1-3函数的应用单元测试卷(十五中)
宁波市十五中九年级数学下册第三单元《锐角三角函数》检测(包含答案解析)

一、选择题1.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 2.在正方形网格中,小正方形的边长均为1,∠ABC 如图放置,则sin ∠ABC 的值为( )A .52B .55C .33D .13.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 4.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B 25C 5D .125.如图,四边形 ABCD 中,BD 是对角线,AB=BC ,∠ABC=60°,CD=4,∠ADC=60°,则△BCD 的面积为( )A .43B .8C .23+4D .36 6.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B .32C .1D .37.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1-- 8.在ABC 中,(2sinA-1)2+1cos 2B -=0,则ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .无法确定 9.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .4310.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .4511.如图,△ABC 中,∠C =90°,BC =2AC ,则cos A =( )A .12B .52C .255D .5512.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1二、填空题13.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.14.如图,矩形ABCD 中,1AB =,3BC =,以B 为圆心,BD 为半径画弧,交BC 延长线于M 点,以D 为圆心,CD 为半径画弧,交AD 于点N ,则图中阴影部分的面积是________.15.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为______km .16.某人沿坡度是1:2的斜坡走了100米,则他上升的高度是_____米.17.已知ABC 中,16,3AB AC cosB ===,则边BC 的长度为____________. 18.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=__.19.如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,14tan ,23BO ACB OD ∠==,则ABDCBD S S =___.20.如图,已知平行四边形ABCO ,以点O 为原点,OC 所在的直线为x 轴,建立直角坐标系,AB 交y 轴于点D ,AD=4,OC=10,∠A=60°,线段EF 垂直平分OD ,点P 为线段EF 上的动点,PM ⊥x 轴于点M 点,点E 与E'关于x 轴对称,连接BP 、E'M ,则BP+PM+ME'的长度的最小值为______.三、解答题21.sin 30tan 452cos 45sin 60tan 60︒⋅︒+⋅︒+︒⋅︒22.先化简,再求值:2311422a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中10cos302tan 45a ︒=+︒. 23.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地.已知B 地位于A 地北偏东67︒方向,距离A 地390km ,C 地位于B 地南偏东30方向.若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数,参考数据:12sin 6713︒≈,5cos6713︒≈,12tan 675︒≈,3 1.73≈).24.解答下列各题:(1)计算:(1012sin 6032202032-⎛⎫︒+-+ ⎪⎝⎭. (2)解方程:21133x x x-=--. 25.计算 (1)计算:()1013.1484sin 453π-⎛⎫-+ ⎪⎝⎭(2)已知tan (α+15°3α的度数. 26.平面直角坐标系中,抛物线y =ax 2+bx +3交x 轴于A ,B 两点,点A ,B 的坐标分别为(﹣3,0),(1,0),与y 轴交于点C ,点D 为顶点.(1)求抛物线的解析式和tan ∠DAC ;(2)点E 是直线AC 下方的抛物线上一点,且S △ACE =2S △ACD ,求点E 的坐标;(3)如图2,若点P 是线段AC 上的一个动点,∠DPQ =∠DAC ,DP ⊥DQ ,则点P 在线段AC 上运动时,D 点不变,Q 点随之运动.求当点P 从点A 运动到点C 时,点Q 运动的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接AC ,过点A 作AM ⊥BC 于点M ,根据菱形的面积公式即可求出答案.【详解】连接AC ,过点A 作AM ⊥BC 于点M ,∵菱形的边长为2cm ,∴AB=BC=2cm ,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°3,∴此菱形的面积为:323 2cm ).故选:D .【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质. 2.B解析:B【分析】作AD⊥BC于D,由勾股定理得出BC=2231+=10,AB=2211+=2,由△ABC的面积求出AD=105,由三角函数定义即可得出答案.【详解】解:作AD⊥BC于D,如图所示:由勾股定理得:BC2231+10,AB2211+2,∵△ABC的面积=12BC×AD=12×3×1−12×1×1,∴1210×AD=12×3×1−12×1×1,解得:AD=105,∴sin∠ABC=ADAB10525;故选:B.【点睛】本题考查了解直角三角形、勾股定理以及三角函数定义;熟练掌握勾股定理和三角函数定义是解题的关键.3.C解析:C【分析】设PA=PB=PB′=x,在RT△PCB′中,根据sinαPCPB=',列出方程即可解决问题.【详解】解:设PA=PB=PB′=x,在RT△PCB′中,sinαPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4.D 解析:D【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC 2AB =2∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 5.A解析:A【分析】先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD , ∴tan 602MH MH DH ︒==, ∴23MH =, ∴△△1423432BDC CDM S S ==⨯⨯= 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 6.D解析:D【分析】先作OD ⊥BC 于D ,由于∠BAC =60°,根据圆周角定理可求∠BOC =120°,又OD ⊥BC ,根据垂径定理可知∠BOD =60°,BD =12BC ,在Rt △BOD 中,利用特殊三角函数值易求BD ,进而可求BC .【详解】解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=1BC,2∴BD=sin60°×OB=3,∴BC=2BD=23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.7.D解析:D【分析】根据题意,画出图形,连接BD,交x轴于E,根据正方形的性质可得AB=2,BD⊥x 轴,AE=BE,∠BAE=45°,利用锐角三角函数即可求出AE和BE,从而求出OE,即可求出点B的坐标,然后根据关于原点对称的两点坐标关系即可求出结论.【详解】解:把正方形ABCD绕原点O旋转180︒,如图所示,连接BD,交x轴于E∵四边形ABCD2∴2,BD⊥x轴,AE=BE,∠BAE=45°∴AE=BE=AB·sin∠BAE=1∴OE=OA+AE=2∴点B的坐标为(2,1)∴点B绕点O旋转180°的对应点B'的坐标(-2,-1)故选D.【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键.8.C解析:C【分析】根据非负数的性质可得sinA 和cosB 的值,进而可得∠A 和∠B 的度数,即可知△ABC 的形状.【详解】解:∵(2sinA-1)2=0, ∴2sinA-1=0,cosB-12=0, ∴sinA=12,cosB=12, ∴∠A=30°,∠B=60°,∴∠C=180°-∠A-∠B=90°,故△ABC 为直角三角形.故选C .【点睛】本题主要考查了非负数的性质和特殊角的三角函数值,根据两个非负数的和为零,则这两个数都为零求出sinA 和cosB 的值是解决此题的关键.9.C解析:C【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,∴5AB =, ∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值.10.D解析:D【分析】如图,延长AD 到M ,使得DM=DF ,连接BM .利用全等三角形的性质证明BM=CF=9,AB=BM ,利用勾股定理求出BC ,AC 即可解决问题.【详解】解:如图,延长AD 到M ,使得DM=DF ,连接BM .∵BD=DC ,∠BDM=∠CDF ,DM=DF ,∴△BDM ≌△CDF (SAS ),∴CF=BM=9,∠M=∠CFD ,∵CE ∥BM ,∴∠AFE=∠M ,∵EA=EF ,∴∠EAF=∠EFA ,∴∠BAM=∠M ,∴AB=BM=9,∵AE=4,∴BE=5,∵∠EBC=90°,∴2222135EC BE -=-,∴2222912AB BC ++,∴cos ∠ACB=124155BC AC == , 故选:D .【点睛】此题考查解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 11.D解析:D【分析】此题根据已知可设AC =x ,则BC =2x ,根据三角函数的定义即可得到结论.【详解】解:∵BC =2AC ,∴设AC =a ,则BC =2a ,∵∠C =90°,∴AB=, ∴cosA=5AC AB ==, 故选:D .【点睛】此题考查的知识点是锐角三角函数的定义,勾股定理,关键是熟练掌握锐角三角函数的定义.12.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=3OE 2 ∴OE 最小时,S △ODE 最小, 过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠OBE′=12a 336a ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小∵DE=3OE ∴OE 最小时,DE 最小而OE 的最小值为OE′=3a ∴DE 的最小值为3×36a =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.二、填空题13.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可.【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒,∴C ,A ,P 共线,BC BP AC AP ===,∴△BPC 是等边三角形,当D′是PB 中点时,AD′=123ABC 与D'AB 满足条件,∴D'90C P ∠=︒,∴CD′= PD′tan 60︒PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件,∴,∴满足条件的CD 的长为3故答案为:3【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.14.【分析】先根据矩形的性质勾股定理可得再利用正弦三角函数可得然后根据即可得【详解】四边形ABCD 是矩形在中则即图中阴影部分的面积是故答案为:【点睛】本题考查了矩形的性质正弦三角函数扇形的面积公式等知识解析:7122π- 【分析】先根据矩形的性质、勾股定理可得1,2,90CD BD ADC BCD ==∠=∠=︒,再利用正弦三角函数可得30CBD ∠=︒,然后根据RtBCD DCN BDM S S S S =+-阴影扇形扇形即可得.【详解】四边形ABCD 是矩形,1AB =,BC =,1,2,90CD AB BC ADC BCD ∴====∠=∠=︒,在Rt BCD 中,1sin 2CD CBD BD ∠==, 30CBD ∴∠=︒, 则Rt BCDDCN BDM S S S S =+-阴影扇形扇形, 22901302113603602ππ⨯⨯=+-⨯712π=,即图中阴影部分的面积是7122π-故答案为:7122π-. 【点睛】 本题考查了矩形的性质、正弦三角函数、扇形的面积公式等知识点,熟练掌握扇形的面积公式是解题关键.15.【分析】BE ⊥AC 于点E 根据题意计算可得解直角三角形ABE 可得BE=AE=30根据平行线性质计算可得解直角三角形CEB 可得AE+CE 的值即是AC 两港之间的距离【详解】解:设过A 点正北方向直线为AD 过 解析:30103+【分析】BE ⊥AC 于点E ,根据题意计算可得45EAB ∠=︒,解直角三角形ABE ,可得BE=AE=30,根据平行线性质计算可得60C ∠=°,解直角三角形CEB 可得,103CE =,AE+CE 的值即是AC 两港之间的距离.【详解】解:设过A 点正北方向直线为AD ,过B 点正北方向直线为BG ,过B 作BE ⊥AC 于E ,过C 作CF ∥AD ,如图:∵由题意得:∠CAB =65°﹣20°=45°,∠AEB =∠CEB =90°,AB 2km .∴在Rt ABE △中,∠ABE =45°,∴△ABE 是等腰直角三角形.∵AB 2km ,∴AE =BE =22AB =30(km ). ∵CF ∥AD ∥BG ,∴∠ACF =∠CAD =20°,∠BCF =∠CBG =40°,∴∠ACB =20°+40°=60°, ∵在Rt CBE 中,∠ACB =60°,tan ∠ACB =BE CE , ∴CE =tan 603BE ︒=3km ),∴AC =AE +CE 3km ),∴A 、C 两港之间的距离为(3km .故答案为:(3【点睛】本题考查解直角三角形的应用——方位角问题,添加辅助线构建直角三角形,熟练运用解直角三角形的方法是解题关键.16.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考 解析:205 【分析】 先画出图形,再根据坡度的可得12AC BC =,然后设AC x =米,从而可得2BC x =米,最后利用勾股定理求出x 的值,由此即可得出答案.【详解】 如图,由题意得:90C ∠=︒,100AB =米,1tan 2AC B BC ==, 设AC x =米,则2BC x =米,由勾股定理得:22AB AC BC =+,即()222100x x +=, 解得205x =(米),则205AC =米,即他上升的高度是205米,故答案为:205.【点睛】本题考查了勾股定理、解直角三角形的应用:坡度问题,掌握理解坡度的概念是解题关键.17.4【分析】过A 作AD ⊥BC 于点D 则根据等腰三角形的性质和锐角三角函数的定义可以得到解答【详解】解:如图过A 作AD ⊥BC 于点D 则由已知可得△ABC 为等腰三角形BD=DC=∴由cosB=得BC=2BD=解析:4【分析】过A 作AD ⊥BC 于点D ,则根据等腰三角形的性质和锐角三角函数的定义可以得到解答 .【详解】解:如图,过A 作AD ⊥BC 于点D ,则由已知可得△ABC 为等腰三角形,BD=DC=12BC ,∴由 cosB=13得111,62333BDBD ABAB===⨯=,BC=2BD=4,故答案为4 .【点睛】本题考查等腰三角形和锐角三角函数的综合应用,灵活运用等腰三角形的性质和锐角三角函数的定义是解题关键.18.【分析】连接BC可得∠ACB=90°根据同弧对等角有∠D=∠A在△ABC中根据正切定义可求出tanD【详解】如图所示连接BC因为AB是直径所以∠ACB=90°在Rt△ABC中BC=tanA=而BC弧解析:22【分析】连接B、C,可得∠ACB=90°,根据同弧对等角有∠D=∠A,在△ABC中根据正切定义可求出tanD.【详解】如图所示,连接B、C,因为AB是直径,所以∠ACB=90°在Rt△ABC中BC=2222AB AC=62=42--,tanA=BC42==22 AC2,而BC弧所对的∠D=∠A,所以tanD= tanA=22.【点睛】本题考查了三角函数的定义、圆周角定理、勾股定理,连接BC构造直角三角形是解题的关键.19.【分析】过B 点作BE//AD 交AC 于点E 证明得到再证明利用设利用三角形的面积公式可得答案【详解】解:过B 点作BE//AD 交AC 于点EBE ⊥AD ∴∴由∴设则故答案为: 解析:332【分析】过B 点作BE//AD 交AC 于点E ,证明ADO EBO ∽△△,得到3,AO OE =再证明,ABE ACB ∠=∠利用1tan tan ,2BE AE ACB ABE CE BE ∠==∠==设,OE a =利用三角形的面积公式可得答案.