个相似三角形的一对对应边的长分别是35cm 和14cm ,它们的周长相差60cm ,求这两个三角形的周长.第12题BDA 第13题O FECD第14题BCD AE F19.如图,△A BC 中,EF ∥BC ,FD ∥AB ,AE =18,BE =12,CD =14,求线段EF的长.20.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。

人教版九年级数学下册第27章相似专项训练2(含答案)

人教版九年级数学下册第27章相似专项训练2(含答案)

人教版九年级数学下册第27章相似专项训练2(含答案)专训1巧用位似解三角形中的内接多边形问题名师点金:位似图形是特殊位置的相似图形,它具有相似图形的所有性质.位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.(第1题)三角形的内接矩形问题2.如图,求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE EF=1 2.(第2题)三角形的内接正方形问题(方程思想)3.如图,△ABC是一块锐角三角形余料,边BC=120 mm,高AD=80 mm,要把它加工成正方形零件,使正方形的一边QM在BC上,其余两个顶点P,N 分别在AB,AC上,则这个正方形零件的边长是多少?(第3题)4.(1)如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:DPBQ=PEQC.(2)在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF,分别交DE于M,N两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN2=DM·EN.(第4题)专训2图形的相似中五种热门考点名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而针对成比例线段﹨相似三角形的判定与性质﹨位似图形等都是命题的热点.成比例线段及性质1.下列各组长度的线段,成比例线段的是()A.2 cm,4 cm,4 cm,8 cmB.2 cm,4 cm,6 cm,8 cmC.1 cm,2 cm,3 cm,4 cmD.2.1 cm,3.1 cm,4.3 cm,5.2 cm2.若a2=b3=c4=d7≠0,则a+b+c+dc=________.3.如图,乐器上的一根弦AB=80 cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,则支撑点C到端点A的距离约为________(5≈2.236,结果精确到0.01).(第3题) 平行线分线段成比例4.如图,若AB∥CD∥EF,则下列结论中,与ADAF相等的是()A.ABEF B.CDEF C.BOOE D.BCBE(第4题)(第5题)5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,以AC为边向三角形外作正方形ACDE,连接BE交AC于F,若BF= 3 cm,则EF=________.6.如图,在△ABC中,AMMD=4,BDDC=23,求AEEC的值.(第6题)相似三角形的性质与判定7.如图,在平行四边形ABCD中,点E在AD上,且AE ED=31,CE的延长线与BA的延长线交于点F,则S△AEF S四边形ABCE为()A.3 4 B.4 3 C.79 D.97(第7题)(第9题)8.若两个相似多边形的面积之比为14,周长之差为6,则这两个相似多边形的周长分别是________.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是________.10.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC 的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB·FC;(2)若FB=5,BC=4,求FD的长.(第10题)11.如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC 于点E,点F是BC的延长线上一点,且CE=CF,BE的延长线交DF于点M.(1)求证:BM⊥DF;(2)若正方形ABCD的边长为2,求ME·MB.(第11题)相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立(BN)时的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD(结果精确到0.1 m).(第12题)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA =CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm ﹨8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等忽略不计)(第13题)位似(第14题)14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形AB′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC 的顶点均是小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为12;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).