2010年福建省龙岩市数学中考真题(word版含答案)

合集下载

2010年福建各中考数学试题10套打包福建南平扫描

2010年福建各中考数学试题10套打包福建南平扫描

秘密★启用前2010年南平市初中毕业生综合测试数学本试卷共三大题25小题,共4页,満分150分.考试时间120分钟.1. 答卷前,考生务必在答题卡第1面.第3面、第5面上用黒色字迹的钢笔或签字笔填写自己的考 生号、姓名;填写考场试室号.座位号,再用2B 铅笔砂寸应这两个号码的标号涂黑2. 选择题每小题选岀答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黒;如需改动,用橡皮擦 干净后,再选涂其他答案标号;不自结在试卷上.3. 非选择题必须用黒色宇迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在 答题卡各题目指定区域內的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答 案也不§礎岀指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4. 考生龙须保持答题卡的整洁,考试结束后,将本试卷和答题L 并交回.一. 磐题(本大题共1CP 隠,每小题3分,共30分.在每小题给岀的四个选项中,只有一项是符合 题目要求的)1、a 是3的倒数,那么a 的值等干(* )B. -3C. 3D. 13 既是翔寸称图形又是中心对称图形的是(*)3s 下列运算正确的是(* )7、如果两圆半径分别为3和4,圆心距为6,那么这两圆的位置关系是 (* )A 、相交内切Cs 外离D>外切c ■32、下列图形中, A. (J2+1)^/2 ・1)=1 Bs (33)2 = 35D>x 8 x 4= x 2 1A. y=-B X-1 C2、y =—C 、y =—X XD 、严*X5.下列一元二次方程中, 有两个不相等的实数根的是(*)A. x 2 + 2x+1 = 0Bs x 2 + 2 = 0C 、x 2 — 3 = 0Ds x 2 + 2x + 3 = 0B.C ・ D.4、下列函数中,图彖经过点(-1, 2)的反比例函数解析式是(* )6、如图1,己知?屈C 为直角三角形,? 090。

龙岩市八年级数学上册第十一章【三角形】测试卷(含答案解析)

龙岩市八年级数学上册第十一章【三角形】测试卷(含答案解析)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°2.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm3.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .114.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .45.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF6.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形7.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°8.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .59.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m10.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°11.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+ C .180b a =+︒ D .360b a =+︒二、填空题12.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.13.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.14.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.15.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.16.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.17.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.18.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.19.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.20.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.21.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图1,若AB⊥AE,则∠BFC=75°;②图2 中BD过点C,则有∠DAE+∠DCE=45°;③图3中∠DAE+∠DFC等于135°;④保持重合的顶点不变,改变三角板BAD的摆放位置,使得D在边AC上,则∠BAE=105°.三、解答题⊥于E,已知22.如图,ABC中,AD平分BAC∠,P为AD延长线上一点,PE BC∠=︒,24ACB80∠的度数.B∠=︒,求P23.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.24.在△ABC 中,∠B =40°,∠C =60°,AD 平分∠BAC ,点E 为AD 延长线上的点,EF ⊥BC 于F ,求∠DEF 的度数.25.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形的内角和是180D.直角三角形两个锐角互余2.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD3.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.1,2,34.下列长度的三条线段能构成三角形的是()A.1,2,3B.5,12,13C.4,5,10D.3,3,6 5.如图,线段BE是ABC的高的是( )A.B.C .D .6.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变 B .减少 C .增加 D .不能确定 7.内角和与外角和相等的多边形是( )A .六边形B .五边形C .四边形D .三角形 8.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm9.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 10.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 11.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8二、填空题12.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.13.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).14.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.15.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线16.七边形的外角和为________.17.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.18.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.19.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.20.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.21.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________.三、解答题22.已知:如图,在△ABC 中,∠ACB=90°,AE 是角平分线,CD 是高,AE 、CD 相交于点F .(1)若∠DCB=48°,求∠CEF 的度数;(2)求证:∠CEF=∠CFE .23.如果一个多边形的内角和是它的外角和的4倍,求这个多边形的对角线总数. 24.在ABC 中,,20A B C A B ∠+∠=∠∠-∠=︒,(1)求A ∠,B ,C ∠的度数;(2)ABC 按角分类,属于什么三角形ABC 按边分类,属于什么三角形? 25.(1)已知△ABC 中,∠B=5∠A ,∠C-∠B=15°,求∠A ,∠B ,∠C 的度数. (2)在△ABC 中,∠A=50°,BD ,CE 为高,直线BD ,CE 交于点H ,求∠BHC 的度数.一、选择题1.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .112.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .43.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .64.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒5.如图,1∠等于( )A .40B .50C .60D .706.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 7.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°8.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°9.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒10.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+ C .180b a =+︒ D .360b a =+︒ 11.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题12.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.13.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.14.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 15.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 16.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条. 17.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 18.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.19.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.21.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.三、解答题22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).23.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.24.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.25.如图,AD、AE分别是ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β),请用含α,β的代数式表示∠DAE,并证明.。