【详解】 解:过B 点作BE//AD 交AC 于点E ,90,DAC ∠=︒∴ BE ⊥AD ,ADO EBO ∴∽, ∴,AO DO EO BO= 43BO OD = ∴3,4AO DO EO BO == 3,4AO OE ∴= 由1tan 2ACB ∠=, 1,2BE CE ∴= 2,CE BE ∴=90,,ABC BE AC ∠=︒⊥90,ABE CBE CBE ACB ∴∠+∠=︒=∠+∠,ABE ACB ∴∠=∠1tan tan ,2AE ACB ABE BE ∴∠=∠== 2,BE AE ∴=24,CE BE AE ∴==∴OAB OAD ABD CBD OCB OCD S S S S S S ∆∆+=+()()11221122AO AD AO BE AO AD BE AOOC AD BE OCOC AD OC BE•+•+===+•+•设,OE a=则3,4AO a=7,4AE AO OE a∴=+=7,CE a=8.OC OE CE a=+=334.832ABDCBDaS AOS OC a∆∆===故答案为:33220.【分析】连接OP先确定OD的长和B点坐标然后证明四边形OPME是平行四边形可得OP=EM因为PM是定值推出PB+ME=OP+PB的值最小时即当OPB共线时BP+PM+ME的长度最小最后根据两点间的距解析:22123+【分析】连接OP,先确定OD的长和B点坐标,然后证明四边形OPME'是平行四边形,可得OP=EM,因为PM是定值,推出PB+ME'=OP+PB的值最小时,即当O、P、B共线时BP+PM+M E的长度最小,最后根据两点间的距离公式和线段的和差解答即可.【详解】解:如图:连接OP在Rt△ADO中,∠A=60°,AD=4,∴OD=4tan60°∴A (-4,∵四边形ABCD 是平行四边形,∴AB=OC=10,∴DB=10-4=6∴B (6,∵线段EF 垂直平分OD∴OE=12,∠PEO=∠EOM=∠PM0=90°, ∴四边形OMPE 是矩形,∴,∵OE=0E'∴PM=OE',PM//OE',∴四边形OPME'是平行四边形,∴0P=EM ,∵是定值,∴PB+ME'=OP+PB 的值最小时,BP+PM+ME 的长度最小,∴当0、P 、B 共线时,BP+PM+ME 的长度最小∴BP+PM+ME的最小值为=故答案为【点睛】本题属于四边形综合题,主要考查了平行四边形的判定和性质、垂直平分线的性质、最短路径问题、锐角三角函数等知识,掌握并灵活应用两点之间线段最短是解答本题的关键. 三、解答题21.3【分析】将特殊角的三角函数值代入求解 【详解】解:sin 30tan 45cos 45sin 60tan 60︒⋅︒︒+︒⋅︒=12⨯ =13+1+22=3【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.22.52a --,33-. 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】310cos302tan 451021532a =+=⨯⨯=︒++︒, ()()()()()()23113132522422222222a a a a a a a a a a a a a a a ⎡⎤-----⎛⎫-÷=-⋅+=⋅+=-⎢⎥ ⎪--++--+--⎝⎭⎢⎥⎣⎦当532a =+时,原式35322=-=-+-. 【点睛】考查分式的化简求值,关键是化简,掌握运算顺序是化简的关键. 23.447km【分析】过点B 作BD ⊥AC 于点D ,利用锐角三角函数的定义求出AD 及CD 的长,进而可得出A 地到C 地之间高铁线路的长.【详解】解:如图所示,过点B 作BD AC ⊥于点D ,则//BD AE ,由题意得:390km AB =,30CBD ∠=︒,//BD AE ,则67ABD BAE ∠∠==︒,BD AC ⊥,∴在Rt △ABD 中,sin AD ABD AB ∠=,cos BD ABD AB∠=, 1239036013AD ∴=⨯=,539015013BD =⨯=, 又在Rt BCD 中,30CBD ∠=︒,12CD BC ∴=, 由勾股定理得:222CD BD BC +=,222150(2)CD CD ∴+=,解得:3CD =,3 1.73≈,50 1.7387CD ∴≈⨯=,AC AD CD ∴=+36087=+447=,答:A 地到C 地之间高铁线路长为447km .【点睛】本题考查了解直角三角形的应用-方向角问题,熟记锐角三角函数的定义是解题的关键. 24.(1)1;(2)4x =-【分析】(1)原式利用特殊角的三角函数、绝对值的代数意义、负指数幂法则以及0指数幂的运算法则分别化简,即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,检验后即可得到分式方程的解的结果.【详解】解:(1)原式=2221++=1; (221133x x x-=-- 去分母得:()231x x --=-,去括号得:231x x -+=-,解得:4x =-,经检验4x =-是分式方程的解.【点睛】此题考查了实数的运算和解分式方程,实数运算的关键是掌握各运算类型的法则,解分式方程时把分式方程转化为整式方程求解,且一定注意要验根.25.(1)4;(2)15°【分析】(1)直接根据零指数幂、二次根式化简、特殊角的三角函数值、负整指数幂即可求解; (2)直接根据特殊角的三角函数值即可求解.【详解】解:(1)()1013.144sin 453π-⎛⎫-+ ⎪⎝⎭13=+ 4=(2)∵tan (α+15°∴α+15°=30° α=15°【点睛】此题主要考查实数的运算和特殊角的三角函数值,熟练掌握各概念是解题关键.26.(1)y =﹣x 2﹣2x +3,AC =DC ;(2)E (1,0);(3【分析】(1)将点A (﹣3,0),B (1,0)分别代入抛物线y =ax 2+bx +3可解的a ,b 的值,从而得到解析式,tan ∠DAC =DC AC,可根据表达式求出C ,D 的坐标然后计算DC 和AC 的长度计算;(2)可取一点E ,过E 作EF 平行于x 轴,交AC 于F 此时可表示出S △ACE ,根据类方程S △ACE =2S △ACD ,求E 点坐标即可;(3)根据题能得到Q 的运动轨迹为直线,且当P 在A 处时Q 在C 处,当P 运动到C 处时,可以得到△ADC ∽PQD ,根据形似性质可得到PQ 长度即为Q 的运动路径长.【详解】解:(1)将A (﹣3,0),B (1,0)分别代入抛物线y =ax 2+bx +3可得: 093303a b a b =-+⎧⎨=++⎩,解得12a b =-⎧⎨=-⎩; ∴抛物线解析式为y =﹣x 2﹣2x +3,∴D (﹣1,4),C (0,3);∴AC=DC ;∴tan ∠DAC =1=3DC AC . (2)如图1所示,过E 作EF //x 轴交AC 于点F ,设点E (m ,﹣m 2﹣2m +3),直线AC 的表达式为y =kx +n ,将A (﹣3,0),C (0,3)分别代入y =kx +n 可得:033k n n =-+⎧⎨=⎩,解得13k n =⎧⎨=⎩, ∴直线AC 表达式为y =x +3,∴F (﹣m 2﹣2m ,﹣m 2﹣2m +3),∴EF =m +m 2+2m =m 2+3m ,∴S △ACE =12(x C ﹣x A )EF , ∵S △ACD =12AC •CD =3, ∴S △ACE =12(x C ﹣x A )EF =2S △ACD =6, ∴32(m 2+3m )=6, 解得m 1=1,m 2=﹣4(舍),∴E (1,0).(3)如图2所示当点P与点A重合时,∵∠ADQ=∠DCA=90°,∴∠DAC+∠ADC=90°=∠ADC+∠QDC,∴∠DAC=∠QDC,又∵∠DCA=∠DCQ=90°,∴△ADC∽△DQC,∴DC CQ=,AC DC∴222CQ==,.332当点P与点C重合时,∴∠Q'DC=∠ACD=90°,∴DQ'∥CQ ,∵∠DAC=∠Q'P'D ,∠Q'DP'=∠ACD=90°,∴△ADC ∽△P'Q'D , ∴DQ DC DC AC'=,∴DQ '=, ∴DQ'=CQ ,∴四边形DQ'QC 是平行四边形,∴.【点睛】本题综合性比较强,主要考查二次函数点相关知识,解题的关键在于找出变换后的图形,根据已知条件,建立方程求解.。
2021年高中数学 第三章 函数的应用单元综合测试 新人教版必修1

2021年高中数学 第三章 函数的应用单元综合测试 新人教版必修1题号 1 2 3 4567 8 9 10 11 12 答案上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C6.若函数f (x )唯一的变号零点同时在区间(0,4),(0,2),(1,2),(1,32)内,则与f (0)符号相同的是( )A .f (4)B .f (2)C .f (1)D .f (32)解析:由函数零点的判断方法可知,f (2),f (4)与f (0)符号相反,f (1)与f (2)符号相反,故f (1)与f (0)符号相同,故选C.答案:C7.如表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )x 4 5 6 7 8 9 10 y15171921232527A.C .指数函数模型D .对数函数模型解析:画出散点图,如图.由图可知其最可能的函数模型为一次函数模型.答案:A8.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往长城旅游,他先前进了a km ,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b <a ),当他记起诗句“不到长城非好汉”,便调转车头继续前进.则该同学离起点的距离s 与时间t 的函数关系的图象大致为( )解析:根据某同学先前进了a km 后休息了一段时间,可知A 不合题意;根据休息后沿原路返回骑了b km(b <a ),可知D 不合题意,而选项B 中,说明该同学离起点的距离s 在休息后瞬时发生变化,不合题意,故选C.答案:C9.设a ,b ,k 是实数,二次函数f (x )=x 2+ax +b 满足:f (k -1)与f (k )异号,f (k +1)与f (k )异号.在以下关于f (x )的零点的说法中,正确的是( ) A .该二次函数的零点都小于k B .该二次函数的零点都大于kC .该二次函数的两个零点之差一定大于2D .该二次函数的零点均在区间(k -1,k +1)内解析:由题意得f (k -1)·f (k )<0,f (k )·f (k +1)<0,由零点的存在性定理可知,在区间(k -1,k ),(k ,k +1)内各有一个零点,零点可能是区间内的任何一个值,故D 正确.答案:D10.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:(1)如一次购物不超过200元,不予以折扣;(2)如一次购物超过200元但不超过500元,按标价予以九折优惠;(3)如一次购物超过500元,其中500元给予九折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( )A .608元B .574.1元C .582.6元D .456.8元解析:本题实际上是一个分段函数的问题,购物付款432元,实际商品价值为432×109=480(元);则一次购买标价为176+480=656(元)的商品应付款500×0.9+156×0.85=582.6(元),故选C.答案:C11.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,b (0<b ≤32)为半径画圆,由正方形内的圆弧与正方形边上的线段构成了丰富多彩的图形,如图所示,则这些图形中实线部分总长度的最小值为( )A .πB .2πC .3πD .4π解析:由题意知实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 是关于b 的一次函数,一次项系数2π-8<0,故l 关于b 的函数单调递减,因此,当b 取最大值时,l 取得最小值,结合图形知,b 的最大值为32,代入上式得l min =(2π-8)×32+12=3π.答案:C12.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0 B .k >1C .0≤k <1D .k >1,或k =0解析:令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.解析:设f (x )=x 3-2x -5,则f (2)<0, f (3)>0, f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)14.方程e x-x =2在实数范围内的解有________个.解析:可转化为判断函数y =e x与函数y =x +2的图象的交点个数.答案:215.某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________.经过5小时,1个病毒能繁殖为________个.解析:当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2,∴y =c 2t ln 2.当t =5时,y =c10 ln 2=210=1 024.答案:2ln 2 1 02416.若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围是________. 解析:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,所以a >1. 答案:(1,+∞)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)按照给出的参考数据,用二分法求2x+x =4在(1,2)内的近似解(精确度为0.2),参考数据如表:x1.125 1.25 1.375 1.5 1.625 1.75 1.875 2x2.182.382.592.833.083.363.67则f (1)=2+1-4<0,f (2)=22+2-4>0,用二分法计算,列表如下:区间 中点的值 中点函数近似值(1,2) 1.5 0.33 (1,1.5)1.25-0.37(1.25,1.5) 1.375 -0.035(1.375,1.5)∵|1.375∴2x+x =4在(1,2)内的近似解为1.375.18.(12分)已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈(0,12),使f (x 0)=x 0.证明:令g (x )=f (x )-x .∵g (0)=14,g (12)=f (12)-12=-18,∴g (0)·g (12)<0.又函数g (x )在[0,12]上的图象连续不断,∴存在x 0∈(0,12),使g (x 0)=0,即f (x 0)=x 0.19.(12分)已知函数f (x )=2(m +1)x 2+4mx +2m -1, (1)m 为何值时,函数的图象与x 轴有两个交点? (2)如果函数的一个零点在原点,求m 的值. 解:(1)∵函数的图象与x 轴有两个交点,∴⎩⎪⎨⎪⎧m +1≠0,Δ>0,即⎩⎪⎨⎪⎧m ≠-1,4m 2-4×2m +1·2m -1>0.整理得⎩⎪⎨⎪⎧m ≠-1,m <1,即当m <1,且m ≠-1时, 函数的图象与x 轴有两个交点.(2)∵函数的一个零点在原点,即点(0,0)在函数f (x )的图象上, ∴f (0)=0,即2(m +1)·02+4m ·0+2m -1=0. ∴m =12.20.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2. (1)求f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域. 解:(1)∵f (x )的两个零点是-3和2,∴函数图象过点(-3,0)、(2,0). ∴9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②,得b =a +8.③③代入②,得4a +2a -a -a (a +8)=0, 即a 2+3a =0. ∵a ≠0,a =-3, ∴b =a +8=5.∴f (x )=-3x 2-3x +18. (2)由(1)得f (x )=-3x 2-3x +18 =-3(x +12)2+34+18,图象的对称轴方程是x =-12,且0≤x ≤1,∴f (x )min =f (1)=12, f (x )max =f (0)=18. ∴函数f (x )的值域是[12,18]. 21.(12分)如图所示,A 、B 两城相距100 km ,某天然气公司计划在两地之间建一天然气站D 给A 、B 两城供气.已知D 地距A 城x km ,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y (万元)与A 、B 两地的供气距离(km)的平方和成正比,当天然气站D 距A 城的距离为40 km 时,建设费用为1 300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y (万元)表示成供气距离x (km)的函数,并求定义域;(2)天然气供气站建在距A 城多远,才能使建设供气费用最小,最小费用是多少? 解:(1)由题意知D 地距B 地(100-x )km ,则⎩⎪⎨⎪⎧10≤100-x ,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90). (2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km ,能使建设费用最小,最小费用是1 250万元. 22.(12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )是二次函数,其图象与x 轴交于A (1,0)、B (3,0),与y 轴交于C (0,6).(1)求y =f (x ),(x ∈R )的解析式;(2)若方程f (x )-2a +2=0有四个不同的实数根,试求a 的取值范围. 解:(1)依题意可设,当x ≥0时,f (x )=a (x -1)(x -3). 由f (0)=6得3a =6, ∴a =2,此时f (x )=2(x -1)(x -3)=2x 2-8x +6(x ≥0). 当x <0时,-x >0, 则f (-x )=2x 2+8x +6. 又∵f (x )是偶函数, ∴f (-x )=f (x ),∴f (x )=2x 2+8x +6(x <0).∴f (x )=⎩⎪⎨⎪⎧2x 2-8x +6,x ≥0,2x 2+8x +6,x <0.(2)依题意f (x )=2a -2有四个不同实数根,即y =f (x )与y =2a -2在同一坐标系中的图象有四个不同的交点.如图可知只需满足条件-2<2a -2<6,∴0<a <4,即实数a 的取值范围是(0,4).<21423 53AF 厯X20530 5032 倲% 21508 5404 各33032 8108 脈21146 529A 劚25526 63B6 掶32948 80B4 肴z402619D45 鵅30353 7691 皑]。
