线性代数试卷A卷

合集下载

《线性代数》模拟试卷(A)卷

《线性代数》模拟试卷(A)卷

厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。

12-13-1《线性代数试卷A》第一学期期末考试试卷

12-13-1《线性代数试卷A》第一学期期末考试试卷

河南理工大学 2012-2013 学年第 1 学期《线性代数》试卷(A 卷)1.设()()(),,,,,,,,t 3,1321111321===βββ若321βββ,,线性相关,则t =.2.矩阵()nn ija ⨯=A 的全体特征值的和等于 , 全体特征值的积等于.3.设A 为4阶方阵,2-=A ,则A 3-= .4.()234321,,B ,A =⎪⎪⎪⎭⎫ ⎝⎛=,则=AB.5.设三阶方阵⎪⎪⎪⎭⎫ ⎝⎛--=120350002A ,则A 的逆矩阵1-A =.6.设3阶方阵A 按列分块为()321ααα,,A =,且Ad e t =5,又设()231215432ααααα,,B ++=,则B =.7.设⎪⎪⎪⎭⎫ ⎝⎛--=11334221xA ,x 为某常数,B 为3阶非零矩阵,且0AB =,则x = . 8.设三元非齐次线性方程组的系数矩阵的秩为2,已知21ηη,是它的两个解向量.且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=42232121ηη,该方程组的通解为.1.设A 与B 均为n 阶方阵,则下列结论中成立的为().(A) det(AB ) = 0,则0A =或0B =; (B) det(AB ) = 0,则det A = 0或det B = 0; (C) AB = 0,则0A =或0B =; (D) AB ≠ 0,则det A ≠ 0或det B ≠ 0.2. 设n 阶矩阵A 的行列式0≠A ,*A 是A 的伴随矩阵,则( ).(A) 2-=n *A A ; (B) 1+=n *A A ; (C) 1-=n *AA ;(D) 2+=n *AA .3. 已知A 、B 均为3阶方阵,且A 与B 相似,若A 的特征值为1,2,3,则()12-B 的特征值为( )(A) 2312,,; (B) 614121,,; (C) 321,,;(D) 3212,,.4. 向量组321,,βββ线性无关,324,,βββ线性相关,则有 .(A)1β可由324,,βββ线性表示; (B)3β可由42ββ,线性表示 ;(C)2β可由43ββ,线性表示;(D)4β可由32ββ,线性表示 .三、计算题1.(7分)计算行列式211112111121=n D .一、填空题,每小题4分二、选择题,每小题5分2.(7分)设⎪⎪⎪⎭⎫⎝⎛---=121011332A ,求1-A .3.(7分)求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1401131********12211A 的列向量组的一个最大线性无关组.4.(12分)λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ,,(1)有唯一解;(2)无解;(3)有无穷多个解?5.(15分)已知二次型()322221321434x x x x x ,x ,x f ++=,求一个正交变换Py x =,把二次型()321x ,x ,x f 化为标准型.。