2010年福建省泉州市数学中考真题(word版含答案)

2010年福建省泉州市数学中考真题(word版含答案)

2010年福建省泉州市初中毕业、升学考试数 学 试 题(满分150分;考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上.毕业学校_____________姓名_______________考生号_____________一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的. 请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个 的一律得0分.1. 10的相反数是( ). A.110 B.110- C.10- D.10 2.下列各式,正确的是( ).A.21->B.32->->2>3. 9的平方根是( ).A.3±B.3C.4.把不等式1x -≥的解集在数轴上表示出来,则正确的是( ).5.下面左图是由六个相同正方体堆成的物体的图形,则这一物体的正视图是( ).6. 新学年到了,爷爷带小红到商店买文具,从家中走了20分钟到一个离家900米的商店,在店里花了10分钟买文具后,用了15分钟回到家里.下面图形中表示小红和爷爷离家的距离y (米)与时间x (分)之间函数关系的是( ).A. C.D. B. A. B. D. C. B. C. D.A. y (米)y (米)y (米)y (米)x (分) x (分) x (分) x (分)7.如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在AB AC 、上,将ABC △沿着DE 折叠压平,A 与A '重合,若70A ∠=°,则12∠+∠=( ). A.70° B.110° C.130° D.140°二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.方程280x +=的解是____________. 9.据了解,今年泉州市中考考生大约101 000人,将101 000用科学记数法表示为_________. 10.四边形的外角和等于___________度.11.某小组5名同学的体重分别是(单位:千克):40,43,45,46,46,则这组数据的中位 数为___________千克.12.如图,直线AB CD ∥,65∠=°,则2∠=__________.13.如图,点A B C 、、在O ⊙上,45A ∠=°,则BOC ∠=___________.14.计算:111aa a +++=___________. 15.在一次函数23y x =+中,y 随x 的增大而__________(填“增大”或“减小”);当05x ≤≤时,y 的最小值为___________.16.现有四根钢线,长度分别为(单位:cm ):7、6、3、2,从中 取出三根连接成一个三角形,这三根的长度可以为__________ cm.(写出一种即可)17.如图,两个同心圆的圆心为O ,大圆的弦AB 切小圆于P , 两圆的半径分别为2和1,则弦AB 的长为________;若用阴影部分围成一个圆锥,则该圆锥的底面半径为_______. 三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:013(π3)42.--+-⨯19.(9分)先化简,再求值:2(1)(1)(1)x x x x +-+-,其中 2.x =-C BD B AB B2 1 (第12题图) AB BC B O B (第13题图)OA BB P B(第17题图) (第7题图) A B B C B E BD 12 A '20.(9分)吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满 分为100分)作了统计,绘制成如下频率分布表和频数分布直方图. 请你根据图表提供的信息,解答下列问题:(1)求频率分布表中a b c 、、的值,并补全频数分布直方图;(2)如果用扇形统计图表示这次数学考试成绩时,那么成绩在69.5~79.5范围内的扇形21.(9分)如图,在正方形ABCD 中,E 是CD 上一点,点F 在CB 的延长线上,且.DE BF(1)求证:ADE ABF △≌△;(2)问:将ADE △顺时针旋转多少度后与ABF △重合,旋转中心是什么?22.(9分)在一个黑色的布口袋里装有白、红、黑三种颜色的小球,它们除了颜色之外没有 其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀. (1)随机地从袋中摸出1只球,则摸出白球的概率是多少? (2)随机地从袋中摸出1只球,放回..搅匀再摸出第二只球,请你用画树状图或列表的方 法表示所有等可能的结果,并求两次..都摸出白球..的概率.A DB (第21题图)C B EB BB FB23.(9分)如图,在梯形ABCD中,90A B AB ∠=∠==°,点E 在AB 上, 4567.AED DE CE ∠===°,, 求:AE 的长和sin BCE ∠的值.24.(9分)某蔬菜公司收购一批蔬菜,计划用15天加工后上市销售.该公司的加工能力是: 每天可以精加工3吨或者粗加工8吨,且每吨蔬菜精加工后的利润为2 000元,粗加工后 的利润为1 000元.已知该公司售完这批加工后的蔬菜,共.获得利润100 000元. 请你根据以上信息,解答下列问题:(1)如果精加工x 天,粗加工y 天,依题意填写下列表格:(2)求这批蔬菜共.多少吨.25.(12分)我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解 决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α度角后的图形.若它与反比例函数y =的图象分别交于第一、三象限 的点B D 、,已知点(0)(A m C m -,、,0)(m 是常数,且0m >).(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是________;(2)①当点B 为(1)p ,时,四边形ABCD 是矩形,试求p α、和m 的值; C B DBAB BE B(第23题图)②观察猜想:对①.中.的m 值,能使四边形ABCD 为矩形的点B 共有..几个?(不必说理) (3)试探究:四边形ABCD 能不能是菱形?若能,直接写出B 点的坐标;若不能,说明 理由.26.(14分)如图所示,在同一直角坐标系中,已知抛物线214y x x k =-+与y 轴相交于点 (01)B ,,点()C m n ,在该抛物线上,且以BC 为直径的O ⊙恰好..经过顶点A . (1)求k 的值;(2)求点C 的坐标;(3)若点P 的纵坐标为t ,且点P 在该抛物线的对称轴l 上运动,试探索:①当12S S S <<时,求t 的取值范围(其中:S 为PAB △的面积,1S 为OAB △的面积, 2S 为四边形OACB 的面积); ②当t 取何值时,点P 是对称轴l 与M ⊙的交点.(只要写出t 的值即可)四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分. 填空:1.(5分)计算:23x x -=_______________.2.