宁波市十五中必修一第二单元《函数》检测(包含答案解析)

一、选择题1.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,22.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞3.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)4.若()f x 是偶函数,其定义域为(,)-∞+∞,且在[0,)+∞上是减函数,则(1)f -与2(22)f a a ++的大小关系是( )A . 2(1)(22)f f a a ->++B .2(1)(22)f f a a -<++C .2(1)(22)f f a a -≥++D . 2(1)(22)f f a a -≤++5.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x x f x ⎡⎤=-⎢⎥+⎣⎦的值域为( )A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-6.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .17.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤- D .5(3)()2f f -<-8.若函数2()2(2)1f x mx m x =+-+的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞ 9.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( )A .1或3B .3或134C .3D .13410.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-311.如图是定义在区间[]5,5-上的函数()y f x =的图象,则下列关于函数()f x 的说法错误的是( )A .函数在区间[]53-,-上单调递增 B .函数在区间[]1,4上单调递增 C .函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减 D .函数在区间[]5,5-上没有单调性12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018B .2019C.4036 D.4038二、填空题13.关于函数2 1()11xf xx-=+-的性质描述,正确的是_________.①()f x的定义域为[-1,0)∪(0,1];②()f x的值域为R;③在定义域上是减函数;④()f x的图象关于原点对称.14.若函数f (x)=(x+a)(bx+a)(常数a,b∈R)是偶函数,且它的值域为(,1]-∞,则a=_____. 15.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()x xf ae ex b-=+(其中a,b是非零常数,无理数 2.71828e=…)(1)如果()f x为单调函数.写出满足条件的一-组值:a=______,b=______.(2)如果()f x的最小值为2,则+a b的最小值为______.16.已知函数()f x对于任意实数x满足条件()()12f xf x+=-,若()113f=-,则()2019f= _________.17.函数()()012f x x x=+-的定义域为______.18.设函数f(x)满足:对任意的x1,x2∈R都有(x1-x2)[f(x1)-f(x2)]>0,则f(-3)与f(-π)的大小关系是________.19.若函数211xyx-=-的值域是()[),03,-∞+∞,则此函数的定义域是____.20.已知函数2220()20x x xf xx x x⎧-≥=⎨--<⎩,,,,则不等式()()f x f x>-的解集为_______________.三、解答题21.已知二次函数()2(f x ax bx c a R=++∈且2a>-),(1)1f=,且对任意的x∈R,(5)(3)f x f x-+=-均成立,且方程()42f x x=-有唯一实数解.(1)求()f x的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 22.已知函数()22mf x x x=-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.23.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由; (2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围24.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 25.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭. (1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明. 26.已知二次函数2()1(,)f x ax bx a b R =++∈,x ∈R .(1)若函数()f x 的最小值为(1)0f -=,求()f x 的解析式,并写出单调区间; (2)在(1)的条件下,()f x x k >+在区间[-3,-1]上恒成立,试求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.2.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 3.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.4.C解析:C由()f x 是偶函数,可知(1)(1)f f -=,故只需比较(1)f 与2(22)f a a ++的大小即可,而2222(1)11a a a ++=++≥,再结合函数()f x 的单调性,即可得(1)f 与2(22)f a a ++大小关系.【详解】因为()f x 是偶函数,所以(1)(1)f f -=,又2222(1)11a a a ++=++≥,()f x 在[0,)+∞上是减函数,所以2(22)(1)f a a f ++≤,即2(22)(1)f a a f ++≤-. 故选:C 【点睛】关键点点睛:本题主要考查利用函数的单调性比较大小,关键是借助函数的奇偶性,将要比较的函数值对应的自变量转化到同单调区间上,并且比较它们的大小,再利用单调性作出判断.5.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.6.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.7.B解析:B 【分析】对于(1)(1)(1)f x f x f +=-+,令0x =,可推出(1)(1)0f f =-=;令2x =-,推出(3)0f -=;令32x =-,推出51()()22f f -=-,最后结合()f x 的单调性得解.【详解】解:对于(1)(1)(1)f x f x f +=-+,令0x =,则(1)(1)(1)f f f =-+,(1)0f ∴-=,()f x 是偶函数,∴(1)(1)0f f =-=,令2x =-,则(21)(21)(1)f f f -+=--+,即(1)(3)(1)f f f -=-+,(3)0f ∴-=, 令32x =-,则33(1)(1)(1)22f f f -+=--+,51()()22f f ∴-=-,()f x 在区间[1-,0]为减函数,51()()(1)0(3)22f f f f ∴-=-<-==-,【点睛】函数的单调性与奇偶性的综合运用,灵活运用赋值法是解题的关键.8.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D .本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.C解析:C 【详解】由图象可知,函数在[-5,-3]和[1,4]两个区间单调递增,则A 、B 选项是正确的; 又因为函数在[-3,1]和[4,5]两个区间上分别单调递减, 但在区间[-3,1]∪[4,5]上没有单调性,则C 选项错误; 观察函数图象可知函数在[-5,5]上没有单调性,则D 选项正确. 故选C.要知道四个选项中哪个是错误的,考虑先根据函数图象写出函数的单调区间; 根据题意可知,函数在[-5,-3]和[1,4]两个区间单调递增,据此可判断A 、B 选项; 函数在[-3,1]和[4,5]上单调递减,据此判断其余选项,试试吧!12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()f x ==,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.14.【分析】根据函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数利用得到进而得到或然后分类讨论即可求解【详解】函数f(x)=(x +a)(bx +a)(常数ab ∈R)是偶函数明显可知该函数定义域 解析:±1【分析】根据函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,利用()()f x f x -=,得到(1)0a b +=,进而得到0a =或1b =-,然后,分类讨论即可求解【详解】函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,明显可知,该函数定义域为x ∈R ,令1x =和1x =-得(1)(1)()f a b a =++(1)(1)()f a a b =-=--,得22a b ab a a ab a b +++=--+⇒a ab ab a +=--(1)0a b ⇒+=,可得0a =或1b =-;若0a =,则2()f x bx =,若0b >,不满足()f x 的值域为(,1]-∞,0b =,明显不成立,0b <时,不满足()f x 的值域为(,1]-∞,所以,0a =时,不符题意;若1b =-时,22()()()f x x a a x a x =+-=-,由于20x -≤,则2()f x a ≤,所以,21a =,求得1a =±故答案为:±1 【点睛】关键点睛:解题的关键在于,利用()()f x f x -=,得到(1)0a b +=,然后,分别讨论0a =和1b =-两种情况进行分类讨论,主要考查学生分类讨论的思想,难度属于中档题 15.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()x x f x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).16.3【分析】根据题意求得函数的周期性得出函数的周期然后利用函数的周期和的值即可求解得到答案【详解】由题意函数对任意实数满足条件则即函数是以4为周期的周期函数又由令则即所以【点睛】本题主要考查了抽象函数解析:3 【分析】根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和()1f 的值,即可求解,得到答案. 【详解】由题意,函数()f x 对任意实数x 满足条件1(2)()f x f x +=-, 则()1(4)[(2)2](2)f x f x f x f x +=++=-=+,即函数()f x 是以4为周期的周期函数,又由()113f =-,令1x =-,则1(12)(1)f f -+=--,即1(1)3(1)f f -==, 所以()2019(14505)(1)3f f f =-+⨯=-=. 【点睛】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.17.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】 由1020x x +≥⎧⎨-≠⎩ ,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.18.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)【解析】由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .19.【分析】先计算当和时的值然后分析原函数的图象性质根据函数的图象性质判断定义域【详解】令得令得函数则原函数在上单调递减在上递减画出函数的图象如图所示:由函数的图象可知当值域为时定义域应为故答案为:【点解析:(]1,11,22⎛⎫⋃ ⎪⎝⎭【分析】先计算当0y =和3y =时x 的值,然后分析原函数的图象性质,根据函数的图象性质判断定义域. 【详解】 令2101x y x -==-得12x =,令2131x y x -==-得2x =,函数2122112111x x y x x x --+===+---,则原函数在(),1-∞上单调递减,在()1,+∞上递减,画出函数211x y x -=-的图象如图所示:由函数211x y x -=-的图象可知,当值域为()[),03,-∞+∞时,定义域应为(]1,11,22⎛⎫⋃ ⎪⎝⎭. 故答案为:(]1,11,22⎛⎫⋃ ⎪⎝⎭. 【点睛】解答本题时,要先根据函数值域的端点求出自变量的值,然后通过原函数的图象及性质分析自变量的取值情况,其中将原函数解析式化为121y x =+-,结合反比例函数的图象性质分析211x y x -=-的性质是关键. 20.【分析】由表达式可知函数为奇函数则等价转换为解不等式即可【详解】因为当时则;同理当时又综上所述为奇函数则即当时解得;当时解得故的解集为故答案为:【点睛】方法点睛:本题考查由分段函数解不等式函数奇偶性 解析:()()2,02,-+∞【分析】由表达式可知,函数()f x 为奇函数,则()()f x f x >-等价转换为()0f x >,解不等式即可 【详解】因为2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,当0x >时,0x -<,则()()()2222f x x x x x -=----=-+,()()f x f x -=-;同理当0x <时,()()()220,22x f x x x x x ->-=---=+,()()f x f x -=-,又()00f =,综上所述()f x 为奇函数,则()()()()f x f x f x f x >-⇔>-,即()20f x >,当0x >时,()2020f x x x >⇔->,解得2x >;当0x <时,()2020f x x x >⇔-->,解得20x -<<,故()()f x f x >-的解集为()()2,02,-+∞故答案为:()()2,02,-+∞【点睛】方法点睛:本题考查由分段函数解不等式,函数奇偶性的判断,常用以下方法: (1)对于分段函数判断奇偶性可用定义法,也可采用数形结合法,结合图象判断; (2)由函数性质解不等式可采用代数法直接运算求解,也可结合函数图象求解.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,.(3)假设存在区间[],()m n m n <符合题意。