(完整版)线性代数测试试卷及答案

(完整版)线性代数测试试卷及答案

线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。

设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。

如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。

如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。

设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。

设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。

设A 为正交矩阵,则A = ;6。

设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。

中国海洋大学《线性代数》2019-2020学年第二学期期末试卷A卷

中国海洋大学《线性代数》2019-2020学年第二学期期末试卷A卷

一、填空题(共 6 题,每题 3 分,共 18 分)1.设 3 阶方阵 A 的行列式 |A |= 12, A ∗是 A 的伴随矩阵,则 |4AA ∗|=2.已知 A =PΛQ ,其中 P =(2312),Λ=(100−1),Q =(2−3−12),QP =I( I 是2阶单位矩阵),则 A 8= 3.设矩阵 A =(1a aa1a aa1),且 r (A )=2,则 a = 4. 设 η1,η2,η3 为4元非齐次线性方程组 Ax =b 的三个解向量,系数矩阵 A 的秩为 3,η1+η2=(3,4,5,6)T , η3=(1,2,3,4)T ,则该方程组的一般解为 5.若 3 阶方阵 A 与 B 相似,I 为 3 阶单位矩阵,A 的特征值为 12,1 3,1 4,则行列式 |B −1−I |=6. 已知 A =(20131a 405) 可对角化,则 a = .二、选择题(共 6 题,每题 3 分,共 18 分)1.已知 A,B 均为 n 阶可逆方阵,k 为常数,则下列命题不正确的是( ). A. |A +B |=|A |+|B | B. (A +B)T =A T +B T C. (AB)−1=B −1A −1 D. |kAB |=k n |A ||B |2.设 A 是 3×4 矩阵,B 是 4×3 矩阵,则下列结论正确的是( ). A. ABx =0必有非零解 B. ABx =0只有零解 C. BAx =0必有非零解 D. BAx =0只有零解3.设 A ,B 均为 3 阶可逆方阵,若交换 A 的第一行与第三行得方阵 B , 则下列叙述正确的是( ).中国海洋大学《线性代数》2019-2020学年第二学期期末试卷A卷A.交换A −1的第一行与第三行得 B −1B.交换A −1的第一列与第三列得 B −1C.交换A −1的第一行与第三行得−B −1D.交换A −1的第一列与第三列得−B −1 4.设 A =(111111111),B =(40000000),则 A 与 B ( ). A.合同且相似 B.合同但是不相似 C.不合同但相似 D.不合同不相似5.已知向量组α1,α2,α3是线性无关的, 则下列向量组中相关的是( ). A. α1+α2,α2+α3,α3+α1 B. α1−α2,α2−α3,α3+α1 C. α1,α1+α2,α1+α2+α3 D. α1−α2,α2−α3,α1−α36.设二次型 f (x 1,x 2,x 3)在正交变换 x =Py 下的标准型为 2y 12+y 22−y 32,其中 P =(α1,α2,α3),若 Q =(α1,−α3,α2),则 f (x 1,x 2,x 3)在 x =Qy 下的标准型为( ).A. 2y 12−y 22+y 32B. 2y 12+y 22−y 32C. 2y 12−y 22−y 32D. 2y 12+y 22+y 32三、计算题(共 4 题,共 28 分) 1.(6分) 计算 n +1阶行列式的值:|−a 1a 10⋯000−a 2a 2⋯00⋮⋮⋮ ⋮⋮000⋯−a n a n 111⋯11| 2.(8分)设向量组 α1=(−1,1,2,4)T ,α2=(−1,−1,1,5)T ,α3=(0,2,1,−1)T , α4=(−2,4,5,7)T ,α5=(1,1,−1,−5)T ,求此向量组的秩和一个极大线性无关组,并将其余向量用其极大线性无关组线性表示.3.(8分)设矩阵 A=(112011−1−10),矩阵 X 满足 A∗X=A−1+2X,其中 A∗是 A 的伴随矩阵,求矩阵 X.4.(6分)已知 R2的两组基α1=(1,−1)T,α2=(1,0)T; β1=(1,2)T,β2=(3,5)T.(1)求从基 α1,α2到基 β1,β2的过渡矩阵 A;(2)已知 γ 在基 α1,α2下的坐标为 (1,−1)T,求 γ 在基 β1,β2下的坐标.四、证明题(共 1 题, 8 分)设 α1,α2,⋯,αp是齐次线性方程组 Ax=0 的一个基础解系,向量 β 满足 Aβ≠0,证明:向量组 β,β+α1,β+α2,⋯,β+αp线性无关.五、解方程组(共1题,14分)讨论 a 取何值时,线性方程组 {x1+x2+ax3=1 x1+ax2+x3=1ax1+x2+x3=−2无解、有无穷多解、有唯一解, 并且在有无穷多解时求出方程组的一般解.六、二次型(共1题,14分)设二次型 f(x1,x2,x3)=5x12+5x22+cx32+2x1x2+4x1x3−4x2x3,已知它对应矩阵的所有特征值之和为 12,(1)求 c 的值;(2)正交变换法将此二次型化为标准型,并写出相应的正交矩阵Q;(3)写出它的规范型;(4)分析此二次型是否是正定二次型.一、填空题(共 6 题,每题 3 分,共 18 分)1.设 3 阶方阵 A 的行列式 |A |= 12, A ∗是 A 的伴随矩阵,则 |4AA ∗|=解:AA ∗=|A |I ,则 |4AA ∗|=|4|A |I |=|2I |=23=8;2.已知 A =PΛQ ,其中 P =(2312),Λ=(100−1),Q =(2−3−12),QP =I( I 是2阶单位矩阵),则 A 8= 解:A 8=AA ⋯A ⏟ 8个=(PΛQ)(PΛQ)⋯(PΛQ)(PΛQ)⏟8个=P Λ(QP)Λ(Q ⋯P)Λ(QP)Λ⏟ Q 8个Λ,已知 QP =I=PΛ8Q =(2312)(1800(−1)8)(2−3−12) =(2312)(2−3−12)=(1001)=I .3.