(5分)如图,在ABC △中,2BC =,则中位线DE =___________.x y (第26题图) O A B B AEBDBBBCBDBxyO(第25题图)A CBB y3y =2010年福建省泉州市初中毕业、升学考试数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.C ; 2.C ; 3.A ; 4.B ; 5.A ; 6.D ; 7.D . 二、填空题(每小题4分,共40分) 8.4x =-; 9.51.0110⨯; 10.360; 11.45;12.65°;13.90°;14.1;15.增大,3;16.7、6、3(或7、6、2)17.弦AB 的长为43; 三、解答题(共89分) 18.(本小题满分9分)解:原式13142=+⨯ ·························································································· (7分) 422=-+ ························································································································ (8分)4=. ································································································································ (9分)19.(本小题满分9分)解:原式2321x x x =-+-= ···························································································· (4分)31x =-; ························································································································· (5分)当2x =-时,原式=3(2)1-- ·························································································· (7分)81=-- ···························································································································· (8分) 9=-. ······························································································································ (9分)20.(本小题满分9分) 解:(1)5500.12a b c ===,,; ············································································· (3分)····················································· (6分)(2)成绩在69.5~79.5范围内的扇形的圆心角的度数为36020%72⨯=°°.············· (9分) 21.(本小题满分9分) (1)证明:在正方形ABCD 中, 90D ABC AD AB ∠=∠==°,, ··································· (1分) 90ABF D ABF ∴∠=∴∠=∠°,, ·································· (3分) 又DE BF =, ···································································· (4分) ADE ABF ∴△≌△; ······················································ (5分) (2)将ADE △顺时针旋转90度后与ABF △重合, ·················································· (7分) 旋转中心是A 点. ············································································································ (9分) 22.(本小题满分9分) 解:(1)摸出白球的概率是12(或0.5); ······································································ (4分) (2)列举所有等可能的结果,画树状图:····················· (8分) 两次都摸出白球的概率为:41()164P ==两白.······························································· (9分) (解法二)列表如下:(略)23.(本小题满分9分)解:如图,在Rt DAE △中,90456A AED DE ∠=∠==°,°,, cos AEAED DE∠=, ························································· (2分)cos AE DE AED ∴=⨯∠ 6cos 45=⨯° ········································································ (3分)6=·························································································································· (4分)= ··························································································································· (5分)BE AB AE =-, ········································································································· (6分)BE ∴== ························································································· (7分)在Rt BCE △中,7sin BEEC BCE CE=∠=,·································································· (8分)=·························································································································· (9分) A D CB EFA BC DE24.