(第15题)答案专训11.证明:∵E′C′∥EC,∴∠C′E′O=∠CEO,CEC′E′=OEOE′.又∵E′D′∥ED,∴∠D′E′O=∠DEO,DED′E′=OEOE′.∴∠CED=∠C′E′D′,CEC′E′=DED′E′.∴△CED∽△C′E′D′.又∵△CDE是等边三角形,∴△C′D′E′是等边三角形.(第2题)2.解:如图,在AB边上任取一点D′,过点D′作D′E′⊥BC于点E′,在BC 上截取E′F′,使E′F′=2D′E′,过点F′作F′G′⊥BC,过点D′作D′G′∥BC交F′G′于点G′,作射线BG′交AC于点G,过点G作GF∥G′F′,DG∥D′G′,GF交BC 于点F,DG交AB于点D,过点D作DE∥D′E′交BC于点E,则四边形DEFG 为△ABC的内接矩形,且DE EF=1 2.3.解:设符合要求的正方形PQMN的边PN与△ABC的高AD相交于点E.设正方形PQMN的边长为x mm,∵PN∥BC,∴△APN∽△ABC.∵△APN与△ABC的对应点都经过点A,∴△APN与△ABC是以点A为位似中心的位似图形.∴AEAD=PNBC.∴80-x80=x120.解得x=48.即这个正方形零件的边长是48 mm.点拨:利用位似图形的性质“位似图形上任意一对对应点到位似中心的距离之比等于相似比”,构造方程,利用方程思想解决问题. 4.(1)证明:在△ABQ 和△ADP 中,∵DP ∥BQ ,∴△ADP ∽△ABQ ,∴DP BQ=AP AQ .同理△ACQ ∽△AEP ,∴PE QC =AP AQ .∴DP BQ =PE QC .(2)①解:MN =29. ②证明:∵∠B +∠C =90°,∠CEF +∠C =90°.∴∠B =∠CEF.又∵∠BGD=∠EFC =90°,∴△BGD ∽△EFC.∴DG CF =BG EF . ∴DG·EF =CF·BG.又∵DG =GF =EF ,∴GF 2=CF·BG.由(1)得DM BG =MN GF =EN CF .∴⎝ ⎛⎭⎪⎫MN GF 2= DM BG ·EN CF ,即MN2FG2=DM·EN BG·CF ,∴MN 2=DM·EN.专训21.A 2.4 3.49.44 cm 4.D 5.3 cm(第6题)6.解:过D 点作DN ∥AC ,交BE 于N ,如图.易知△DMN ∽△AME ,△BDN ∽△BCE.∵BD DC =23,∴BD BC =25.∴DN CE =BD BC =25.∵AM MD =4,∴AE DN =AM MD =4.∴AE EC =DN EC ·AE DN =25×4=85.7.D 8.6,129.4或247 点拨:∵△ABC 沿EF 折叠,B 和B′重合,∴BF =B′F.设BF =x ,则CF =8-x ,当△B′FC ∽△ABC 时,B′F AB =CF BC .∵AB =6,BC =8,∴x 6=8-x 8,解得:x =247,即BF =247;当△FB′C ∽△ABC 时,FB′AB =FC AC ,则x 6=8-x 6,解得:x =4.故BF =4或247.10.(1)证明:∵E 是Rt △ACD 的斜边的中点,∴DE =EA.∴∠A =∠1.∵∠1=∠2,∴∠2=∠A.∵∠FDC =∠CDB +∠2=90°+∠2,∠FBD =∠ACB +∠A=90°+∠A ,∴∠FDC =∠FBD.又∵∠F 是公共角,∴△FBD ∽△FDC.∴FB FD =FD FC.∴FD 2=FB·FC. (2)解:∵FB =5,BC =4,∴FC =9.∵FD 2=FB·FC ,∴FD 2=45.∴FD =3 5.11.(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90°.又∵CE =CF ,∴△BCE ≌△DCF.∴∠CBE =∠CDF.∴∠CBE +∠BEC =∠CDF +∠DEM =90°.∴BM ⊥DF.(2)解:易知∠CBD =45°.∵BE 平分∠DBC ,∴∠DBM =∠FBM =22.5°.由(1)知∠BMD =∠BMF =90°,∴∠BDM =∠F =67.5°.∴BD =BF.∴DM =FM =12DF.∵正方形ABCD 的边长为2,∴BD =BF =22,∴CF =22-2.在Rt △DCF 中,DF 2=DC 2+CF 2=4+(22-2)2=16-8 2.∴DM 2=⎝ ⎛⎭⎪⎫DF 22=4-2 2. ∵∠CDF =∠DBM ,∠DME =∠BMD ,∴△DME ∽△BMD.∴DM MB =ME DM ,即DM 2=ME·MB.∴ME·MB =4-2 2.12.解:设CD =x m .∵AM ⊥EC ,BN ⊥EC ,CD ⊥EC ,∴MA ∥CD ∥BN.又MA =EA ,∴EC =CD =x m .易知△ABN ∽△ACD ,∴BN CD =AB AC ,即1.75x =1.25x -1.75,解得x =6.125≈6.1,即路灯的高度CD 约为6.1 m . 13.解:如图,过点C 作CM ∥AB ,分别交EF ,AD 于点N ,M ,作CP ⊥AD ,分别交EF ,AD 于点Q ,P.由题意得四边形ABCM 是平行四边形,∴EN =AM =BC =20 cm .∴MD =AD -AM =50-20=30(cm ).由题意知CP =40 cm ,PQ =8 cm .∴CQ =32 cm .∵EF ∥AD ,∴△CNF ∽△CMD.∴NF MD =CQ CP ,即NF 30=3240,解得NF=24 cm.∴EF=EN+NF=20+24=44(cm).即横梁EF的长应为44 cm.(第13题)(第15题)14.(2,1)或(0,-1)15.解:(1)△A′B′C′如图所示.(2)如图,四边形AA′C′C的周长为AA′+A′C′+CC′+AC=2+22+2+42=4+6 2.。