设矩阵 A =(1a aa1a aa1),且 r (A )=2,则 a = 解:r (A )=2⟹{a ≠0且 a ≠1|A |=|1a a a 1a a a 1|=0⟹a =− 12.4. 设 η1,η2,η3 为4元非齐次线性方程组 Ax =b 的三个解向量,系数矩阵 A 的秩为 3,η1+η2=(3,4,5,6)T , η3=(1,2,3,4)T ,则该方程组的一般解为 解: r (A )=3⟹Ax =0 的基础解系含有 4−r (A )=1 个向量. Ax =b 的一般解 x =x 0+kξ:① x 0 可取 η3=(1,2,3,4)T ;②取 ξ=(η1−η3)+(η2−η3)=η1+η2−2η3=(1,0,−1,−2)T ; 于是,Ax =b 的一般解 x =(1,2,3,4)T +k(1,0,−1,−2)T .答案5.若 3 阶方阵 A 与 B 相似,I 为 3 阶单位矩阵,A 的特征值为 1 2,1 3,1 4,则行列式 |B −1−I |=解:A ~ B ⟹B 的特征值也为 1 2, 1 3, 14 ⟹B −1 的特征值为 2,3,4;B −1−I 的特征值为2−1,3−1,4−1,即1,2,3; 则 |B −1−I |=1∙2∙3=6. 6. 已知 A =(20131a 405) 可对角化,则 a = . 解:矩阵 A 的特征多项式 |λI −A |=|λ−20−1−3λ−1−a −40λ−5|=(λ−1)2(λ−6),则 A 的特征值为 λ1=λ2=1, λ3=6;A 可对角化,则对特征值 λ1=λ2=1,齐次线性方程组 (I −A)x =0 的 基础解系包含的向量个数为 2=3−r (I −A )⟹r (I −A )=1; 特征矩阵 (I −A )=(−10−1−30−a −40−4),则方法1:特征矩阵(I −A )初等行变换⇒ (101003−a 000)从而 3−a =0⟹a =3; 方法2:(I −A ) 的任一2阶子式为 0⟹|−1−1−3−a|=0⟹a =3. 二、选择题(共 6 题,每题 3 分,共 18 分)1.已知 A,B 均为 n 阶可逆方阵,k 为常数,则下列命题不正确的是( A ). A. |A +B |=|A |+|B | B. (A +B)T =A T +B T C. (AB)−1=B −1A −1 D. |kAB |=k n |A ||B |2.设 A 是 3×4 矩阵,B 是 4×3 矩阵,则下列结论正确的是( C ). A. ABx =0必有非零解 B. ABx =0只有零解 C. BAx =0必有非零解 D. BAx =0只有零解解:AB 是 3×3 矩阵,BA 是 4×4 矩阵,r (BA )≤r (A )≤3<4,则 BAx =0 必有非零解.3.设 A ,B 均为 3 阶可逆方阵,若交换 A 的第一行与第三行得方阵 B , 则下列叙述正确的是( B ).A.交换A −1的第一行与第三行得 B −1B.交换A −1的第一列与第三列得 B −1C.交换A −1的第一行与第三行得−B −1D.交换A −1的第一列与第三列得−B −1 解:A r 1↔r 2⇒ B ,则 B =E 13A ,于是 B −1=(E 13A)−1=A −1E 13−1=A −1E 13. 4.设 A =(111111111),B =(40000000),则 A 与 B ( B ). A.合同且相似 B.合同但是不相似 C.不合同但相似 D.不合同不相似解:{A 是3阶实对称矩阵 r (A )=1⟹|A |=0⟹0是 A 的2重特征值,即 λ1=λ2=0;A 的各行元素之和是3,则 3是 A 的特征值,即 λ3=3; 则 A 与B 有相同的正惯性指数1,相同的负惯性指数0; 则 A 与 B 合同,但是不相似,因为相似矩阵的特征值相同. 5.已知向量组α1,α2,α3是线性无关的, 则下列向量组中相关的是( D ). A. α1+α2,α2+α3,α3+α1 B. α1−α2,α2−α3,α3+α1 C. α1,α1+α2,α1+α2+α3 D. α1−α2,α2−α3,α1−α3解:(α1−α2)+(α2−α3)−(α1−α3)=0.6.设二次型 f (x 1,x 2,x 3)在正交变换 x =Py 下的标准型为 2y 12+y 22−y 32,其中 P =(α1,α2,α3),若 Q =(α1,−α3,α2),则 f (x 1,x 2,x 3)在 x =Qy 下的标准型为( A ).A. 2y 12−y 22+y 32B. 2y 12+y 22−y 32C. 2y 12−y 22−y 32D. 2y 12+y 22+y 32解:P T AP =P −1AP =(21−1),P =(α1,α2,α3)则有 {Aα1=2α1 Aα2=1α2 Aα3=−α3⟹A(−α3)=(−1)(−α3);又 Q =(α1,−α3,α2),于是 Q T AQ = Q −1AQ =(2−11),则 f (x 1,x 2,x 3) 在正交变换 x =Qy 下的标准形为 2y 12−y 22+y 32. 三、计算题(共 4 题,共 28 分) 1.(6分) 计算 n +1阶行列式的值:|−a 1a 10⋯000−a 2a 2⋯00⋮⋮⋮ ⋮⋮000⋯−a n a n 111⋯11| 解:|−a 1a 10⋯000−a 2a 2⋯00⋮⋮⋮ ⋮⋮000⋯−a n a n 111⋯11| c 1+c 2+⋯+c n+1|0a 10⋯000−a 2a 2⋯00⋮⋮⋮ ⋮⋮000⋯−a n a n n +111⋯11|=(n +1)∙(−1)n+1+1|a 10⋯00−a 2a 2⋯00⋮⋮ ⋮⋮00⋯−a n a n|=(−1)n (n +1)a 1a 2⋯a n . 2.(8分)设向量组 α1=(−1,1,2,4)T ,α2=(−1,−1,1,5)T ,α3=(0,2,1,−1)T , α4=(−2,4,5,7)T ,α5=(1,1,−1,−5)T ,求此向量组的秩和一个极大线性无关组,并将其余向量用其极大线性无关组线性表示.解:记矩阵 A =(α1,α2,α3,α4,α5)=(−1−10−211−12412115−145−17−5)r 4−2r 3r 3−2r 2⇒ r 2+r 1(−1−10−210−222203−3−3−303−3−3−3) r 4−r 3 ⇒ r 2+r 3(−1−10−2101−1−1−103−3−3−300000)r 3−3r 2 ⇒ r 1+r 2(−10−1−3001−1−1−10000000000)r 1∙(−1)⇒ (101301−1−1−10000000000),①秩{α1,α2,α3,α4,α5}=2;②α1,α2 是 α1,α2,α3,α4,α5 的一个极大线性无关组; ③对向量 α3,α4,α5,有{α3=α1−α2α4=3α1−α2α5=−α2.3.