宁波市十五中八年级数学下册第十九章《一次函数》阶段练习(含答案解析)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <2 2.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .3.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( ) A . B . C . D . 4.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-5.甲,乙两车分别从A , B 两地同时出发,相向而行.乙车出发2h 后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x (h ), 甲,乙两车到B 地的距离分别为y 1(km ), y 2(km ), y 1, y 2关于x 的函数图象如图.下列结论:①甲车的速度是45a km /h ;②乙车休息了0.5h ;③两车相距a km 时,甲车行驶了53h .正确的是( )A .①②B .①③C .②③D .①②③ 6.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .37.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+B .2133y x =+C .7162y x =+D .3142y x =+ 8.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 9.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 10.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 11.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 12.甲、乙两辆汽车分别从A 、B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为()y km 甲、()y km 乙,甲车行驶的时间为(h)x ,y 甲、y 乙与x 之间的函数图象如图所示,结合图象下列说法不正确的是( )A .甲车的速度是80/km hB .乙车休息前的速度为100/km hC .甲走到200km 时用时2.5hD .乙车休息了1小时13.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②216的平方根是2±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( )A .1B .2C .3D .414.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则下列说法错误的是( )A .每分钟的进水量为5升B .每分钟的出水量为3.75升C .OB 的解析式为y =5x (0≤x≤4)D .当x =16时水全部排出 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3 二、填空题16.如图,直线y =12x +b 交x 轴于点A ,交y 轴于点B ,OA =2,点C 是x 轴上一点,且△ABC 是直角三角形,满足这样条件的点C 的坐标是_____.17.体育训练课上,小健同学与小宇同学在AB 之间进行往返蛙跳训练.小健先出发10s ,小宇随后出发.当小宇恰好追上小健时,王老师立即飞奔3秒到小宇身边对他进行指导,一分钟...后小宇继续前行,但速度减为原来的12,小健和小宇相距的路程y (米)与小健出发时间t (秒)的关系如图所示,则当小宇再次出发时,两人还有__________秒二次相遇.18.如图所示的平面直角坐标系中,点A 坐标为(2,2),点B 坐标为(﹣1,1),在x 轴上有点P ,使得AP+BP 最小,则点P 的坐标为_____.19.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.20.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.21.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.22.在平面直角坐标系中,有直线1l :25y x =+和直线2l :1y x 53=+,直线2l 的有一个点M ,当M 点到直线1l 的距离小于5,则点M 的横坐标取值范围是________. 23.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.24.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.25.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?28.如图,平面直角坐标系中,直线2y x m =+与轴交于点A ,与直线5y x =-+交于点()4,B n ,直线5y x =-+与x 轴、y 轴分别交于点M 、N ,P 为直线5y x =-+上一点.(1)求m ,n 的值;的度数;(2)求ONM(3)求线段AP的最小值,并求此时点P的坐标.29.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC和BD的函数关系式.(3)求学校和博物馆之间的距离.30.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲,y y关地的距离为1y千米,出租车离甲地的距离为2y千米,两车行驶的时间为x小时,12于x的图象如图所示:(1)客车的速度是千米/小时,出租车的速度是千米小时:,y y关于x的关系式;(2)根据图象,分别直接写出12(3)求两车相遇的时间;(4)x为何值时,两车相距100千米.。
宁波市十五中必修第一册第二单元《一元一次函数,方程和不等式》检测(包含答案解析)

一、选择题1.已知0a >,0b >,2ab =,则42a b +的最小值为( )A .22B .4C .42D .8 2.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10 B .9 C .8 D .73.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ). A .()0,4 B .[)0,4 C .[]0,4 D .(](),04,-∞⋃+∞ 4.已知不等式20ax bx c ++>的解集是{}41x x -<<,则不等式2(1)(3)0b x a x c -+++>的解集为( )A .{}14x x -<<B .413x x ⎧⎫-<<⎨⎬⎩⎭C .413x x x ⎧⎫⎨⎬⎩⎭或 D .{}21x x x -或 5.已知x ,y ∈R ,且x >y >0,则( )A .11x y x y ->- B .cos cos 0x y -< C .110x y -> D .ln x +ln y >06.若实数,x y 满足0xy >,则的最大值为( )A .22-B .22+C .422+D .422- 7.已知正实数,x y 满足3x y +=,则41x y +的最小值( ) A .2 B .3 C .4 D .1038.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则m n的最大值为( )A .22B .1C .2D .29.已知正实数a ,b 满足21a b +=,则12a b +的最小值为( ) A .8B .9C .10D .11 10.已知m ,0n >,4121m n +=+,则m n +的最小值为( ) A .72B .7C .8D .4 11.若关于x 的不等式0ax b ->的解集是(),2-∞-,关于x 的不等式201ax bx x +>+的解集为( )A .(,1)(1,2)-∞-⋃B .(1,0)(2,)-+∞C .(,1)(0,2)-∞-⋃D .(0,1)(2,)+∞12.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则2a c ac a c+-+的最小值( ) A .12 B .2 C .14 D .4二、填空题13.有一块直角三角形空地ABC ,2A π∠=,250AB =米,160AC =米,现欲建一矩形停车场ADEF ,点D 、E 、F 分别在边AB 、BC 、CA 上,则停车场面积的最大值为________平方米.14.对于实数m ,若两函数()f x ,()g x 满足:①[,)x m ∀∈+∞,()0f x <或()0<g x ;②(,]x m ∃∈-∞,()()0f x g x <,则称函数()f x 和()g x 互为“m 相异”函数.若2()1f x ax ax =+-和()1g x x =-互为“1相异”函数,则实数a 的取值范围是___________.15.已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________. 16.已知函数2()f x x ax b =++,对任意的[0,4]x ∈,都有()2f x ,则=a b +________.17.已知0x >,0y >,满足2126x y x y+++=,存在实数m ,对于任意x ,y ,使得2m x y ≤+恒成立,则m 的最大值为____________.18.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.19.已知关于x 的不等式()()22454130m m x m x +---+>对一切实数x 恒成立,则实数m 的取值范围为_____________.20.已知函数()21f x ax a =+-的图象恒过定A ,若点A 在直线10mx ny ++=上,其中0m n ⋅>,则12m n+的最小值为____ 三、解答题21.在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为f t .(1)求函数f t 的解析式;(2)要使得窗户的高最小,BC 边应设计成多少厘米?(3)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?22.某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为2150400004y x x =-+,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.23.已知二次函数()2f x ax bx c =++,若不等式()20f x +>的解集为()1,2,且方程()0f x x +=有两个相等的实数根.(1)求()f x 的解析式;(2)若()1,x ∃∈+∞,()0f x mx +>成立,求实数m 的取值范围.24.若0,0x y >>,且满足280x y xy +-=.(1)求xy 的最小值及相应x ,y 的值;(2)求x y +的最小值及相应x ,y 的值.25.设函数2()(2)3(0)f x ax b x a =+-+≠,(1)若不等式()0f x >的解集(1,3)-.求a ,b 的值;(2)若()12f =,0a >,0b >,求14a b+的最小值.26.已知函数()()221.y mx m x m m R =-++∈ (1)当2m =时,解关于x 的不等式0y ≤;(2)当0m >时,解关于x 的不等式0y >.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由于0a >,0b >且2ab =,则利用基本不等式可得428a b +=≥=≥,从而可得答案【详解】因为0a >,0b >且2ab =,所以428a b +=≥==≥, 当且仅当2a b =时,即1a =,2b =时取等号.故选:D.【点睛】关键点点睛:该题考查的是有关利用基本不等式求最值的问题,正确解题的关键是要明确等号成立的条件. 2.C解析:C【分析】 由已知可得()122m a b a b ⎛⎫≤++⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案.【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+ ⎪⎝⎭, 当且仅当4b a a b=即2b a =等号成立,要使不等式恒成立,所以8m ≤ 所以实数m 的最大值为8. 故选:C.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论:(1)当0m =时,可得10>,合乎题意;(2)当0m ≠时,则有2040m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,实数m 的取值范围是[)0,4.故选:B.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩;④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 4.B解析:B【分析】根据不等式的解集与对应的方程根的关系的关系求得3,4b a c a ==-且0a <,化简不等式为2340x x +-<,结合一元二次不等式的解法,即可求解.【详解】由题意,不等式20ax bx c ++>的解集是{}41x x -<<,可得4x =-和1x =是方程20ax bx c ++=的两根,且0a <, 所以4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,可得3,4b a c a ==-, 所以不等式2(1)(3)0b x a x c -+++>可化为23(1)(3)40a x a x a -++->,因为0a <,所以不等式等价于23(1)(3)40x x -++-<,即234(1)(34)0x x x x +-=-+<,解得413x -<<, 即不等式2(1)(3)0b x a x c -+++>的解集为413x x ⎧⎫-<<⎨⎬⎩⎭. 故选:B.【点睛】解答中注意解一元二次不等式的步骤:(1)变:把不等式变形为二次项系数大于零的标准形式;(2)判:计算对应方程的判别式;(3)求出对应的一元二次方程的根,或根据判别式说明方程有没有实根;(4)利用“大于取两边,小于取中间”写出不等式的解集.5.A解析:A【分析】结合选项逐个分析,可选出答案.【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y x x y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B不正确;对于选项C ,110y x x y xy --=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A.【点睛】 本题考查了不等式的性质,属于基础题.6.D解析:D【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m n y n m =-=-, 则2222224()424222x y m n n m n m n m x y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n m m n =,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.7.B解析:B【详解】()41141144133y x x y x y x y x y ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭145233y x x y ⎛≥+⨯= ⎝, 当且仅当4y x x y =,即21x y ==,,时41x y+的最小值为3. 故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.8.B解析:B【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果.【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n =+,又,,O M N 三点共线, 故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B .【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.9.B解析:B【分析】 由题意,得到121222()(2)5b a a b a b a b a b +=++=++,结合基本不等式,即可求解,得到答案.【详解】由题意,正实数a ,b 满足21a b +=,则121222()(2)55549b a a b a b a b a b +=++=++≥+=+=, 当且仅当22b a a b =,即13a b ==等号成立, 所以12a b+的最小值为9. 故选:B.【点睛】本题主要考查了利用基本不等式求解最值问题,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了构造思想,以及推理与运算能,属于据此话题. 10.A解析:A【分析】利用“乘1法”与基本不等式的性质即可得出.【详解】∵m ,0n >,4121m n+=+,∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+=⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n+=+,即2m =,32n =时取等号, 故m n +的最小值72. 故选:A.【点睛】本题主要考查了均值不等式求最值,“1”的变形使用,属于中档题.11.C解析:C【分析】根据不等式及解集,可得2b a =-,将不等式201ax bx x +>+化简后,结合穿根法即可求得解集. 【详解】关于x 的不等式0ax b ->变形可得ax b >,因为其解集为(),2-∞-所以0a <,且2b a=- 关于x 的不等式201ax bx x +>+变形可得201b a x x a x ⎛⎫+ ⎪⎝⎭>+ 即()2120a x x x >+-,所以()120ax x x >+- 因为0a <,不等式可化为()120x x x <+- 可化为()()210x x x -+<利用穿根法可得1x <-或02x <<即()(),10,2x ∈-∞-⋃故选:C【点睛】本题考查了含参数的不等式解法,注意不等式的符号变化,属于中档题.12.A解析:A【分析】由已知条件和三角形的面积公式得4ac =,再根据基本不等式可得+4a c ≥,令24a c y a c +=-+,+a c t =,24t y t =-(4t ≥),由此函数的单调性可得选项. 