人教版初中数学九年级下册《27.1 图形的相似》同步练习卷(含答案解析

人教版初中数学九年级下册《27.1 图形的相似》同步练习卷(含答案解析

人教新版九年级下学期《27.1 图形的相似》同步练习卷一.选择题(共15小题)1.若,则的值为()A.1B.C.D.2.若=,则的值为()A.5B.C.3D.3.若,则=()A.B.C.D.4.已知,则的值是()A.B.C.D.5.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm6.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b7.若==2(b+d≠0),则的值为()A.1B.2C.D.48.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变9.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A.=B.=C.=D.=10.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.11.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.12.如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A.:2B.1:C.:D.:213.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.114.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.15.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.5二.填空题(共8小题)16.如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.18.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.19.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.20.如图,在△ABC中,点D为AC上一点,且,过点D作DE∥BC交AB 于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=.21.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,=,DE=6,则EF=.22.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为.23.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC= cm.三.解答题(共1小题)24.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.人教新版九年级下学期《27.1 图形的相似》同步练习卷参考答案与试题解析一.选择题(共15小题)1.若,则的值为()A.1B.C.D.【分析】根据比例式,设x=4k,y=3k,再代入化简即可.【解答】解:∵,∴设x=4k,y=3k,∴==,故选:C.【点评】本题考查了比例线段,掌握比例的性质是解题的关键.2.若=,则的值为()A.5B.C.3D.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得4b=a﹣b.,解得a=5b,==5,故选:A.【点评】本题考查了比例的性质,利用比例的性质得出b表示a是解题关键.3.若,则=()A.B.C.D.【分析】设a=2k,进而用k表示出b的值,代入求解即可.【解答】解:设a=2k,则b=9k.==,故选:A.【点评】考查比例性质的计算;得到用k表示的a,b的值是解决本题的突破点.4.已知,则的值是()A.B.C.D.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.【点评】本题考查了比例的性质,利用等式的性质得出a=b是解题关键.5.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.6.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.7.若==2(b+d≠0),则的值为()A.1B.2C.D.4【分析】利用等比的性质即可解决问题;【解答】解:∵若==2(b+d≠0),∴=2(等比性质),故选:B.【点评】本题考查比例线段、等比的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选:D.【点评】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.9.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:∵AB∥CD∥EF,∴=,A错误;=,B错误;=,∴=,C正确;=,D错误,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.10.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.【点评】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.11.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.【点评】本题主要考查了平行线分线段成比例定理、角平分线的性质;熟练掌握平行线分线段成比例定理和角平分线的性质是解决问题的关键.12.如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A.:2B.1:C.:D.:2【分析】利用已知表示出AC的长,即可得出AP以及AB的长,即可得出答案.【解答】解:连接AC,设AO=x,则BO=x,CO=x,故AC=AP=x,∴线段AP与AB的比是:x:2x=:2.故选:D.【点评】此题主要考查了比例线段,垂直平分线的性质以及勾股定理等知识,根据已知用未知数表示出各线段长是解题关键.13.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选:B.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.14.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.【分析】先作出作BF⊥l3,AE⊥l3,再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3,求出DG,即可.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选:A.【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分线段成比例定理,勾股定理,解本题的关键是构造全等三角形.15.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.5【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:B.【点评】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.二.填空题(共8小题)16.如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=4.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵AB∥CD,∴==,即=,解得,AO=4,故答案为:4.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为6.【分析】由a∥b∥c,可得=,由此即可解决问题.【解答】解:∵a∥b∥c,∴=,∴=,∴EF=6,故答案为6.【点评】本题考查平行线分线段成比例定理,解题的关键是正确应用平行线分线段成比例定理,属于中考常考题型.18.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.19.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.20.如图,在△ABC中,点D为AC上一点,且,过点D作DE∥BC交AB 于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=.【分析】由DE与BC平行,由平行得比例求出AE的长,再由DF与CE平行,由平行得比例求出EF的长即可.【解答】解:∵DE∥BC,∴=,∵=,∴=,即=,∵AB=15,∴AE=10,∵DF∥CE,∴=,即=,解得:AF=,则EF=AE﹣AF=10﹣=,故答案为:【点评】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.21.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,=,DE=6,则EF=9.【分析】根据平行线分线段成比例定理得到=,即=,然后根据比例性质求EF.【解答】解:∵AD∥BE∥CF,∴=,即=,∴EF=9.故答案为9.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.22.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为.【分析】根据平行线分线段成比例定理,由AB∥GH,得出=,由GH∥CD,得出=,将两个式子相加,即可求出GH的长.【解答】解:∵AB∥GH,∴=,即=①,∵GH∥CD,∴=,即=②,①+②,得+=+==1,∴+=1,解得GH=.故答案为.【点评】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中.23.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=12 cm.【分析】过点A作AE⊥CE于点E,交BD于点D,根据平行线分线段成比例可得,代入计算即可解答.【解答】解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,即,∴BC=12cm.故答案为:12.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.三.解答题(共1小题)24.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.【分析】(1)根据等腰三角形两底角相等求出∠ACB=72°,再根据角平分线的定义求出∠BCE=36°,从而得到∠BCE=∠A,然后判定△ABC和△CBE相似,根据相似三角形对应边成比例列出比例式整理,并根据黄金分割点的定义即可得证;(2)根据等角对等边的性质可得AE=CE=BC,再根据黄金分割求解即可.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠ACB=(180°﹣36°)=72°,∵CE平分∠ACB,∴∠BCE=∠ACB=×72°=36°,∴∠BCE=∠A=36°,∴AE=BC,又∵∠B=∠B,∴△ABC∽△CBE,∴=,∴BC2=AB•BE,即AE2=AB•BE,∴E为线段AB的黄金分割点;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=180°﹣72°﹣36°=72°,∴BC=CE,由(1)已证AE=CE,∴AE=CE=BC,∴BC=•AB=×4=2﹣2.【点评】本题考查了黄金分割点的定义,相似三角形的判定与性质,理解黄金分割点的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比是解题的关键.。