(8分)设矩阵 A =(112011−1−10),矩阵 X 满足 A ∗X =A −1+2X ,其中 A ∗是 A 的伴随矩阵,求矩阵 X .解:A ∗X =A −1+2X ⟹(A ∗−2I )X =A −1⟹A (A ∗−2I )X =AA −1=I ⟹(|A |I −2A )X =I ⟹X =(|A |I −2A)−1;又 |A |=2,则 |A |I −2A =(0−2−400−2222)=2(0−1−200−1111)=2B ,这里 B =(0−1−200−1111);从而 X =(2B)−1= 1 2B −1由 (B,I )=(0−1−200−1111 1000 1 0001) 初等行变换⇒ (1000 10001 1−11−1 200−10)=(I,B −1),得 B −1=(1−11−1 200−10); 于是 X = 12(1−11−1 200−10).4.(6分)已知 R 2的两组基α1=(1,−1)T ,α2=(1,0)T ; β1=(1,2)T ,β2=(3,5)T . (1)求从基 α1,α2到基 β1,β2的过渡矩阵 A ;(2)已知 γ 在基 α1,α2下的坐标为 (1,−1)T ,求 γ 在基 β1,β2下的坐标. 解:(1)记矩阵 B 1=(α1,α2)=(1−1 10),B 2=(β1,β2)=(12 35),因为 (β1,β2)=(α1,α2)A ,即 B 1A =B 2,解此矩阵方程(B 1,B 2)=(1−1 10 12 35)初等行变换⇒ (10 01 −23 −58)=(I,A)则从基 α1,α2到基 β1, β2的过渡矩阵 A =(−23 −58)(2)两种方法:已知 γ 在基 α1,α2下的坐标为 γB 1=(1,−1)T , 设 γ 在基 β1,β2下的坐标为 γB 2, 方法1:因为 γ=B 1γB 1=(1−1 10)(1−1)=(0−1);又有 γ=B 2γB 2,则求解该方程组(B2,γ)=(1235|0−1)初等行变换⇒(11|−31),则 γ 在基 B2下的坐标向量 γB2=(−31);方法2:因为AγB2=γB1,求解该非齐次线性方程组(A,γB1)=(−23−58|1−1)初等行变换⇒(11|−31)=(I,γB2)则 γ 在基 β1,β2下的坐标为 γB2=(−31).四、证明题(共 1 题, 8 分)设 α1,α2,⋯,αp是齐次线性方程组 Ax=0 的一个基础解系,向量 β 满足 Aβ≠0,证明:向量组 β,β+α1,β+α2,⋯,β+αp线性无关.证:设 kβ+k1( β+α1)+k2(β+α2)+⋯+k p(β+αp)=0,整理得 (k+k1+⋯+k p)β+k1α1+k2α2+⋯+k pαp=0,(*)等式两边左乘矩阵 A 得:(k+k1+⋯+k p)Aβ+k1Aα1+k2Aα2+⋯+k p Aαp=0,已知 Aαi=0,i=1,⋯,p,则有 (k+k1+⋯+k p)Aβ=0,而 Aβ≠0,所以有 k+k1+⋯+k p=0,则(*)式变为 k1α1+k2α2+⋯+k pαp=0,因为 α1,α2,⋯,αp是基础解系,则 α1,α2,⋯,αp线性无关,于是 k1=k2=⋯=k p=0,从而 k=0;即 β,β+α1,β+α2,⋯,β+αp线性无关.五、解方程组(共1题,14分)讨论 a 取何值时,线性方程组 {x1+x2+ax3=1 x1+ax2+x3=1ax1+x2+x3=−2无解、有无穷多解、有唯一解, 并且在有无穷多解时求出方程组的一般解.解:系数矩阵 A =(11a 1a 1a 11),b =(11−2);又 |A |=|11a1a 1a 11|=−(a −1)2(a +2)(1)当 |A |≠0,即当 a ≠1 且 a ≠−2 时,方程组有唯一解;(2)当 a =1 时,增广矩阵(A,b )=(111111111|11−2)初等行变换⇒ (111000000|10−3)方程组出现矛盾方程,则原方程组无解;(3)当 a =−2 时,增广矩阵(A,b )=(11−21−21−211|11−2)初等行变换⇒ (10−101−1000|100)=(U,d)取 x 3 为自由未知量,①令 x 3=0,代入 Ux =d ,得原方程组的一个特解 x 0=(1,0,0)T ; ②令 x 3=1,代入 Ux =0,得 Ax =0 的一个基础解系 ξ=(1,1,1)T ;则原方程组的通解为 x =x 0+kξ=(100)+k (111),k 任意;综上,{当 a ≠1 且 a ≠−2 时,方程组有唯一解;当 a =1 时,方程组无解;当 a =−2 时,方程组有无穷多解.六、二次型(共1题,14分)设二次型 f (x 1,x 2,x 3)=5x 12+5x 22+cx 32+2x 1x 2+4x 1x 3−4x 2x 3,已知它对应矩阵的所有特征值之和为 12,(1)求 c 的值;(2)正交变换法将此二次型化为标准型,并写出相应的正交矩阵Q ;(3)写出它的规范型;(4)分析此二次型是否是正定二次型.解:二次型对应的矩阵为 A =(51215−22−2c), (1)A 的所有特征值之和为 12,即 5+5+c =12,得 c =2;从而 A =(51215−22−22).(2)A 的特征多项式 |λI −A |=|λ−5−1−2−1λ−52−22λ−2|=λ(λ−6)2,则 A 的特征值为 λ1=λ2=6,λ3=0;①对于 λ1=λ2=6,由(λ1I −A)x =0,即 (1−1−2−112−224)(x 1x 2x 3)=0,得基础解系 {ξ1=(1,1,0)Tξ2=(2,0,1)T , 1)正交化:取 β1=ξ1=(1,1,0)T ,令 β2=ξ2−(ξ2,β1)(β1,β1)β1=(1,−1,1)T , 2)单位化:令 η1=1‖β1‖β1=(1√2,1√2,0)T ; η2=1‖β2‖β2=(1√3,−1√31√3)T; ②对于特征值 λ3=0,由(λ3I −A)x =0⟺Ax =0,即 (51215−22−22)(x 1x 2x 3)=0,得基础解系为 ξ3=(−1,1,2)T ,单位化得:η3=1‖ξ3‖ξ3=(−1√6,1√6,2√6)T;③记矩阵 Q=(η1,η2,η3)=(√2√3√6√2√3√6√3√6),则 Q 为正交阵,且使得 Q T AQ=Q−1AQ=Λ=(66)④令 x=(x1,x2,x3)T,y=(y1,y2,y3)T,做正交变换 x=Qy,原二次型就化成标准形 x T Ax=y T(Q T AQ)y=6y12+6y22.(3)二次型的正惯性指数为2,负惯性指数为0;则二次型的规范形为:z12+z22.(4)二次型 f(x1,x2,x3)的正惯性指数为2,不是正定二次型.。