(本小题满分9分)解:(1)···································································(4分)(2)由(1)得:1560008000100000x yx y+=⎧⎨+=⎩······························································(6分)解得:105xy=⎧⎨=⎩;··············································································································(8分)5108570∴⨯+⨯=.答:这批蔬菜共有70吨. ·······························································································(9分)25.(本小题满分12分)解:(1)平行四边形.·····································································································(3分)(2)①点(1)B p,在y=的图象上,1p∴=p∴ ···························································(4分)过B作BE x⊥轴于E,则OE=1BE=,在Rt BOE△中,tanBEOEα===.30α∴=°. ·····················································································································(5分)2OB∴=.又点B、D是正比例函数与反比例函数图象的交点,∴点B、D关于原点O成中心对称.············································································(6分)2OB OD∴==.四边形ABCD是矩形,(0)(0)A m C m-,,,,2OA OB OC OD∴====.·······················································································(7分)2m∴=;·························································································································(8分)②能使四边形ABCD为矩形的点B共有2个;·····························································(9分)(3)四边形ABCD不能是菱形. ················································································(10分)法一:点A、C的坐标分别为(0)m-,、(0)m,,∴四边形ABCD的对角线AC在x轴上.···································································(11分)又点B、D分别是正比例函数与反比例函数在第一、三象限的交点.∴对角线AC与BD不可能垂直.∴四边形ABCD 不能是菱形. ······················································································ (12分) 法二:若四边形ABCD 为菱形,则对角线AC BD ⊥,且AC 与BD 互相平分,因为点A 、C 的坐标分别为(0)m -,、(0)m ,, 所以点A 、C 关于原点O 对称,且AC 在x 轴上. ···················································· (11分) 所以BD 应在y 轴上,这与“点B 、D 分别在第一、三象限”矛盾,所以四边形ABCD 不能是菱形. ·················································································· (12分)26.(本小题满分14分) 解:(1)点(01)B ,在214y x x k =-+的图象上, 211004k ∴=⨯-+ ················································· (2分)1k ∴=. ································································· (3分)(2)由(1)知抛物线为:2114y x x =-+即21(2)4y x =-,∴顶点A 为(20),. ················· (4分)21OA OB ∴==,.过点()C m n ,作CD x ⊥轴于D ,则2CD n OD m AD m ==∴=-,,. 以BC 为直径的M ⊙过点A ,90BAC ∴∠=°, ············································································································ (5分) 90CAD BAO ∴∠+∠=°.又90BAO OBA ∠+∠=°, OBA CAD ∴∠=∠,Rt Rt OAB DCA ∴△∽△,AD CD OB OA ∴=,212m n-∴=. ······················································································ (6分) (或tan tan OBA CAD ∠=∠,212OA CD nOB AD m =∴=-,. ······································ (6分)) 2(2)n m ∴=-;又点()C m n ,在21(2)4y x =-的图象上,21(2)4n m ∴=-, 212(2)(2)4m m ∴-=-,即8(2)(10)02m m m --=∴=,或10m =; 当2m =时,0n =,当10m =时,16n =;······························································· (7分)∴符合条件的点C 的坐标为(20),或(1016),. ······························································ (8分) (3)①依题意得,点(20)C ,不符合条件,∴点C 为(1016),. 此时1112S OA OB =⨯=,221ACD BODC S S S =-=△梯形, ··········································· (9分) yx2x =16PBO CD10 A 2。