九年级数学下册 27.1 图形的相似同步测试 (新版)新人教版 (含答案)

九年级数学下册 27.1 图形的相似同步测试 (新版)新人教版  (含答案)

相似27.1__图形的相似__第1课时相似图形[见B本P68]1.在下列四组图形中,相似的有( D )图27-1-1A.1组B.2组C.3组 D.4组2.下列四组图形中,一定相似的是( D )A.正方形与矩形 B.正方形与菱形C.菱形与菱形 D.正五边形与正五边形3.如图27-1-2所示,是大众汽车的标志图案,与它相似的是( B )图27-1-24.下列哪组图形是相似图形( C )【解析】要找出图中相似的图形,就是要通过观察、分析,进行比较,判断同一组中的两个图形的形状是否相同.5.在实际生活中,我们常常看到许多相似的图形,请找出下列图形中的相似图形.图27-1-3解:图(a)与图(f),图(b)与图(d),图(c)与图(h),图(e)与图(i)分别是相似图形.6.如图27-1-4,相似的正方形共有__5__个,相似的三角形共有__16__个.图27-1-4【解析】图中所有正方形都是相似的图形,相邻的两个正方形分割成4个等腰直角三角形,都是相似图形,共有4×4=16个相似的三角形.7.如图27-1-5,在给出的方格内通过放大或缩小画出已给图形的相似图形.图27-1-5解:如图所示:第2课时 相似多边形 [见A 本P70]1.下列各组线段(单位:cm)中,成比例线段的是( B )A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,3【解析】 因为12=24,所以1,2,2,4是成比例线段. 2.若a -b b =23,则a b=( D ) A.13 B.23C.43D.53【解析】 ∵a -b b =23,∴a -b b +1=23+1,∴a b =53. 3.已知b a =513,则a -b a +b的值是( D ) A.23 B.32C.94D.494.如图27-1-6所示的两个四边形相似,则角α的度数是( A )图27-1-6A .87°B .60°C .75°D .120° 【解析】 相似多边形对应角相等,故α=360°-60°-75°-138°=87°,选A.5.若△ABC 与△A 1B 1C 1的相似比为2∶3,△A 1B 1C 1与△A 2B 2C 2的相似比为2∶3,那么△ABC 与△A 2B 2C 2的相似比是__4∶9__.【解析】 依题意,有AB A 1B 1=23,A 1B 1A 2B 2=23,所以AB A 2B 2=AB A 1B 1·A 1B 1A 2B 2=49. 6.如图27-1-7所示的相似四边形中,求未知边x ,y 的长度和角α的大小.图27-1-7【解析】 本题直接运用相似多边形的性质:对应边成比例,对应角相等来求解. 解:∵两个四边形相似,它们的对应边成比例,对应角相等,∴184=y 6=x 7,解得x =31.5,y =27. α=360°-(77°+83°+117°)=83°.7.要做甲、乙两个相似的三角形框架,已知甲三角形框架的三边分别为50 cm ,60 cm ,80 cm ,乙三角形框架的一边长为20 cm ,还需要多少材料可以制成乙三角形框架( D )A .56 cm B.1303cm C .27.5 cm D .以上情况都有可能【解析】 由于给出乙三角形框架的一边长为20 cm ,具体为哪一条边还未确定,因此应就这条边进行分类讨论.当20 cm 为乙框架的最短边时,设另两边的长为x cm ,y cm ,根据题意,得x 60=y 80=2050,∴x =24,y =32, ∴x +y =24+32=56(cm),同理可求出另两边的边长之和也可以为1303cm 或27.5 cm ,故应选D.8.