【详解】 由已知6B π=且1ABC S =△,得1sin 126ac π=,解得4ac =, 所以2+42a c ac ⎛⎫=≤ ⎪⎝⎭,即+4a c ≥,当且仅当a c =时取等号, 所以224a c a c ac a c a c ++-=-++,令24a c y a c +=-+,+a c t =,则24t y t =-(4t ≥),而24t y t =-在[)4+∞,单调递增,所以24214442t y t =-≥-=,所以2a c ac a c +-+的最小值为12. 故选:A.【点睛】本题考查三角形的面积公式,基本不等式的应用,以及运用函数的单调性求最值的问题,属于中档题.二、填空题13.【分析】设米米根据可得出利用基本不等式可求得的最大值即为所求【详解】设米米则即整理可得由基本不等式可得当且仅当时即当时等号成立因此停车场面积的最大值为平方米故答案为:【点睛】易错点睛:利用基本不等式 解析:10000【分析】设AD x =米,AF y =米,根据tan DE CF AC ABC BD EF AB∠===可得出16254000x y +=,利用基本不等式可求得xy 的最大值,即为所求.【详解】设AD x =米,AF y =米,则250BD AB AD x =-=-,160CF AC AF y =-=-,tan DE CF AC ABC BD EF AB ∠===,即160160250250y y x x -==-,整理可得16254000x y +=,由基本不等式可得40001625x y =+≥=,10000xy ∴≤, 当且仅当162516254000x y x y =⎧⎨+=⎩时,即当12580x y =⎧⎨=⎩时,等号成立. 因此,停车场面积的最大值为10000平方米.故答案为:10000.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据两个函数互为相异函数可得有恒成立且在上有解利用参变分离先讨论前者再结合二次函数的图象和性质可得所求的取值范围【详解】因为当时当时当时结合互为相异函数故有恒成立且在上有解先考虑有恒成立则在 解析:(),4-∞-【分析】根据两个函数互为“1相异”函数可得[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解,利用参变分离先讨论前者,再结合二次函数的图象和性质可得所求的取值范围.【详解】因为当1x >时,()0g x >,当1x =时,()0g x =,当1x <时,()0g x <, 结合()(),f x g x 互为“1相异”函数,故[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解.先考虑[1,)x ∀∈+∞,有()0f x <恒成立,则210ax ax 在[1,)+∞上恒成立, 故2+1a x x<在[1,)+∞上恒成立, 因为22+x x ≥,故2+1102x x <≤,故0a ≤. 再考虑()0f x >在(),1-∞上有解,若0a =,则()10f x =-<,故()0f x >在(),1-∞上无解,若0a <,()f x 的对称轴为12x =-,且开口向下,由()0f x >在(),1-∞上有解可得240a a ∆=+>,故4a 或0a >(舍).故实数a 的取值范围是(),4-∞-,故答案为:(),4-∞-.【点睛】方法点睛:对于新定义背景下的函数性质的讨论,一般是先根据定义得到含参数的函数的性质,对于不等式的恒成立或有解问题,可优先考虑参变分离的方法,也可以结合函数图象的性质处理.15.【分析】由题意可得利用基本不等式可求得的最小值由此可求得实数的取值范围【详解】由于不等式对任意实数恒成立则由基本不等式可得当且仅当时即当时等号成立所以因此实数的取值范围是故答案为:【点睛】本题考查利解析:(),1-∞【分析】由题意可得3231x x k -<+⋅-,利用基本不等式可求得3231x x -+⋅-的最小值,由此可求得实数k 的取值范围.【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞.【点睛】本题考查利用基本不等式求解不等式恒成立问题,考查参变量分离法的应用,考查计算能力,属于中等题. 16.;【分析】的最大值为由题意可得且且运用绝对值的解法和不等式的性质结合两边夹法则可得然后求出【详解】解:函数可得的最大值为而对任意的都有可得且且由可得可得则即有①由可得解得②由①②可得则即有又可得则故 解析:2-;【分析】()f x 的最大值为()()0,4,()2a max f f f ⎧⎫-⎨⎬⎩⎭,由题意可得||2b ,且|164|2a b ++,且2|4|8a b -,运用绝对值的解法和不等式的性质,结合两边夹法则可得4a =-,2b =,然后求出+a b .【详解】解:函数2()||f x x ax b =++,[0x ∈,4],可得()f x 的最大值为()()0,4,()2a max f f f ⎧⎫-⎨⎬⎩⎭, 而(0)||f b =, ()4|164|f a b =++,2()||24a a fb -=-, 对任意的[0x ∈,4],都有()2f x ,可得||2b ,且|164|2a b ++,且2|4|8a b -,由284818414a b a b ⎧--⎨-+-⎩可得28487216456a b a b ⎧--⎨-+-⎩, 可得2801648a a -+-,则216(8)16a -+,即有124a --,①由2848848b a b -⎧⎨--⎩可得21616a -,解得44a -,② 由①②可得4a =-,则|164|8b -,即有26b ,又22b -,可得2b =,则2a b +=-,故答案为:2-.【点睛】本题考查含绝对值的函数的最值求法,以及函数恒成立问题解法,注意运用对称轴与区间的关系,以及绝对值的解法和不等式的性质,考查运算能力和推理能力,属于中档题. 17.2【分析】首先根据题意得到从而得到即再根据恒成立即可得到的最大值【详解】因为所以所以即解得因为恒成立所以即所以的最大值为故答案为:【点睛】本题主要考查基本不等式同时考查了不等式的恒成立问题属于中档题 解析:2【分析】首先根据题意得到()228x y xy +≤,从而得到()8622x y y x ≤+++,即224x y ≤+≤,再根据2m x y ≤+恒成立,即可得到m 的最大值.【详解】因为0x >,0y >, 所以()()22221122248x y x y xy x y ++=⋅≤⨯=, 所以()()()22122862222228y x y x x y x y x y x y x y xy y x x y ++=+++=++≥++=++++.即()8622x y y x≥+++, ()()226280x y x y +-++≤,解得224x y ≤+≤.因为2m x y ≤+恒成立,所以()min 2m x y ≤+,即2m ≤.所以m 的最大值为2.故答案为:2【点睛】本题主要考查基本不等式,同时考查了不等式的恒成立问题,属于中档题.18.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题 解析:10【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】 49abc a b =+4994a b c ab a b+∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号) 故答案为:10【点睛】本题主要考查了基本不等式的应用,属于中档题.19.【分析】分和两种情况讨论结合题可得出关于实数的不等式组由此可解得实数的取值范围【详解】当时可得或①当时可得合乎题意;②当时可得解得不合乎题意;当时由题意可得解得综上所述实数的取值范围是故答案为:【点 解析:1,19【分析】分2450m m +-=和2450m m +-≠两种情况讨论,结合题可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】当2450m m +-=时,可得1m =或5m =-.①当1m =时,可得30>,合乎题意;②当5m =-时,可得2430x +>,解得18x >-,不合乎题意;当2450m m +-≠时,由题意可得()()22245016112450m m m m m ⎧+->⎪⎨∆=--+-<⎪⎩,解得119m <<.综上所述,实数m 的取值范围是1,19.故答案为:1,19.【点睛】本题考查利用一元二次不等式在实数集上恒成立求参数,考查计算能力,属于中等题. 20.【分析】先求得函数的图象恒过定点代入直线的方程得到再结合基本不等式即可求解【详解】由题意函数可得函数的图象恒过定点又由点在直线上可得则又因为则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】本 解析:8【分析】先求得函数()y f x =的图象恒过定点(2,1)A --,代入直线的方程,得到21m n +=,再结合基本不等式,即可求解.【详解】由题意,函数()21(2)1f x ax a a x =+-=+-,可得函数()y f x =的图象恒过定点(2,1)A --,又由点(2,1)A --在直线10mx ny ++=上,可得210m n --+=,则21m n +=, 又因为0m n ⋅>,则0m n>,所以12124()(2)448n m m n m n m n m n +=++=++≥=, 当且仅当122n m ==时,等号成立, 因此,12m n+的最小值为8. 故答案为:8.【点睛】本题主要利用基本不等式求最值问题,同时考查函数的图象过定点问题的应用,其中解答中熟记基本不等式的“一正、二定、三相等”,准确运算时解答的关键,着重考查推理与运算能力.三、解答题21.无22.无23.无24.无25.无26.无。
北京第十五中学必修第一册第三单元《函数概念与性质》测试(有答案解析)

一、选择题1.已知定义在0,上的函数()f x ,fx 是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x x f e e ->的解集是( )A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,2.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆O (O 为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.则下列函数中一定是“优美函数”的为( )A .1()f x x x=+B .1()f x x x=-C .(22()ln 1f x x x =+D .(2()ln 1f x x x =+3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<5.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>6.奇函数()f x 在(0)+∞,内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( )A .()()(),21,02,-∞--+∞B .()()2,12,--+∞C .()(),22,-∞-+∞D .()()(),21,00,2-∞--7.下列函数中,是奇函数且在()0,∞+上单调递增的是( )A .y =B .2log y x =C .1y x x=+D .5y x =8.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦9.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-10.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-111.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .10212.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±13.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,214.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .15.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞二、填空题16.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.17.设非零实数a ,b 满足224a b +=,若函数21ax by x +=+存在最大值M 和最小值m ,则M m -=_________.18.已知等差数列{}n a 满足:20a >,40a <,数列的前n 项和为n S ,则42S S 的取值范围是__________.19.若函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上是单调增函数.如果实数t 满足1(ln )ln 2(1)f t f f t ⎛⎫+< ⎪⎝⎭时,那么t 的取值范围是__________.20.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.21.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________. 22.已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)(4)f a f -<,则a 的取值范围为____.23.已知函数()f x =ln 2x x +,则()232f x -<的解集为_____.24.已知函数()1lg11xf x x-=++,若()4f m =,则()f m -=______. 25.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)26.已知()f x 是奇函数,且当0x <时,2()32f x x x =++,若当[1x ∈,3]时,()n f x m 恒成立,则m n -的最小值为___.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由导数公式得出2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,从而得出函数()f x x 的单调性,将不等式()0xxf e e ->可化为()(2)2x xf e f e >,利用单调性解不等式即可.【详解】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间0,上单调递减不等式()0xxf e e->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C 【点睛】关键点睛:解决本题的关键是由导数公式得出函数()f x x的单调性,利用单调性解不等式. 2.D解析:D 【分析】根据题意可知优美函数的图象过坐标原点,图象关于坐标原点对称,是奇函数,再分别检验四个选项的正误即可得正确选项. 【详解】根据优美函数的定义可得优美函数的图象过坐标原点,图象关于坐标原点对称,是奇函数,对于选项A :1()f x x x=+的定义域为{}|0x x ≠,所以不过坐标原点,不能将周长和面积同时平分,故选项A 不正确;对于选项B :1()f x x x=-的定义域为{}|0x x ≠,所以不过坐标原点,不能将周长和面积同时平分,故选项B 不正确;对于选项C :(22()ln 1f x x x =+定义域为R ,(()22()ln 1f x x x f x -=+=,是偶函数,图象关于y 轴对称,故选项C 不正确;对于选项D :()2()ln 1f x x x =++定义域为R ,()()22()()ln 1ln 1ln10f x f x x x x x -+=-+++++==,所以()()f x f x -=-,所以()2()ln 1f x x x =++图象过坐标原点,图象关于坐标原点对称,是奇函数,符合优美函数的定义,选项D 正确,故选:D 【点睛】关键点点睛:本题解题的关键点是由题意得出优美函数具有的性质:图象过坐标原点,是奇函数图象关于原点对称.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=,()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 5.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=,所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数, 所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题6.A解析:A 【分析】由已知可作出函数的大致图象,结合图象可得到答案. 【详解】因为函数()f x 在(0)+∞,上单调递减,(2)0f =, 所以当(02)x ∈,时,()0f x >,当(2)x ∈+∞,,()0f x <, 又因为()f x 是奇函数,图象关于原点对称,所以()f x 在()0-∞,上单调递减,(2)0f -=, 所以当(20)x ∈-,时,()0f x <,当2()x ∈-∞-,时,()0f x >, 大致图象如下,由(1)()0x f x +<得10()0x f x +>⎧⎨<⎩或10()0x f x +<⎧⎨>⎩,解得2x >,或10x -<<,或2x <-,故选:A. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 的大致图象,考查了学生分析问题、解决问题的能力.7.D解析:D 【分析】对四个选项一一一判断:A 、B 不是奇函数,C 是奇函数,但在()0,∞+上不单调. 