中国海洋大学《线性代数》2016-2017学年第二学期期末试卷A卷

中国海洋大学《线性代数》2016-2017学年第二学期期末试卷A卷

一、填空题(共 18分)1.设 A 是3阶方阵,|A|=3,A∗为 A 的伴随矩阵,则|3A−1|=( ),|A∗|=( ),|3A∗−7A−1|=( ).2.设α=(1,−2,3)T,β=(−1, 12,0),A=αβ,则|A100|=( ).3.设向量α=(1k 1)是矩阵A=(211121112) 的一个特征向量,则k=().4.A为3阶实对称矩阵,向量 ξ1=(1,2,5)T,ξ1=(k,2k,3)T是分别对应于特征值2和3的特征向量, 则 k=().5.设 η1,η2,η3为4元非齐次线性方程组 Ax=b 的三个解,r(A)=3,已知η1+η2=(3,4,5,6)T,η3=(1,2,3,4)T,则 Ax=b 的一般解为( ).二、选择题(共 6 题,每题 3分,共 18 分)1.设 M、P 为 n 阶矩阵,且 P 可逆,则下列运算不正确的是( ).A. |M|=|P−1MP|;B. |2E−M|=|2E−P−1MP|;C. |2E−M|=|2E−(P−1MP)T|;D. P−1MP=M.2.设 M、N、P 为同阶矩阵,下列结论成立的有( ).A. MN=NM;B. (M+N)−1=M−1+N−1;C. 若 MP=NP,则M=N;D. (M+N)T=M T+N T.3.设 A 为 m×n 矩阵,线性方程组 Ax=b 有解的充分条件为( ).A. 矩阵A 行满秩;B. 矩阵A 列满秩;C. 矩阵A 的秩小于其行数;D. 矩阵A 的秩小于其列数.4.设 A 是 n 阶实对称矩阵,P 是 n 阶可逆矩阵;若 n 维列向量 α 是 A 的属于特征值 λ 的特征向量,则矩阵 (P−1AP)T的属于特征值 λ 的特征向量是( ).A. P−1α;B. P Tα;C. Pα;D. (P−1)Tα.5.设向量 α,β,γ 线性无关,α,β,δ 线性相关,下列哪个成立().中国海洋大学《线性代数》2016-2017学年第二学期期末试卷A卷A. α 必可由 β,γ,δ 线性表示;B. β 必不可由 α,γ,δ 线性表示;C. δ 必可由 α,β,γ 线性表示;D. δ 必不可由 α,β,γ 线性表示.6.设 A 是 n (n ≥2)阶可逆矩阵,交换 A 的第1行与第2行得矩阵 B ;A ∗、B ∗分别为 A 、B 的伴随矩阵,则( ).A. 交换 A ∗的第一列与第二列得 B ∗;B. 交换 A ∗的第一行与第二行得 B ∗;C. 交换 A ∗的第一列与第二列得 −B ∗;D. 交换 A ∗的第一行与第二行得 −B ∗.三、计算题(共 4题,共 28 分)1.计算行列式的值:|−a 1a 10⋯000−a 2a 2⋯00⋮⋮⋮⋮⋮000⋯−a n a n 111⋯11|. 2.矩阵 A =(11−1−1111−11),矩阵 X 满足 A ∗X =A −1+2X ,其中 A ∗是 A 的伴随矩阵,求矩阵 X .3.已知 R 3的两组基 B 1={α1,α2,α3}和 B 2={β1,β2,β3},其中α1=(1,1,1)T ,α2=(0,1,1)T , α3=(0,0,1)T ;β1=(1,0,1)T ,β2=(0,1,−1)T ,β3=(1,2,0)T .(1)求基 B 1到基 B 2的过渡矩阵 A ;(2)已知 α 在基 B 1下的坐标向量为 (1,−2,−1)T ,求 α 在基 B 2下的坐标向量.4.求向量组 α1=(1,0,1,0), α2=(2,1,−3,7), α3=(4,1,−1,7), α4=(3,1,0,3), α5=(4,1,3,−1) 的秩,及其一个极大线性无关组,并将其余向量用极大线性无关组线性表示.四、证明题(共 1题,共 8 分)设 A 为 n 阶方阵,且 4A 2−I =O ,证明:(1) A 的特征值只能为− 1 2或 1 2;(2) r (2A +I )+r (2A −I )=n.五、解方程组(共1题,13分)当 λ 取何值时,线性方程组 {(1+λ)x 1+x 2+x 3=0x 1+(1+λ)x 2+x 3=3x 1+x 2+(1+λ)x 3=λ无解、有唯一解、有无穷多解?并在有无穷多解时求其通解.六、二次型(共1题,12分)二次型 f (x 1,x 2,x 3)=5x 12+5x 22+cx 32+2x 1x 2+4x 1x 3−4x 2x 3 的秩为2,(1)求 c ;(2)用正交变换法将二次型化为标准形,并写出对应的正交矩阵.一、填空题(共 18分)1.设 A 是3阶方阵,|A |=3,A ∗为 A 的伴随矩阵,则 |3A −1|=( ), |A ∗|=( ),|3A ∗−7A −1|=( ).解:|3A −1|=33|A−1|=331|A |=9;|A ∗|=|A |3−1=9; |3A ∗−7A −1|=|3|A |A −1−7A−1|=|2A −1|=23|A −1|= 8 3. 2.设 α=(1,−2,3)T ,β=(−1, 1 2,0),A =αβ,则 |A 100|=( ).解:A =αβ=(1−23)(−1, 1 2,0)= 1 2(−2104−20−630)⟹|A |=0 |A 100|=|A|100=0.3.设向量 α=(1k 1) 是矩阵 A =(211121112) 的一个特征向量,则 k =( ).解:设向量 α 是 A 的特征值 λ 对应的特征向量,则 Aα=λα,即 (211121112)(1k 1)=λ(1k 1)⟹{2+k +1=λ1+2k +1=λk ⟹(k −1)=λ(k −1)⟹{k −1=0⟹k =1,λ=4;k −1≠0⟹λ=1,k =−2. 4.A 为3阶实对称矩阵,向量 ξ1=(1,2,5)T ,ξ1=(k,2k,3)T 是分别对应于特征值2和3的特征向量, 则 k =( ).解:由题意知:ξ1,ξ2 正交,即 (ξ1,ξ2)=0⟹1∙k +2∙2k +5∙3=0从而 k =−3.5.设 η1,η2,η3 为4元非齐次线性方程组 Ax =b 的三个解,r (A )=3,已知 η1+η2=(3,4,5,6)T ,η3=(1,2,3,4)T ,则 Ax =b 的一般解为( ). 解:r (A )=3⟹Ax =0 的基础解系含有 4−r (A )=1 个向量.Ax =b 的一般解为 x =x 0+kξ;答案(1) x0可取 η3;(2)取 ξ=(η1−η3)+(η2−η3)=η1+η2−2η3=(1,0,−1,−2)T;于是,Ax=b 的一般解x=(1,2,3,4)T+k(1,0,−1,−2)T,k 任意.二、选择题(共 6 题,每题 3分,共 18 分)1.设 M、P 为 n 阶矩阵,且 P 可逆,则下列运算不正确的是( D ).A. |M|=|P−1MP|;B. |2E−M|=|2E−P−1MP|;C. |2E−M|=|2E−(P−1MP)T|;D. P−1MP=M.解:A. |M|=|P−1MP|=|P−1|∙|M|∙|P|=|M|;B. |2E−M|=|P−1|∙|2E−M|∙|P|=|P−1(2E−M)P|=|2E−P−1MP|;C. |2E−(P−1MP)T|=|(2E−P−1MP)T|=|2E−P−1MP|=|2E−M|;D. P−1MP=M结论不一定成立;MP不一定等于PM.2.设 M、N、P 为同阶矩阵,下列结论成立的有( D ).A. MN=NM;B. (M+N)−1=M−1+N−1;C. 若 MP=NP,则M=N;D. (M+N)T=M T+N T.3.设 A 为 m×n 矩阵,线性方程组 Ax=b 有解的充分条件为( A ).A. 矩阵A 行满秩;B. 矩阵A 列满秩;C. 矩阵A 的秩小于其行数;D. 矩阵A 的秩小于其列数.解:A 行满秩⟹r(A,b)=r(A)⟺Ax=b 有解.4.设 A 是 n 阶实对称矩阵,P 是 n 阶可逆矩阵;若 n 维列向量 α 是 A 的属于特征值 λ 的特征向量,则矩阵 (P−1AP)T的属于特征值 λ 的特征向量是( B ).A. P−1α;B. P Tα;C. Pα;D. (P−1)Tα.解:已知 Aα=λα,且 A T=A;记 P−1AP=Q,则 (P−1AP)T=Q T;则PQ=AP⟹Q T P T=P T A T,A 对称⟹Q T P T=P T A⟹Q T P Tα=P T Aα=λP Tα.5.设向量 α,β,γ 线性无关,α,β,δ 线性相关,下列哪个成立( C ).A. α 必可由 β,γ,δ 线性表示;B. β 必不可由 α,γ,δ 线性表示;C. δ 必可由 α,β,γ 线性表示;D. δ 必不可由 α,β,γ 线性表示.