11-2010年福州市中考数学试卷及答案

11-2010年福州市中考数学试卷及答案
E M

∠C = 45
∴ ∆FPC 是等腰直角三角形
B DQ
F N P C
∴ PC = FP = EQ = 4 , QC = QP + PC = 9 . 分三种情况讨论 ① 如图2,当 0 ≤ t < 4 时,
第N ,则 ∆MFN 是等腰直角三角形,
∴ FN = MF = t .
………………9 分
………………12 分
A
E
H
F
又 ∵ AD ⊥ BC ,∴ AH ⊥ EF .
AH EF = . AD BC AH x (2)由(1)得 = . 8 10

………………4 分 ∴ AH =
B Q D
P
C
4 x. 5
第 21 题图 1
∴ EQ = HD = AD − AH = 8 − ∴ S矩形EFPQ ∵−
2010 年福州市初中毕业会考、高级中等学校招生考试 年福州市初中毕业会考、 数学试卷 (全卷共 4 页,三大题,共 22 小题,满分 150 分,考试时间 120 分钟) 一、选择题(共 10 小题,每题 4 分,满分 40 分;每小题只有一个正确的选项,请在答题卡的相应位置填 涂) 1.2 的倒数是 A.
。 。
3 x ,点 A1 坐标为(1,0) ,过点 A1 作 x 的垂线交直线于点 B1 B,
以原点 O 为圆心, OB1 长为半径画弧交 x 轴于点 A2 ;再过点 A2 x 的垂线交直线于点 B2 ,以原点 O 为圆 心, OB2 长为半径画弧交 x 轴于点 A3 ,…,按此做法进行下去,点 A5 的坐标为( 三解答题(满分 90 分。请将答案填入答题卡的相应位置) 16.(每小题 7 分,共 14 分) (1)计算: −3 + ( −1) − 9

2024-2025学年福建省龙岩市一级校联盟高一上学期11月期中联考数学试题(含答案)

2024-2025学年福建省龙岩市一级校联盟高一上学期11月期中联考数学试题(含答案)

2024-2025学年福建省龙岩市一级校联盟高一上学期11月期中联考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合M={−1,1,2},N={x|x2≤2x},则M∩N= ( )A. {0,1}B. {1,2}C. {−1,0,1,2}D. {−1,0,2}2.命题“∃x<0,x+3>3x”的否定为( )A. ∀x<0,x+3≤3xB. ∀x<0,x+3>3xC. ∃x≥0,x+3>3xD. ∃x≥0,x+3≤3x3.若P:x<2,则P的一个充分不必要条件为( )A. x<3B. x<2C. −8<x<2D. −10<x≤24.函数y=2x2−2x2+2的图象大致为( )A. B.C. D.5.已知函数y=f(x)的定义域为[−1,2],则函数y=f(x+1)x−1的定义域为( )A. [−2,1]B. [−2,1)C. [0,3]D. (1,3]6.已知f(x)={(a−3)x+4,x≤2,2ax,x>2是R上的减函数,则实数a的取值范围是( )A. [2,3)B. (2,3)C. (0,3)D. (0,3]7.已知正数m,n满足3m⋅9n=9,则2m +3n的最小值为( )A. 26B. 4+23C. 8+43D. 8+238.已知y =f(x)是R 上的偶函数,对于任意的x ∈R ,都有f(x +4)=f(x)+f(2)成立,且f(1)=−3,当x 1,x 2∈[0,2]且x 1≠x 2时,都有f(x 1)−f(x 2)x 1−x 2>0成立.现给出下列命题:①f(−11)=−3;②函数y =f(x)图象的一条对称轴为x =2;③函数y =f(x)在[−6,−5]上为严格增函数;④方程f(x)=0在[−9,9]上有4个根.其中正确的命题个数为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。

2022-2023学年福建省龙岩市三年级上学期期中数学试卷及答案

2022-2023学年福建省龙岩市三年级上学期期中数学试卷及答案

2022-2023学年福建省龙岩市三年级上学期期中数学试卷及答案一、认真审题,细心计算。

1.直接写出得数。

54+39=80﹣32=74﹣40=82﹣27=48+22=65+70=100﹣65=105+37=470+150=540﹣450=490+510=800﹣640=2.列式计算,加★的要验算。

238+314=★645+176=304﹣117=★1000﹣389=3.脱式计算。

326+63÷7903﹣(245+345)4.看图列式计算。

二、用心思考,正确填写。

5.如图铅笔长厘米毫米.6.脱式计算。

3吨=千克6千米﹣米=2千米1分=45秒+秒4厘米=9厘米﹣507.★〇★〇〇★〇〇〇中〇的个数是★的倍。

8.从下面左边的框中选一个数,减去下面右边框中的一个数,差最大是,最小是。

9.由1,5,7组成的最大的三位数是,最小的三位数是,它们的差是。

10.把一根4分米长的绳子对折两次,然后沿折痕剪开,现在每段长厘米,如果对折三次,每段长厘米。

11.山歌戏流行于闽西龙岩地区,主要用龙岩方言演唱,实验小学组织三、四年级观看山歌戏,三年级有177人,四年级有238人,剧院共有420个座位全部坐下。

(填“能”或“不能”)12.人体骨由颅骨、躯干骨、上肢骨和下肢骨组成,人的全身有206块骨,其中颅骨29块,上肢骨比躯干骨多13块,上肢骨块,下肢骨块。

13.丽丽和奶奶编中国结,丽丽拿来两根同样长的红绳,第一根用去50米,第二根剩下的是第一根剩下的4倍。

这两根红绳原来各长米。

第一根红绳剩下的长度:。

第二根红绳剩下的长度:。

14.淘淘在计算减法时,把被减数的十位上的5写成了8,减数个位上的5写成了8所得的差是68,正确的差是。

三、反复比较,慎重选择。

15.与257﹣97结果相等的算式是()A.257﹣100+3B.260﹣97+3C.257﹣100﹣2D.257﹣90+716.如图点A所处的位置是()A.小于500米B.大于1500米C.小于1500米D.大于2000米17.三年级进行100米赛跑,下表是四位同学的成绩。