【详解】对于A : y =()0,∞+上单调递增,但是非奇非偶,故A 错误;对于B :2log y x =为偶函数,故B 错误; 对于C :1y x x=+在(0,1)单减,在(1,+∞)单增,故C 错误; 对于D :5y x =既是奇函数也在()0,∞+上单调递增,符合题意. 故选:D 【点睛】四个选项互不相关的选择题,需要对各个选项一一验证.8.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】 根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦, 所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立,可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.9.C解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--, 即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()1212120f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.10.C解析:C【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数,∴令10x -≤≤,则[0,1]x -∈,由题意,有()31()x f x f x --=-=-, ∴1()13x f x =-,故()111123f --=-=-, 故选:C【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值. 11.D解析:D【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b x g x f x x x+=--= ()()()()()sin tan sin tan cos cos a x b x a x b x g x g x x x-+---∴-===-- ()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-= 即()()2101011f ----= ()10102f ∴-= 本题正确选项:D【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.12.C解析:C【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案.【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x ax h x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩, 由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±,所以1a =±.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题. 13.B解析:B【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解.【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩, 可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.14.B解析:B【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项.【详解】()22,12222,1x xx x f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.15.B解析:B【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B .【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法二、填空题16.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.17.2【分析】化简得到根据和得到解得答案【详解】则则即故即即故答案为:2【点睛】本题考查了函数的最值意在考查学生的计算能力和转化能力利用判别式法是解题关键解析:2【分析】化简得到20yx ax y b -+-=,根据0∆≥和224a b +=得到2222b b y -+≤≤,解得答案.【详解】 21ax b y x +=+,则20yx ax y b -+-=,则()240a y y b ∆=--≥, 即22440y yb a --≤,224a b +=,故224440y yb b -+-≤,()()22220y b y b -+--≤⎡⎤⎡⎤⎣⎦⎣⎦,即2222b b y -+≤≤,即22,22b b m M -+==, 2M m -=.故答案为:2.【点睛】本题考查了函数的最值,意在考查学生的计算能力和转化能力,利用判别式法是解题关键. 18.【分析】根据题意可得到把转化为关于的函数即可求出范围【详解】由题意可得:据此可得:则令结合等差数列前n 项和公式有:令则据此可知函数在上单调递减即的取值范围是故答案为:【点睛】关键点点睛:本题根据等差 解析:6(2,)5- 【分析】 根据题意可得到131a d -<<-,把42S S 转化为关于()13,1a t d=∈--的函数,即可求出范围. 【详解】 由题意可得:121410,0030a d a a d a a d ><⎧⎪=+>⎨⎪=+<⎩,据此可得:13d a d -<<-,则131a d -<<-, 令()13,1a t d=∈--,结合等差数列前n 项和公式有: 111142434464622122122a d S a d t S a d t a d ⨯+++===⨯+++, 令()()463121t f t t t +=-<<-+, 则()2(21)4422121t f t t t ++==+++, 据此可知函数()f t 在()3,1--上单调递减,()1242f -=-=-,()4632615f -=+=-+, 即42S S 的取值范围是62,5⎛⎫- ⎪⎝⎭. 故答案为:6(2,)5-【点睛】关键点点睛:本题根据等差数列的条件,求出首项与公差的关系,看作一个整体t ,将问题转化为关于t 的函数,利用函数的单调性求解,体现了转化思想,考查了运算能力,属于中档题. 19.【解析】试题分析:因为函数是定义在上的偶函数所以由考点:奇偶性与单调性的综合应用 解析:1.t e e<< 【解析】试题分析:因为函数()f x 是定义在R 上的偶函数,所以(ln 1)(ln )(ln )(ln ),f t f t f t f t =-==由(ln )(ln 1)2(1)2(ln )2(1)(ln )(1)ln 11ln 11.f t f t f f t f f t f t t e t e +<⇒<⇒<⇒<⇒-<<⇒<<考点:奇偶性与单调性的综合应用20.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.21.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解. 22.【分析】由偶函数的性质将不等式表示为再由函数在区间上的单调性得出与的大小关系解出不等式即可【详解】函数是上的偶函数所以由得函数在区间上单调递增得解得因此实数的取值范围是故答案为【点睛】本题考查函数不 解析:17a -<<【分析】由偶函数的性质()()f x f x =将不等式表示为()()34f a f -<,再由函数()y f x =在区间[)0,+∞上的单调性得出3a -与4的大小关系,解出不等式即可.【详解】函数()y f x =是R 上的偶函数,所以()()f x fx =, 由()()34f a f -<,得()()34f a f -<,函数()y f x =在区间[)0,+∞上单调递增,34a ∴-<,得434a -<-<,解得17a -<<,因此,实数a 的取值范围是()1,7-,故答案为()1,7-.【点睛】本题考查函数不等式的求解,对于这类问题,一般要考查函数的奇偶性与单调性,将不等式转化为()()12f x f x <(若函数为偶函数,可化为()()12f x f x <),结合单调性得出1x 与2x 的大小(或1x 与2x 的大小)关系,考查推理能力与分析问题的能力,属于中等题.23.【分析】可判断出函数在上单调递增将不等式化为可得出解出即可【详解】因为单增单增所以函数在区间上单增而==等价于所以即解得或即的解集为故答案为:【点睛】解函数不等式:首先根据函数的性质把不等式转化为的解析:(()2,3,2- 【分析】可判断出函数()f x 在()0,∞+上单调递增, 将不等式化为()()231f x f -<,可得出2031x <-<,解出即可.【详解】因为ln y x =单增,2x y =单增,所以函数()f x 在区间()0,∞+上单增.而()1f =1ln12+=()22,32f x -<等价于()()231f x f -<,所以2031x <-<,即234x <<,解得2x -<<2x <<.即()232f x -<的解集为(()2,3,2-.故答案为:(()2,3,2-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内 24.【分析】首先构造新的函数然后运用函数的奇偶性的定义判断函数的奇偶性用整体思想求解出【详解】令则又为上的奇函数又故答案为:【点睛】本题考查函数的奇偶性构造方法构造新的函数整体思想求出答案属于中档题 解析:2-【分析】首先构造新的函数,然后运用函数的奇偶性的定义判断函数的奇偶性,用整体思想求解出()()12f m g m -=-+=-.【详解】令1()lg 1x g x x-=+ (11)x -<<,则()()1f x g x =+, 又11()lg lg ()11x x g x g x x x+--==-=--+,()g x ∴为(1,1)-上 的奇函数,又()4f m =,()()13g m f m ∴=-=,()()3g m g m ∴-=-=-,()()12f m g m ∴-=-+=-.故答案为:2-.【点睛】本题考查函数的奇偶性,构造方法构造新的函数,整体思想求出答案 ,属于中档题. 25.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减 解析:③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确;(2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确. 故答案为:③④.【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.26.【分析】先利用二次函数的性质得到函数在区间上的最值然后根据是奇函数得到时的最值然后根据恒成立求解【详解】当时当时函数在上是减函数在上是增函数所以在上的最小值为最大值为所以当时又是奇函数当时即因为当时 解析:94【分析】先利用二次函数2()32f x x x =++的性质,得到函数在区间[3-,1]-上的最值,然后根据()f x 是奇函数,得到[1x ∈,3]时的最值,然后根据()n f x m 恒成立求解.【详解】当0x <时,2()32f x x x =++, ∴当[3x ∈-,1]-时,函数在[3-,3]2-上是减函数,在3[2-,1]-上是增函数, 所以()f x 在[3-,1]-上的最小值为23331()()322224f ⎛⎫-=-+⨯-+=- ⎪⎝⎭,最大值为2(3)(3)3322f -=--⨯+=,所以当[3x ∈-,1]-时,1()24f x -又()y f x =是奇函数,∴当13x ,时1()()[,2]4f x f x -=-∈- 即12()4f x - 因为当[1x ∈,3]时,()n f x m 恒成立所以区间[2-,1][4n ⊆,]m ,所以19(2)44m n---= 故答案为:94 【点睛】本题主要考查函数的奇偶性、二次函数在闭区间上的最值和函数恒成立问题,还考查了运算求解的能力,属于中档题.。
宁波市十五中必修一第四单元《函数应用》检测(包含答案解析)

一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭,B .()0,2C .()0,1D .(]0,12.已知汽车从踩刹车到停车所滑行的距离()m s 与速度()km/h v 之间有如下关系式:2s k M v =⋅⋅,其中k 是比例系数,且0,k M >是汽车及其载重质量之和.若某辆卡车不装货物(司机体重忽略不计)以36km/h 的速度行驶时,从刹车到停车需要走20m .当这辆卡车装载等于车重的货物行驶时,为保证安全,要在发现前面20m 处有障碍物时能在离障碍物5m 及以外处停车,则最高速度是(设司机发现障碍物到踩刹车经过1s )( ) A .36km/hB .30km/hC .24km/hD .18km/h3.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫--⎪⎝⎭C .(-3,-1)D .(-3,-1]4.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( ) A .(0,4) B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞5.已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)- C .(1,0)- D .[1,0)-6.已知函数24,?0()7,?0x f x x x x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a的取值范围是( ) A .(﹣4,0] B .(-∞,﹣9) C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]7.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2 B .1.7C .2.0D .2.58.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .3 9.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞10.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是A .(0,1)B .(e ,e 3)C .(e ,e 2)D .(1,e 3)11.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-12.已知定义在R .上的偶函数f (x ), 对任意x ∈R ,都有f (2-x ) =f (x +2),且当[2,0]x ∈-时()21x f x -=-.若在a > 1时,关于x 的方程()()log 20a f x x -+=恰有三个不同的实数根,则实数a 的取值范围是( ) A .(1,2)B .(232,2)C .23(,2)-∞(2, +∞) D .(2,+∞)二、填空题13.若函数244y ax a x =+-存在零点,则实数a 的取值范围是______.14.已知函数()2,0lg ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,则方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是__________.15.已知函数f (x )=212{3,21x x x x -≤>-,,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为________.16.已知函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩,若函数()()g x f x m =-与x 轴有3个交点,则实数m 的取值范围是_________.17.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3/mg mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09/mg mL ,那么这个人至少经过________小时才能开车.(精确到1小时,参考数据:lg30.48,lg 40.60≈≈) 18.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为________19.已知函数254,0()22,0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若函数()y f x a x =-恰有4个零点,则实数a 的取值范围是________.20.若关于x 的方程1xa k -=(0a >且1a ≠)恰有两个解,则k 的取值范围是______.三、解答题21.已知函数()f x 为偶函数,当0x ≥时,()11x x e f x e -=+.(1)求当0x <时,函数()f x 的解析式; (2)判断函数()f x 在(),0-∞上的单调性并证明;(3)设函数()()()2g x f ax f x a =--+,使函数()g x 有唯一零点的所有a 构成的集合记为M ,求集合M .22.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+(万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 23.