解:α,β,γ 线性无关,则 α,β 线性无关;又 α,β,δ 线性相关,则 δ 可由 α,β 线性表示,即 δ=k 1α+k 2β=k 1α+k 2β+0γ.6.设 A 是 n (n ≥2)阶可逆矩阵,交换 A 的第1行与第2行得矩阵 B ;A ∗、B ∗分别为 A 、B 的伴随矩阵,则( C ).A. 交换 A ∗的第一列与第二列得 B ∗;B. 交换 A ∗的第一行与第二行得 B ∗;C. 交换 A ∗的第一列与第二列得 −B ∗;D. 交换 A ∗的第一行与第二行得 −B ∗.解:A r 1↔r 2 ⇒ B ,则 B =E 12A ⟹{|B |=|E 12A|=−|A | B −1=(E 12A)−1=A −1E 12−1=A −1E 12于是 B ∗=|B |B −1=−|A |A −1E 12=−A ∗E 12;得 −B ∗=A ∗E 12⟺ 交换 A ∗的第1列和第2列得到 −B ∗.三、计算题(共 4题,共 28 分)1.计算行列式的值:|−a 1a 10⋯000−a 2a 2⋯00⋮⋮⋮⋮⋮000⋯−a n a n 111⋯11|. 解:行列式c 1+c 2+⋯+c n+10a 10⋯000−a 2a 2⋯00⋮⋮⋮ ⋮⋮000⋯−a n a n n +111⋯11|=(n +1)∙(−1)n+1+1|a 10⋯00−a 2a 2⋯00⋮⋮ ⋮⋮00⋯−a n a n| =(−1)n (n +1)a 1a 2⋯a n .2.矩阵 A =(11−1−1111−11),矩阵 X 满足 A ∗X =A −1+2X ,其中 A ∗是 A 的伴随 矩阵,求矩阵 X .解:A ∗X =A −1+2X ⟹(A ∗−2I )X =A −1⟹A (A ∗−2I )X =AA −1=I ⟹(|A |I −2A )X =I⟹X =(|A |I −2A)−1;又 |A |=4,则 |A |I −2A =(2−2222−2−222)=2(1−1111−1−111)=2B ,这里 B =(1−1111−1−111);从而 X =(2B)−1= 1 2B −1 由 (B,I )=(1−1111−1−111 1000 1 0001)初等行变换⇒ (1000 10001 1/21/2001/21/21/201/2)=(I,B −1), 得 B −1= 1 2(1100 11101),于是 X = 1 4(1100 11101). 3.已知 R 3的两组基 B 1={α1,α2,α3}和 B 2={β1,β2,β3},其中 α1=(1,1,1)T ,α2=(0,1,1)T , α3=(0,0,1)T ; β1=(1,0,1)T ,β2=(0,1,−1)T ,β3=(1,2,0)T .(1)求基 B 1到基 B 2的过渡矩阵 A ;(2)已知 α 在基 B 1下的坐标向量为 (1,−2,−1)T ,求 α 在基 B 2下的坐标向量. 解:仍记 B 1=(α1,α2,α3),B 2=(β1,β2,β3).(1)由 (β1,β2,β3)=(α1,α2,α3)A ,即得 B 2=B 1A ,于是,(B 1,B 2)=(1001011100121111−10)初等行变换⇒ (100101010−1110011−2−2)=(I,A )则基 B 1到基 B 2的过渡矩阵 A =(101−1111−2−2).(2)两种方法:已知 αB 1=(1,−2,−1)T方法1:α=B 1αB 1=(1,−1,−2)T ,又有 α=B 2αB 2,则求解该方程组(B 2,α)=(1010121−10|1−1−2)初等行变换⇒ (100010001|57−4),则 α 在基 B 2下的坐标向量 αB 2=(5,7,−4)T .方法2:因为 A αB 2=αB 1,求解该方程组(A ,αB 1)=(101−1111−2−2|1−2−1)初等行变换⇒ (100010001|57−4),则 α 在基 B 2下的坐标向量 αB 2=(5,7,−4)T .4.求向量组 α1=(1,0,1,0), α2=(2,1,−3,7), α3=(4,1,−1,7), α4=(3,1,0,3), α5=(4,1,3,−1) 的秩,及其一个极大线性无关组,并将其余向量用极大线性无关组线性表示.解:记矩阵A =(α1T ,α2T ,α3T ,α4T ,α5T )=(12434011111−3−1030773−1) 初等行变换 ⇒ (102000110−10001200000),则 (1)秩{α1,α2,α3,α4,α5}=3;(2)α1,α2,α4 是向量组 α1,α2,α3,α4,α5 的一个极大线性无关组;(3)α3=2α1+α2,α5=−α2+2α4.四、证明题(共 1题,共 8 分)设 A 为 n 阶方阵,且 4A 2−I =O ,证明:(1) A 的特征值只能为− 1 2或 1 2;(2) r (2A +I )+r (2A −I )=n. 证:(1)设 A 的特征值为 λ,则 4A 2−I 的特征值为 4λ2−1,因为 4A 2−I =O ,而零矩阵 O 的特征值均为0,于是有 4λ2−1=0⟹λ=− 1 2或 1 2; (2)4A 2−I =O ⟹(2A +I)(2A −I )=O ,则① r (2A +I )+r (2A −I )≤n ;② r (2A +I )+r (2A −I )=r (2A +I )+r (I −2A )≥r(2A +I +(I −2A ))=r (2I )=n ;于是,r (2A +I )+r (2A −I )=n .五、解方程组(共1题,13分)当 λ 取何值时,线性方程组{(1+λ)x 1+x 2+x 3=0x 1+(1+λ)x 2+x 3=3x 1+x 2+(1+λ)x 3=λ无解、有唯一解、有无穷多解?并在有无穷多解时求其通解.解:系数矩阵 A =(1+λ1111+λ1111+λ),b =(03λ).又 |A |=|1+λ1111+λ1111+λ|=λ2(λ+3)①当 |A |≠0,即当 λ≠0 且 λ≠−3 时,方程组有唯一解; ②当 λ=0 时,增广矩阵(A,b )=(111111111| 030)初等行变换⇒ (111000000| 030) 方程组出现矛盾方程,则原方程组无解;③当 λ=−3 时,增广矩阵(A,b )=(−2111−2111−2|03−3)初等行变换⇒ (10−101−1000| −1−20)=(U,d)取 x 3 为自由未知量,1)令 x 3=0,代入 Ux =d ,得原方程组的一个特解 x 0=(−1,−2,0)T ;2)令 x 3=1,代入 Ux =0,得 Ax =0 的一个基础解系 ξ=(1,1,1)T ;则原方程组的通解为 x =x 0+kξ=(−1−20)+k (111),k 任意;综上,{当 λ≠0 且 λ≠−3时,方程组有唯一解;当 λ=0 时,方程组无解;当 λ=−3时,方程组有无穷多解.六、二次型(共1题,12分)二次型 f (x 1,x 2,x 3)=5x 12+5x 22+cx 32+2x 1x 2+4x 1x 3−4x 2x 3 的秩为2, (1)求 c ;(2)用正交变换法将二次型化为标准形,并写出对应的正交矩阵.解:二次型对应的矩阵为 A =(51215−22−2c), (1)已知 r (A )=2⟹|A |=0,得 c =2;(2)A 的特征多项式 |λI −A |=|λ−5−1−2−1λ−52−22λ−2|=λ(λ−6)2,A 的特征值为 λ1=λ2=6,λ3=0;①对于 λ1=λ2=6,由(λ1I −A)x =0,即 (1−1−2−112−224)(x 1x 2x 3)=0,得基础解系 {ξ1=(1,1,0)T ξ2=(2,0,1)T , 1)正交化:取 β1=ξ1=(1,1,0)T ,令 β2=ξ2−(ξ2,β1)(β1,β1)β1=(1,−1,1)T , 2)单位化:令 η1=1‖β1‖β1=(1√2,1√2,0)T ; η2=1‖β2‖β2=(1√3,−1√31√3)T; ②对于特征值 λ3=0,由(λ3I −A)x =0⟺Ax =0,即 (51215−22−22)(x 1x 2x 3)=0,得基础解系为 ξ3=(−1,1,2)T ,单位化得:η3=1‖ξ3‖ξ3=(−1√6,1√6,2√6)T; ③记矩阵 Q =(η1,η2,η3)=( √2√3√6√2√3√60√3√6) ,则 Q 为正交阵, 且使得 Q T AQ =Q −1AQ =Λ=(660)④令 x =(x 1,x 2,x 3)T ,y =(y 1,y 2,y 3)T ,做正交变换 x =Qy ,原二次型就化成标准形 x T Ax =y T (Q T AQ )y =6y 12+6y 22.。