2010年龙岩市中考试题及答案

2010年龙岩市中考试题及答案

[键入文字]
2010 年龙岩市中考试题及答案
2010 年龙岩市九年级学业(升学)质量检查
思想品德试题
(形式:开卷;考试时间:90 分钟; 满分:100 分)
注意事项
1. 答题前,考生务必先将自己的准考证号、姓名、座位号填写在答题卡上。

2. 考生作答时,请将答案答在答题卡上,在本试卷上答题无效;按照题号在各题的答题区域
内作答,超出答题区书写的答案无效。

3. 选择题答题使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选
择题答案使用0.5mm 的黑色签字笔书写,字体工整、笔迹清楚。

4. 保持卡面清洁,不要折叠、不要弄破,考试结束后,将答题卡交回。

一、选择题(下列各题只有一个符合题意的选项,每小题2 分,共48 分)
1.2009 年7 月23 日当选并于2009 年12 月20 日就职的澳门特区第三任行政长官是
A.何厚铧
B.董建华
C.曾荫权
D.崔世安
2.今年两会有7 个主要议程,被媒体形象地概括为非常6+1。

其中1 指的是今年特有的非常规议程:审议通过修正案。

A.《国防动员法》
B.《选举法》
C.《劳动合同法》
D.《义务教育法》
3.在今年的两会时间里,一个自信、开放的中国,向世界传递着春天的共识。

其中,向世界传递的第一个重大共识,也是贯穿政府工作报告的主线是
A.加快转变经济发展方式
B.同票同权迈上城乡权利平等新台阶
C.加大民生建设
D.互联网上的E 两会世界瞩目
1。

2024年9月福建省龙岩市小升初数学高频必考应用题模拟四卷含答案解析

2024年9月福建省龙岩市小升初数学高频必考应用题模拟四卷含答案解析

2024年9月福建省龙岩市小升初数学高频必考应用题模拟四卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。