受“新冠”肺炎疫情的影响,实体经济萎靡,线上投资走红,某家庭进行网上理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,投资股票等风险型产品的年收益与投资额的算术平方根成正比.已知投资1万元时两类产品的年收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的年收益与投资额的函数关系式;(2)该家庭现有10万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元? 24.已知函数(2),()(1),x x a x af x a x x a-≥⎧=⎨-<⎩,其中a 为实数,且0a ≠.(1)当1a =-时,求函数()f x 的单调区间;(2)若方程()0f x =仅有一个实数根,求实数a 的取值范围.25.某创业投资公司拟投资开发某种新能源产品,估计能获得25万元1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为()y f x =时,则公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()75f x ≤恒成立;③()5xf x ≤恒成立.) (1)判断函数() 1030x f x =+是否符合公司奖励方案函数模型的要求,并说明理由; (2)已知函数()()51g x a x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围.(参考结论:函数()()0af x x a x=+>的增区间为(,a -∞、),a +∞,减区间为(),0a 、(a )26.已知函数5()log ,(01)5ax f x a a x -=>≠+,. (1)判断()f x 的奇偶性,并加以证明;(2)设()log (3)a g x x =-,若方程()1()f x g x -=有实根,求a 的取值范围;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.D解析:D 【分析】根据v =36km/h 时,20m s =,求出5324k M ⋅=,求出司机发现障碍物到踩刹车经过1s ,汽车行驶的距离,再由不等式25202518vk Mv --⋅可解得结果. 【详解】因为2s k M v =⋅⋅,且当v =36km/h 时,20m s =, 所以22036k M =⋅⋅,∴5324k M ⋅=, 司机发现障碍物到踩刹车经过1s ,汽车行驶的距离为10005(m)360018vv ⋅=, 由25202518v k Mv --⋅,得25520518162v v --, 即294860v v +-≤,解得2718v -≤≤. ∴则最高速度是18km/h . 故选:D.关键点点睛:理解题意,找出题目中的不等关系是解题关键.3.C解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-,∴112a a <-⎧⎨--<⎩,解得31a -<<-. 故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.4.D解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.5.B解析:B 【分析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可. 【详解】因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202xxae a e +==-即有一个根即可, 因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-, 故选:B. 【点睛】已知函数有零点(方程有根),求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后利用数形结合求解.6.C解析:C 【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解. 【详解】令()()0g x f x x a =+-=,得24,?06,?0x x a xx x x ⎧+<⎪=⎨⎪-≥⎩, 令24,?0,6,?0x x y a y xx x x ⎧+<⎪==⎨⎪-≥⎩, 在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点, 由图象可得:a <﹣9或﹣4<a ≤0, 故选:C 【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.7.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =,所以0.40()tI t N e =,由0()2I t N =,得0.4002tN eN =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B 【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题8.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值; 当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-.综上可知③正确; 故选:C 【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.9.D解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.10.B解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xn x ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.11.D解析:D 【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123ax x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =,∴23123334224(2,0]x ax x x x x ++=-+=-+∈-. 故选:D .【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.12.B解析:B 【分析】由函数的奇偶性和周期性作()f x 的图象,将方程的根的问题转化为两函数图象交点的问题,从而得log (22)3log (62)3a a+<⎧⎨+>⎩,进而可求出实数a 的取值范围.【详解】依题意函数()f x 的图象关于y 轴及直线2x =对称,所以()f x 的周期为4, 作出[]2,0x ∈-时()f x 的图象,由()f x 的奇偶性和周期性作出()f x 的图象, 关于x 的方程()log (2)0a f x x -+=恰有三个不同的实数根, 可转化为函数()f x 与log (2)a y x =+的图象有三个不同的交点, 由数形结合可知log (22)3log (62)3a a +<⎧⎨+>⎩,解得2322a <<,故选:B .【点睛】本题考查了数形结合的思想,考查了函数的奇偶性和周期性,考查了函数的零点与方程的根,考查了对数不等式的求解,属于中档题.画出函数的图象是本题的关键.二、填空题13.【分析】将函数存在零点转化为与图像有交点作出图像观察图像得出实数的取值范围【详解】解:设则函数存在零点等价于与图像有交点如图:函数的图像恒过点当其和函数的图像相切时有解得由图像可知所以所以与的图像有解析:3⎡⎢⎣⎦【分析】将函数244y ax a x =+-()()4f x a x =+与2()4g x x =-点,作出图像,观察图像得出实数a 的取值范围. 【详解】解:设()()4f x a x =+,2()4g x x =-则函数244y ax a x =+-()()4f x a x =+与2()4g x x =-点, 如图:函数()()4f x a x =+的图像恒过点(4,0)-,当其和函数2()4g x x =-2421aa =+,解得3a =±,由图像可知,0a >,所以33a =, 所以()()4f x a x =+与2()4g x x =-303a ≤≤. 故答案为:3⎡⎢⎣⎦.【点睛】本题考查函数零点问题的研究,关键是将零点问题转化为函数图像的交点问题,考查数形结合的思想,是中档题.14.【分析】解方程可得或然后分和解方程或由此可得出结论【详解】解方程可得或当时由可得解得由可得解得(舍);当时由可得则解得或由可得则解得或综上所述方程实根的个数是故答案为:【点睛】方法点睛:判定函数的零 解析:5【分析】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =,然后分0x ≤和0x >解方程()2f x =或()12f x =,由此可得出结论. 【详解】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =. 当0x ≤时,由()2f x =可得22x -=,解得1x =-,由()12f x =可得122x-=,解得1x =(舍);当0x >时,由()2f x =可得lg 2x =,则lg 2x =±,解得100x =或1100x =, 由()12f x =可得1lg 2x =,则1lg 2x =±,解得10x =或1010x =. 综上所述,方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是5.故答案为:5. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15.【分析】将所求问题转化为与直线的图象有三个不同交点数形结合即可得到答案【详解】方程f(x)-a =0有三个不同的实数根等价于与直线的图象有三个不同交点作出的图象如图由图可得故答案为:【点睛】方法点睛: 解析:(0,1)【分析】将所求问题转化为()y f x =与直线y a =的图象有三个不同交点,数形结合,即可得到答案. 【详解】方程f (x )-a =0有三个不同的实数根等价于()y f x =与直线y a =的图象有三个不同交点,作出()f x 的图象如图,由图可得(0,1)∈a 故答案为:(0,1)【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解16.【分析】先将函数与轴有个交点转化成与的交点问题再作出分段函数的图像利用数形结合求得范围即可【详解】依题意函数与轴有个交点即与有3个交点作分段函数的图像如下由图可知的取值范围为故答案为:【点睛】方法点 解析:()0,1【分析】先将函数()()g x f x m =-与x 轴有3个交点,转化成()y f x =与y m =的交点问题,再作出分段函数()y f x =的图像,利用数形结合求得m 范围即可. 【详解】依题意,函数()()g x f x m =-与x 轴有3个交点, 即()y f x =与y m =有3个交点,作分段函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩的图像如下,由图可知,m 的取值范围为()0,1. 故答案为:()0,1. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.17.5【分析】先根据题意设小时后才能开车再结合题中条件:血液中的酒精含量不超过009mg/mL 得到一个关于的不等关系再根据指对数不等式的求解即可【详解】设小时后才能开车则有即两边取对数有因为故代入可得故解析:5 【分析】先根据题意设x 小时后才能开车.再结合题中条件:“血液中的酒精含量不超过0.09mg/mL,”得到一个关于x 的不等关系,再根据指对数不等式的求解即可. 【详解】设x 小时后才能开车,则有()0.310.250.09x⋅-≤,即30.34x⎛⎫≤ ⎪⎝⎭,两边取对数有3lg lg 0.34x ≤,因为3lg 04<故lg 0.3lg313lg3lg 4lg 4x -≥=-.代入lg30.48,lg 40.60≈≈可得0.481130.480.603x -≥=-.故x 最小为5.【点睛】本题主要考查了指对数运算在实际情景中的运用,需要根据题意建立联系,再根据对数运算法则代入近似值计算.属于基础题.18.3【分析】根据题意求得的周期;画出的图象数形结合根据函数图象交点个数即可求得零点个数【详解】当时则此时有∵∴∴函数是周期为2的周期函数令则由题意得函数的零点个数即为函数的图象与函数的图象交点的个数在解析:3 【分析】根据题意,求得()f x 的周期;画出(),ln y f x y x ==的图象,数形结合,根据函数图象交点个数即可求得零点个数. 【详解】当10x -<时,则011x +<, 此时有()(1)1f x f x x =-+=--, ∵()()1f x f x +=-,∴()()21[()]()f x f x f x f x +=-+=--=,∴函数()y f x =是周期为2的周期函数. 令()()ln 0g x f x x =-=,则()ln f x x =, 由题意得函数()()ln g x f x x =-的零点个数即为函数()y f x =的图象与函数y ln x =的图象交点的个数.在同一坐标系内画出函数()y f x =和函数y ln x =的图象(如图所示),结合图象可得两函数的图象有三个交点, ∴函数()()ln g x f x x =-的零点个数为3.【点睛】本题考查数形结合判断函数零点个数的问题,涉及函数周期性的求解,属综合中档题.19.【分析】函数恰有4个零点等价于函数与函数的图象有四个不同的交点画出函数图象利用数形结合思想进行求解即可【详解】函数恰有4个零点等价于函数与函数的图象有四个不同的交点画出函数图象如下图所示:由图象可知 解析:(1,3)【分析】函数()y f x a x =-恰有4个零点,等价于函数()f x 与函数y a x =的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可. 【详解】函数()y f x a x =-恰有4个零点,等价于函数()f x 与函数y a x =的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数a 的取值范围是13a <<. 故答案为:(1,3) 【点睛】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想.20.【分析】根据函数与方程之间的关系转化为函数图象交点个数问题结合指数函数的性质利用数形结合进行求解即可【详解】解:不妨设则作出函数的图象如图:要使方程(且)恰有两个解则即实数k 的取值范围是故答案为:【 解析:0,1【分析】根据函数与方程之间的关系,转化为函数图象交点个数问题,结合指数函数的性质,利用数形结合进行求解即可. 【详解】解:不妨设1a >,则1,0()11,0x xx a x f x a a x ⎧-≥=-=⎨-+<⎩,作出函数()f x 的图象如图:要使方程|1|x a k -=(0a >且1a ≠)恰有两个解, 则01k <<,即实数k 的取值范围是()0,1, 故答案为:()0,1【点睛】本题主要考查函数与方程的应用,利用指数函数的性质转化为两个函数的交点个数问题,利用数形结合是解决本题的关键.三、解答题21.(1)()11xxe f x e-=+;(2)函数()f x 在(),0-∞上单调递减,证明见详解;(3){}1,0,1,2M =-.【分析】(1)当0x <时,0x ->,()1111x xx xe ef x e e -----==++,利用函数的奇偶性求解即可;(2)函数()f x 在(),0-∞上单调递减,利用定义证明函数的单调性即可;(3)把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题,利用函数的奇偶性和单调性得到2ax x a =-+,两边平方,利用方程有唯一的解即可得出结果. 【详解】(1)当0x <时,0x ->, 又函数()f x 为偶函数,则()()1111x xx xe ef x f x e e-----===++,所以函数()f x 的解析式为()11xxe f x e-=+; (2)函数()f x 在(),0-∞上单调递减, 设任意120x x <<,则()()()()()12212112212111111x x x x x x x x e e e e f x f x e e e e ----=-=++++, 因为xy e =在R 上单调递增, 所以12x x e e <,即120x x e e -<, 所以()()21f x f x <,所以函数()f x 在(),0-∞上单调递减; (3)因为函数()f x 为偶函数, 所以函数()f x 在()0,∞+上单调递减,函数()()()2g x f ax f x a =--+的零点就是方程()()20f ax f x a --+=的解, 因为函数()g x 有唯一零点,所以方程()()20f ax f x a --+=有唯一的解, 因为函数()f x 为偶函数, 所以方程变形为:()()2fax f x a =-+,因为函数()f x 在()0,∞+上单调递减, 所以2ax x a =-+, 平方得:()()()22212220a xa x a -+-+-=,当210a -=时,即1a =±,经检验方程有唯一解; 当210a -≠时,()()()222424120a a a ∆=----=,得()22200a a a -=⇒=或2a =, 综上可得:集合{}1,0,1,2M =-. 【点睛】关键点睛:把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题是解决本题的关键.22.