已知a +b c =a +c b =b +c a=k ,则k 的值是__2或-1__. 【解析】 (1)a +b +c ≠0时,∵a +bc =a +c b =b +c a =k , ∴a +b +a +c +b +c a +b +c=k , ∴k =2.(2)a +b +c =0时,a +b =-c ,∴k =-1.故答案为2或-1.9. 已知矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD上的F 点.若四边形EFDC 与矩形ABCD 相似,则AD =2.图27-1-8【解析】 可设AD =x ,由四边形EFDC 与矩形ABCD 相似,根据相似多边形对应边的比相等列出比例式,求解即可.解:∵AB =1,设AD =x ,则FD =x -1,FE =1,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,1x -1=x 1, 解得x 1=5+12,x 2=1-52(不合题意,舍去), 经检验x 1=5+12是原方程的解. 故答案为5+12. 10.一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割比,则这个人身材好看,一个参加空姐选拔的选手的肚脐以上的高度为65 cm ,肚脐以下的高度为95 cm ,那么她应穿多高的鞋子才能好看?(精确到 1 cm ,参考数据:黄金分割比为5-12,5≈2.236)【解析】 利用黄金分割比求解.解:设她应穿x cm 高的鞋子,根据题意,得6595+x =5-12,解得x ≈10(cm). 答:她应穿约10 cm 高的鞋子才能好看.11.回答下列问题并说明理由:(1)在图27-1-9(a)中,停车牌标志内、外两个三角形是否相似?(2)在图27-1-9(b)中,相片框内、外两个矩形是否相似?图27-1-9【解析】 (1)停车牌的内、外两个三角形都是等边三角形,所以它们相似;(2)矩形中的四个角都为直角,所以两个矩形要相似,还需要对应边成比例.解:(1)停车牌的内、外两个三角形都为等边三角形,设边长分别为a 和b , 则a b =a b =a b ,即对应边成比例,它们的内角都为60°,则对应角相等,所以停车牌标志内、外两个三角形相似.(2)内、外两个矩形不相似,设外矩形长为a ,宽为b ,内外两个矩形中间的木条宽度为m , 则内矩形的长为a -2m ,宽为b -2m ,如果它们相似,则有a b =a -2m b -2m, 则根据比例性质有ab -2ma =ab -2mb ,则a =b ,而从图中可看出a ≠b ,则相片框内、外两个矩形不相似.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似多边形
1. 若线段c满足
a c
c b
=,且线段a=4 cm,b=9 cm,则线段c=()
A.6 cm B.7 cm
C.8 cm D.9 cm
2. 在下列四个命题中:①所有的等腰直角三角形都相似;②所有的等边三角形都相似;③
所有的正方形都相似;④所有的菱形都相似.其中真命题有()
A.4个B.3个
C.2个D.1个
3. 有一多边形草坪,在市政建设设计图纸上的周长为50 cm,其中一条边的长度为5 cm.经
测量,这条边的实际长度为15 m,则这块草坪的实际周长是()
A.100 m B.150 m
C.200 m D.250 m
4. 图中的两个四边形是相似图形,若∠N=125º,则∠M=__.
5.(2013枣庄)如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD= .
参考答案
1.A
2.B
3.B
4.125º
551
+
1。

相关文档
最新文档