一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。

)1.联合国科教文组织自1995年起,把4月23日定为“世界阅读日”.希望籍着这个重要的日子,向大家推广阅读和写作.世界上平均每人每年读书量最多的民族是犹太族,平均每人每年读书达64本.而我国中小学生每年每人读书量比犹太人竟然少了92%.我国中小学生每年每人读书多少本?(说明:书的本数可以不是整数)2.一本书共有145页,王小艳已经看了45页,剩下的要在5天内看完,剩下的平均每天要看多少页?3.王老师把300本练习本发给五年级三个班,一班52人,二班48人,三班50人.请你利用比的知识为王老师计算一下各班应发给几本练习本?4.花生仁的出油率为38%,那么600kg花生仁可榨油多少千克?如果要榨油570kg,需要多少千克花生仁?5.一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是黑色还是白色?6.一个三角形和一个平行四边形的底和高都相等,三角形和平行四边形的面积比是多少?7.甲仓存粮是乙仓的4/5,后来甲仓增加粮食44吨,这时甲、乙两仓存粮吨数之比是7:6,现在甲仓存粮多少吨?8.甲数是80,乙数是甲数的30倍,丙数是甲数的60倍,丙数是乙数的多少倍?9.两列火车从北京、沈阳两站同时相对开出,已知甲车每小时行128千米,乙车每小时行132千米,两列火车3小时候相遇,求北京到沈阳的铁路全长多少千米?10.做一个小正方体,在其中的3个面分别写上1、2、4,另3个面都写上数字3.两人一组各抛10次.请你设计一个公平的游戏规则.11.工厂购进92个车轮,这些车轮最多可以装多少辆三轮车?12.五年级参加文艺汇演的有46人,其中女生人数的4/5是男生人数的1(1/2),问参加演出的男、女生各多少人?13.五年级某班48人组织大扫除,分组时每组人数不能少于3人,也不能多于15人.一共有几种分组方案?每组分别多少人?14.一条街道长120米,宽8米,若用面积是4平方分米的正方形水泥铺地,需要多少块这样的水泥砖?15.从甲地到乙地铺一条长840米的路,铺了24天后离乙地还有240米,平均每天铺了多少米?16.甲乙两车间共84人,甲车间人数的5/8与乙车间人数的3/4的和是58人,问两车间各有多少人?17.小麦的出粉率是85%,要磨出3400千克的面粉,需要小麦多少千克?18.师徒两人计划共同加工零件1820个,两人共同加工13小时,还剩390个零件没有完成,已知师傅每小时加工75个,徒弟每小时加工多少个零件?19.同学们做纸花.做红花371朵,做黄花168朵,做白花的朵数比红花和黄花的总朵数少35朵,同学们做白花多少朵?20.食堂运来一桶色拉油,连桶重55千克,第一天用去一桶油的一半,第二天用去剩下的一半多10克,这时还剩下5千克.油桶重多少千克?21.机床厂4天能生产小机床32台,照这样计算,要生产120台小机床需几天?22.马小跳按1个蓝色、2个黄色、3个红色的顺序挂气球.他已经买了48个红气球,现在还要买多少个黄气球?23.小马虎在做一道乘法算式的时候,将其中的一个乘数24看成了48,得到的结果是288,那么正确的结果是多少?24.陶艺公司有210套紫砂礼品需要包装,师徒两人同时开始包装,3.5小时完成了全部包装任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年龙岩市初中毕业、升学考试数学试题(满分:150分 考试时间:120分钟)注意:请把所有答案填涂或书写到答题卡上!请不要错位、越界答题! 在本试题上答题无效.提示:抛物线2(0)y ax bx c a =++≠的对称轴是2bx a =-,顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭一、选择题(本大题共10题,每题4分,共40分.每题的四个选项中,只有一个符合题意,请将正确的选项填涂到答题卡...上) 1.-3的绝对值是 A .-3 B.13- C.3 D.132.下列运算正确的是A .4482x x x += B.235x x x =· C.824x x x ÷= D.248()x x -=-3.下列事件是不可能事件的是A.掷一次质地均匀的正方体骰子,向上的一面是5点B.在只装有红球和绿球的袋子中摸出一个球,结果是黄球C.经过城市中某一有交通信号灯的路口,遇到绿灯D.通常加热到100℃时,水沸腾4.若关于x 的一元二次方程20x x a -+=的一个根为2,则a 的值是A .6 B.-6 C.2 D.-25.如图所示的几何体是由三个同样大小的正方体搭成的,其左视图是6.如图,若圆锥底面圆的半径为3,则该圆锥侧面展开图扇形的弧长为 A.2π B.4π C.6π D.9π7.从4张分别写有数字-6,-4,0,3的卡片中,任意抽取一张,卡片上的数字是正数的概率是 A .34 B. 12 C. 13 D. 148.把多项式269x x -+分解因式,所得结果正确的是A .()23x - B. ()23x + C. ()69x x -+ D. ()()33x x +-9.如图,AB 是O ⊙的直径,CD 是O ⊙的切线,C 为切点,25B ∠=°,则D ∠等于A .25° B. 40° C. 30° D. 50° 10.对于反比例函数ky x=,当0x >时,y 随x 的增大而增大,则二次函数2y kx kx =+的大致图象是二、填空题(本大题共7题,每题3分,共21分.请将答案填入答题卡...相应位置) 11.当x =_________时,分式11x -没有..意义. 12.去年龙岩市固定资产投资约为43 400 000 000元,用科学记数法表示为_________元. 13.若两圆相外切,圆心距为8,其中一个圆的半径为3,则另一个圆的半径是_________. 14.甲、乙两班举行计算机汉字输入比赛,测得每个学生每分钟输入汉字的个数,并进行统计.两个班的平均数、方差分别为:135135;x x ==乙甲,221510s s ==乙甲,.根据统计结果,_________班的成绩波动较小.15.函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是_________.16.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若8AC =,则EF =_________.17.右图是圆心角为30°,半径分别是1、3、5、7、…的扇形组成的图形,阴影部分的面积依次记为1S 、2S 3S 、…,则50S =_________(结果保留π).三、解答题(本大题共8题,共89分)18.(10分)(1)计算:(()0320102tan 452+-°(2)先化简,再求值:()22232a a a a ---,其中a =0.01)19.(8分)解方程:21.133x xx x =-++ 20.(10分)如图,在等腰梯形ABCD 中,AB CD ∥,点E 、F 在AB 上,且AE BF =,连接CE 、.DF 求证:.CE DF =21.(10分)我市某化工厂为响应国家“节能减排”的号召,从2006年开始采取措施,控制二氧化硫的排放.图①、图②分别是该厂2006~2009年二氧化硫排放量(单位:吨)的两幅不完整的统计图.请根据图中信息解答下列问题:(1)该厂2006~2009年二氧化硫的排放总量是___________吨,这四年二氧化硫排放量的中位数是___________吨;(2)把图①的折线图补充完整;(3)图②中2006年二氧化硫的排放量对应扇形的圆心角是___________度,2009年二氧化硫的排放量占这四年排放总量的百分比是___________.22.(12分)在平面直角坐标系中,AOB △的位置如图所示.(1)若11AOB △是AOB △关于原点O 的中心对称图形,则顶点1A 的坐标为(_______、_________); (2)在网格上画出AOB △关于y 轴对称的图形;(3)在网格上画出将AOB △三个顶点的横、纵坐标均扩大为原来的2倍后的图形,并求出变换后图形的周长等于__________;若把AOB △顶点的横、纵坐标均扩大为原来的n 倍,试猜想变换后图形的周长等于___________.23.