(1)2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元.【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出.【详解】解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元, 依题意得:当080x <<时,2211()(0.051000)(20)2003020022L x x x x x x =⨯-+-=-+-, 当80x ≥时,1000010000()(0.051000)(51600)200400()L x x x x x x=⨯-+--=-+, 所以2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩; (2)当080x <<时,21()(30)2502L x x =--+, 此时,当30x =时,即()(30)250L x L ≤=万元. 当80x ≥时,10000()400()400400200200L x x x =-+≤-=-=, 此时10000,100x x x==,即()(100)200L x L ≤=万元, 由于250200>,所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元.【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.23.(1)1()(0),()8f x x x g x =≥=2)投资债券类产品6万元,股票类投资为4万元;74万元. 【分析】 (1)根据题干条件,设出函数解析式:()1f x k x =,()g x k =,代入1x =即可求出12,k k 的值,进而求出解析式.(2)设投资债券类产品x 万元,则股票类投资为10x -万元,年收益为y 万元,则()(10)y f x g x =+-,代入解析式,换元求最值即可.【详解】解:(1)依题意可设12()(0),()f x k x x g x k x =≥=.121111(1),(1)()(0),()8282f kg k f x x x g x x ====∴=≥= (2)设投资债券类产品x 万元,则股票类投资为10x -万元,年收益为y 万元 依题意得()(10)y f x g x =+-即110(010)82x y x x =+-≤≤. 令10t x =-则210,0,10x t t ⎡⎤=-∈⎣⎦.则210,0,1082t t y t -⎡⎤=+∈⎣⎦ 即217(2),0,1084y t t ⎡⎤=--+∈⎣⎦ 当2t = 即6x =时,收益最大,最大值为万74元, 所以投资债券类产品6万元,股票类投资为4万元,收益最大值为万74元. 【点睛】本题考查求函数解析式以及函数的实际应用,属于中档题.易错点睛:熟悉各种函数模型是解题的关键,同时一定要注意实际条件下的定义域. 24.(1)函数()f x 的单调减区间为(],1-∞-,增区间()1,-+∞;(2)1a ≤且0a ≠.【分析】(1)当1a =-时,(2),1()(1),1x x x f x x x +≥-⎧=⎨--<-⎩,进而可得函数的单调区间; (2)令()0f x =,分别解出x ,由方程()0f x =仅有一个实数根,列出不等式解出实数a 的取值范围.【详解】(1)当1a =-时,(2),1()(1),1x x x f x x x +≥-⎧=⎨--<-⎩, 则函数()f x 的单调减区间为(],1-∞-,增区间()1,-+∞;(2)令()0f x =,当x a ≥时,解得0x =或2x a =;当x a <时,解得1x =;方程()0f x =仅有一个实数根,则021a a a a ≤⎧⎪<⎨⎪≤⎩或021a a a a >⎧⎪≥⎨⎪≤⎩或021a a a a >⎧⎪<⎨⎪>⎩,解得1a ≤且0a ≠.【点睛】方法点睛:本题考查分段函数的单调性,考查函数与方程思想,关于分段函数的理解,需要有:分段函数是指自变量在两个或两个以上不同的范围,有不同的对应法则的函数; 分段函数是一个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集. 25.(1)函数模型()1030x f x =+,不符合公司要求;详见解析;(2)[]1,2. 【分析】(1)研究函数()1030x f x =+的单调性与值域,验证该函数是否满足题中三个要求,即可得出结论;(2)先求出函数()y g x =的最大值()()max 1600405g x g a ==-,由40575a -≤求出实数a 的范围,在利用参变量分离法求出满足()5x g x ≤恒成立时实数a 的取值范围,由此可得出实数a 的取值范围.【详解】(1)对于函数模型()1030x f x =+, 当[]25,1600x ∈时,函数()y f x =是单调递增函数,则()()160075f x f ≤≤显然恒成立,若函数()5x f x ≤恒成立,即10305x x +≤,解得60x ≥,则()5x f x ≤不恒成立, 综上所述,函数模型()1030x f x =+,满足基本要求①②,但是不满足③, 故函数模型()1030x f x =+,不符合公司要求;(2)当[]25,1600x ∈时,()()51g x a =≥单调递增,∴函数()y g x =的最大值为()16005405g a ==-,由题意可得40575a -≤,解得2a ≤.设()55x g x =≤恒成立,2255x a x ⎛⎫∴≤+ ⎪⎝⎭恒成立,即225225x a x ≤++, 对于函数2251252525x y x x x ⎛⎫=+=+ ⎪⎝⎭,由题意可知,该函数在25x =处取得最小值, 即min 252522525y =+=,2224a ∴≤+=,1a ≥,12a ∴≤≤. 因此,实数a 的取值范围是[]1,2.【点睛】本题考查函数模型的选择,本质上就是考查函数基本性质的应用,同时也考查了函数不等式恒成立问题,在求解含单参数的不等式恒成立问题,可充分利用参变量分离法转化为函数最值问题来求解,考查分析问题与解决问题的能力,属于中等题.26.(1)奇函数,证明见解析;(2)a ⎛∈ ⎝⎦. 【分析】(1)先求定义域,再利用函数奇偶性的定义即可判断(2)通过()log (3)a g x x =-,将()1()f x g x -=化简,求出方程中a 的表达式,通过变形,利用基本不等式即可求解.【详解】(1)()f x 为奇函数 由505x x ->+解得定义域为{|5x x >或5}x <-关于原点对称, 55()log log ()55a a x x f x f x x x ----==-=--++,所以()f x 为奇函数 ; (2) 由题意知log log ()aa x 51x 3x 5--=-+,即5log log (3)5a a x a x x -=-+, 所以()535x a x x -=-+, 即5(5)(3)x a x x -=+-在(5,)+∞有解, 设5x t -=,则(0,)t ∈+∞设(10)(2)t y t t =++, 则12012y t t=++,因为201212t t ++≥,当且仅当20t t==等号成立 , 所以12012y t t=++值域为⎛ ⎝⎦,所以a ⎛∈ ⎝⎦, 【点睛】本题主要考查了函数奇偶性的判断,函数的零点与方程的根的关系,属于中档题.。
北师大版九年级数学下册《1.5三角函数的应用》单元检测卷带答案

北师大版九年级数学下册《1.5三角函数的应用》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.如图,下列说法:①B在A的东北方向上,A在B的西南方向;②C在A的东偏北15°方向上;③C 在B的东偏南60°方向上;④B在C的北偏西30°方向上.其中正确的个数为()A.1B.2C.3D.42.如图,从热气球C上测定建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A、D、B在同一直线上,那么建筑物A、B间的距离为()A.150√3米B.180√3米C.200√3米D.220√3米的山坡上植树,要想保证水平株距为5 m,则相邻两株树植树地点的高度差应3.小明要在坡度为35为m.4.有一拦水坝的横断面是等腰梯形,它的上底长为6米,下底长为10米,高为2√3米,那么此拦水坝斜坡的坡度为√3,坡角为.【能力巩固】5.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000 m的C地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500 m到达目的地C,此时小霞在营地A的()A.北偏东20°方向上B.北偏东30°方向上C.北偏东40°方向上D.北偏西30°方向上6.如图,自建筑物AB的顶部A测量铁塔CD的高度,若测得塔顶C的仰角为α,塔底D的俯角为β,建筑物与铁塔的距离BD=m(测量仪器的高度忽略不计),则铁塔的高度可表示为()A.mtan(α+β)B.m(tan α+tan β)C.mtanα+tanβD.m·tan(α+β)7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1∶0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45)()A.21.7米B.22.4米C.27.4米D.28.8米8.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:√2≈1.414,√3≈1.732)【素养拓展】9.如图,小山顶上有一电视塔,在山脚C处测得塔顶A、塔底B的仰角分别为45°和30°,若塔高AB=40 m,则山高BD≈m.(精确到1 m)10.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图,BC∥AD,斜坡AB=40米,坡角∠BAD=60°.为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)参考答案【基础达标】1.D2.C3.34.√360°【能力巩固】5.C6.B7.A8.解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°∴CD=AD·tan∠CAD=√3AD,BD=AD·tan∠BAD=√3AD3∴BC=CD-BD=2√3AD=30米3∴AD=15√3≈25.98米.∴无人机飞行的高度AD为25.98米.【素养拓展】9.5510.解:如图,作BG⊥AD于点G,作EF⊥AD于点F,连接AE,则在Rt△ABG中,∠BAD=60°,AB=40 所以就有BG=AB·sin 60°=20√3,AG=AB·cos 60°=20同理,在Rt△AEF中,∠EAD=45°则AF=EF=BG=20√3所以BE=FG=AF-AG=20(√3-1)米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的应用》单元测试题
一.选择题
1.已知函数()f x 在R 上连续不断,且()()0f a f b >,则下列说法正确的是( ).
A ()f x 在区间(),a b 有一个零点
B ()f x 在区间(),a b 上不一定有零点
C ()f x 在(),a b 上零点个数为奇数
D ()f x 在区间(),a b 上没有零点 2.已知函数()f x 在区间[1,3]上连续不断,且()()()1230f f f <,则下列说法正确的是( ).
A .函数()f x 在区间[1,2]或者[2,3]上有一个零点
B .函数()f x 在区间[1,2]、 [2,3]上各有一个零点
C .函数()f x 在区间[1,3]上最多有两个零点
D .函数()f x 在区间[1,3]上有可能有2006个零点
3.下列函数均有零点,其中不能用二分法求近似解的是( ).
A .(1)(2)(4)
B .(4)(2)(3)
C .(4)(1)(3)
D .(4)(1)(2)
(1)
(2)
(3)
(4)
5.设()833-+=x x f x ,用二分法求方程()33801,3x
x x +-=∈在内近
似解的过程中取区间中点02x =,那么下一个有根区间为 ( )
A .(1,2)
B .(2,3)
C .(1,2)或(2,3)都可以
D .不能确定 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是
A .x =60t
B .x =60t +50t
C .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t t
D .x =⎪⎩
⎪
⎨⎧
-≤≤150(,150)
5.20(,60t t
7.下列函数中随x A .2006ln y x = B .2006
y x
= C .y =
a 有关 2.52x -+ 2x 所在
(
2
3 , 2 )
100米,则某轮船在航行比,且比例系数为a ,其余费用与船的航行速度无关,约为每小时b 元,若该船以速度v 千米/时航行,航行每千米耗去的总费用为 y (元),则y 与v 的函数解析式为________.
13.对于任意定义在区间D 上的函数f (x ),若实数x 0∈D 时,满足f (x 0)=x 0,则称x 0为函数f (x )在D 上的一个不动点.函数212)(-+=x
x x f 在(0,+∞)
上的不动点为_______________.
14.用长度为24的材料围一个矩形场地,中间且有两道隔墙,要使矩形的面积最大,则隔墙的长度为__________________.
15.已知函数()
⎪⎪⎨⎧
≥=2
3,lg x x x f ,若方程()k x f =有实数解,则实数k
(Ⅰ)a >0且-2<
b
a <-1;(Ⅱ)方程()0f x =在(0,1)内有两个实根.
19.某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产
用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时0=t )的函数关系为t W 100
=,水塔的进水量有10级,
第一级每小时进水10吨,以后每提高一级, 进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,
用水(即水塔中水不空),又不会使水溢出?
20.某种商品定价为每件60元,不加收附加税时每年大约销售80政府征收附加税,每销售100元要征税P 万件。
(1) 将政府每年对该商品征收的总税金y 万元表示为P 的函数,并指出这个函数的定义域。
(2) 要使政府在此项经营中每年收取的税金不少于128万元,问税率P%应怎样确定?
(3) 在可收税金不少于128万元的前提下,要让厂家获取最大销售金额,
则如何确定P 值?
21.某工厂有一段旧墙长14m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126m 2的厂房,工程条件是:
(1) 建1m 新墙的费用为a 元;(2) 修1m 旧墙的费用为4
a 元;(3) 拆去1m
的旧墙,用可得的建材建1m 的新墙的费用为
2
a 元,经讨论有两种方案:
①利用旧墙一段x m (0<x <14)为矩形一边;
②矩形厂房利用旧墙的一面边长x ≥14,问如何利用旧墙建墙费用最省? 试比较①②两种方案哪个更好。
《函数的应用》参考答案
一,选择题
1. B 2. D 3. C 4. D 5. A 6. D 7. C 8. A 9.D 10. B 提示:设()3
31f x x x =-+,则由()20f -<、()00f >、
()10f <、302f ⎛⎫
< ⎪⎝⎭
、()20f >可知:()20,1x ∈.
二,填空题
11. 1800米 12.y =av 3
+v
b
(v >0) 13.1 ⎪⎭
⎫ 三,解答题
16.解:(1)当每辆车的月租金定为36003000
3600-
50,
307050)2
+.
307050)=,
土工作组的时间为
x
x g -⨯=
400200020)(
<≥ )()(
)()(x g x x g x f
设 )()( x g x f =时解为0x ,易知)(x F 在 (]0,0x 上为减函数,在
0[,400)x 上为增函数,
因此当x=0x 时 ,即x=9
2222
时)(x F 有最小值
又2.225)222()222(==f F 9.225)223()223(==f F
所以 x=222 时即软硬地分别安排222人和178人时,全队工程时间最短. 18.证明:(I )因为(0)0,(1)0f f >>,所以0,320c a b c >++>. 由条件0a b c ++=,消去b ,得0a c >>;
由条件0a b c ++=,消去c ,得0a b +<,20a b +>.
故21b a
-<
<-.
(II )抛物线2
()32f x ax bx c =++在21b a
-<
<-的两边乘以13
-
,得
123
33
b a
<-
<
0,<
y 等于水塔中,在减去工业用水
16);若水塔中的水
有3000≤<y .即
所以
t
t
t t
.
因为27
2721110110
102
≤+⎪
⎪⎭
⎫ ⎝⎛--=++
-t t t
,
419
4141120110
202
≥-⎪⎪⎭⎫ ⎝⎛+=++
t
t t
,所以41927≤≤n ,即4=n . 即进水选择4级.
20.(1) 设商品每年销售为20(80)3
p -
万件,∴20(80)%603
y p p =-
⋅
且208003
p -
>,p >0,∴0<p <12
(2) y ≥128,∴2060(80)%1283
p p -
=(3) 厂家销售收入为2060(80)3
p -
(4∴当p =4时,销售收入最大为320021.(1) 方案:修旧墙费用为x ·
a 2
14)
x =12时,y min =35a
(元)
(x ≥14)
x =14,y min =
∴采用①方案更好些。