(完整版)线性代数试卷及答案详解

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:3的一组标准正交基,=___________《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)1、 256;2、 132465798⎛⎫ ⎪--- ⎪ ⎪⎝⎭; 3、112211221122000⎛⎫⎪- ⎪ ⎪-⎝⎭; 4、; 5、 4; 6、 2 。

三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:231211201012010*******121011411033110331023211027210027810027801141010144010144001103001103001103---⎛⎫⎛⎫⎛⎫⎪⎪⎪-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―――――(6分)所以1278144103X A B -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭.―――――(8分)四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:1234511143111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭111431212011310113100000000000000000000--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭――――(5分)从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩12345{,,,,}ααααα=2(8分)且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:221121121121110113011311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭(分)(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分) (2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.――――(6分)(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为1122112211221211033301112111033300001011011180000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫⎪−−→------ ⎪ ⎪⎝⎭(分)故原方程组与下列方程组同解:132311x x x x -=-⎧⎨-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)Tξ=--;它对应的齐次线性方程组13230x x x x -=⎧⎨-=⎩的基础解系含有一个元素,令31,x =可得1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)六.解:(1)由于A的特征多项式2124||222(3)(6)421I A λλλλλλ----=-+-=+----故A 的特征值为13λ=-(二重特征值),36λ=。

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释华南农业大学期末考试试卷(A 卷)2005学年第一学期 考试科目:线性代数 考试类型:闭卷 考试时间:120分钟学号 姓名 年级专业这是题文 这是参考答案 填空题.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于0. 各行加到第一行上去, 则第一行全为零P98奇数阶实反对称阵的行列式为零P64定理2.7非齐次线性方程组有解的充要条件 41141222222n n n --**⎛⎫===⋅= ⎪⎝⎭A A A重要关系*=AA A E ( P34定理1.9); 1n -*=A A(p44题1.18)5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为9.()8,3,2,29-===αβ由正交矩阵的定义T =A A E 立即得到1T -=A A 且1T ===A A A A E若λ是A 的特征值, 则1λ是1-A 的特征值, 因为()110x x x x λλ-=≠⇒=A A x . 参考P87定理4.4: ()ϕA 的特征值是()ϕλ.8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的取值范围是5t >.11212323t ⎛⎫⎪= ⎪ ⎪⎝⎭A 1231121110,10,123501223t t ∆=>∆==>∆==-> p100定理5.6由2=AA 推出()()22-+=-A E A E EEnglish!二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( D )个解向量.(A )n (B )r (C )r n - (D )n r - P62 line 5: 基础解系含n r -个解向量2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( D )(A )1 (B )2 (C )3 (D )0.A的余子式(3阶子式)全为零.*A是零矩阵.3. 设A是n阶方阵,满足2A E=,则( B )(A)A的行列式为1 (B),-+不同时可逆.A E A E=(D)A的特征值全是1 (C)A的伴随矩阵*A A2000或.A E A E A E A E A E=⇒+-=⇒+=-=4. 设n阶方阵,,A B C满足ABC E=,其中E是n阶单位阵,则必有( C )(A)ACB E== (D) BAC E= (C) BCA E= (B) CBA E()()A E.p7性质1.2, p35定理1.10=⇒=A BC E BC或者141231234142332,3,4333411111111111111110000111111000101111101111100010000010001001000100010000101001000000i r r i c c c c r r r r r r r r x x x x x x x x x x x xxxxx x x x x-=+++-+-↔↔-------+---==----+-----====.2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.()213141434212341121112111110212,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪⎪--⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪------⎪ ⎪−−−→−−−→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。

每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。

2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。

3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。

6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。

7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。

8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。

三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《 线性代数 》复习题
一选择
1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T 为正定矩阵的
(A) 充分条件 (B) 必要条件 (C) 充要条件; (D) 无关条件。

2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A
(A) 40 (B) 16- (C) 3-; (D) 40-。

3.设向量组s ααα,,, 21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示,则以下结论中不能成立的是
(A) 向量组s βββ,,, 21线性无关;
(B) 对任一个j α,向量组s j ββα,,, 2线性相关;
(C) 存在一个j α,向量组s j ββα,,, 2线性无关;
(D) 向量组s ααα,,, 21与向量组s βββ,,, 21等价。

4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是
(A) 若A 的列向量组线性无关,则0=Ax 有非零解;
(B) 若A 的行向量组线性无关,则0=Ax 有非零解;
(C) 若A 的列向量组线性相关,则0=Ax 有非零解;
(D) 若A 的行向量组线性相关,则0=Ax 有非零解。

5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则
(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;
(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

6.n 阶方阵A 与对角阵相似的充要条件是 ( ).
(A) A 是实对称阵; (B) A 有n 个互异特征值;
(C) A 有n 个线性无关的特征向量; (D) A 的特征向量两两正交.
7.n 阶方阵A 满足20A =,E 是n 阶单位阵,则 ( ).
(A) 0E A -≠,但0E A +=; (B) 0E A -=,但0E A +≠; (C) 0E A -=,且0E A +=; (D) 0E A -≠,且0E A +≠
8.如果0λ是n 阶矩阵A 的特征值, 那么必有( ). (A) 00A E λ-=; (B) 00A E λ-≠; (C) 00A E λ-=; (D) 00A E λ-≠
9.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是
(A) 若A 的列向量组线性无关,则0=Ax 有非零解;
(B) 若A 的行向量组线性无关,则0=Ax 有非零解;
(C) 若A 的列向量组线性相关,则0=Ax 有非零解;
(D) 若A 的行向量组线性相关,则0=Ax 有非零解。

10.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则
(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;
(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

二计算
11、列向量⎪⎪⎪⎭
⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a
A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。

12.设n 阶向量T x x )00(,,,, =α,0<x ;矩阵 T E A αα-=,且
T x
E A αα11+=-,则=x ___ ______。

13.已知实二次型322123222132,12224),(x x x ax x x x x x x f ++++=正定,则常数a 的
取值范围为________________。

14.设矩阵33)(⨯=j i a A ,j i A 是||A 中元素j i a 的代数余子式,j i j i A a =,13121132a a a ==,已知011>a ,则=11a 。

15.解矩阵方程:
⎪⎪⎪

⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--31500
1111112021X
16.当a 为何值时,方程组有解?如有解,请求出它的解。

⎪⎩⎪⎨⎧=-+=-++=+++3
22232
43243214321x x x a x x x
x x x x x
17.设有线性方程组123123123(1)0
(1)3(1)x x x x x x x x x λλλλ
+++=⎧⎪+++=⎨⎪+++=⎩,
问λ取何值时,此方程组(1)有唯一解; (2)无解; (3)有无穷多解.
一、选择题 1.C 2. D 3. B 4. C 5. A
6.C
7. D
8. D
9. C 10.
A
二、计算 11:-1, -3, 0 12: 1- 13: 2/7||<a
14.:76 15、⎪⎪
⎪⎪⎪
⎪⎭

⎝⎛---124212
1
16、当a=5时方程组有解。

基础解系:η1=(1,1,-2,0),η2=(-3,0,2,1)
∴η=k 1η1+k 2η2,(k 1,k 2是常数)
特解:α=(-1,0,3,0)
原方
程组的通解是:X=η+α。

17、111 111 0 30 30(3)(1)00(3)(3)(1)λλλλλλλλλλλλλλλλλλλ++⎡⎤⎡⎤⎢⎥⎢⎥→--→--⎢⎥⎢⎥⎢⎥⎢⎥-+-+++-⎣⎦⎣⎦
(A ,b) (1)0,3λλ≠≠-唯一解。

(2)0λ=无解。

(3)3λ=-无穷解。

相关文档
最新文档