(12分)某校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购买两种篮球共需费用840元.(1)A、B 两种篮球单价各多少元?(2)若购买A 种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A 、B 两种篮球的个数及所需费用.24.(13分)如图,抛物线交x 轴于点()20A -,,点()40B ,,交y 轴于点()04C -,. (1)求抛物线的解析式,并写出顶点D 的坐标;(2)若直线y x =-交抛物线于M ,N 两点,交抛物线的对称轴于点E ,连接B C E B E C ,,.试判断EBC △的形状,并加以证明;(3)设P 为直线MN 上的动点,过P 作PF ED ∥交直线MN 下方的抛物线于点F .问:在直线MN 上是否存在点P ,使得以P E D F 、、、为顶点的四边形是平行四边形?若存在,请求出点P 及相应的点F 的坐标;若不存在,请说明理由.25.(14分)如图①,ABC 绕其直角顶点C 顺时针旋转α角()090α<<°°,得111A B C A C△,交AB 于点D ,11A B 分别交于BC AB 、于点E F 、,连接1.AB(1)求证:1;ADC A DF △∽△(2)若30α=°,求11AB A ∠的度数;(3)如图②,当45α=°时,将11A B C △沿C A →方向平移得22222A B C A C △,交AB 于点,G 22B C 交BC 于点,H 设(20,CC x x =<<ABC △与222A B C △的重叠部分面积为,S 试求S 与x 的函数关系式.2010年龙岩市初中毕业、升学考试参考答案及评分标准数学说明:评分最小单位为1分,若学生解答与本参考答案不同,参照给分.11.1 12. 104.3410⨯ 13. 5 14. 乙 15. 2x > 16. 2 17. 66π三、解答题(本大题共8题,共89分) 18.(10分,第(1)小题5分,第(2)小题5分) (1)解:原式=1+5-2+(-8) ··························································································· 4分=-4 ················································································································ 5分(2)解:原式=222322a a a a --+ ···················································································· 1分=a - ················································································································ 3分当a ==············································································ 4分 ≈-2.65 ·········································································· 5分19.(8分)解:()21131x xx x =-++ ································································································· 1分 方程两边同乘()31x +,得 ····················································································· 2分 ()3312x x x =+- ·································································································· 4分 3332x x x =+-3323x x x -+= ····································································································· 5分23x =32x = ···································································································· 6分 检验:当32x =时,()310x +≠ ········································································· 7分∴32x =是原方程的解 ··············································································· 8分20.(10分) 证明:(法一)如图∵AE BF =∴AE EF BF EF +=+ 即AF BE = ············································································································ 2分∵四边形ABCD 是等腰梯形 ∴AD BC A B =∠=∠, ························································································ 5分 ∴ADF BCE △≌△ ····························································································· 8分 ∴CE DF = ·········································································································· 10分 (法二)如图连接DE CF 、 ························································· 1分 ∵四边形ABCD 是等腰梯形 ∴AD BC A B =∠=∠, ········································· 3分 ∵AE BF =∴ADE BCF △≌△ ·············································· 6分 ∴DE CF = ············································································································ 7分 ∵DC AB ∥∴四边形EFCD 是等腰梯形 ·················································································· 8分 ∴CE DF = ·········································································································· 10分21.(10分,第(1)小题4分,第(2)小题2分,第(3)小题4分)(1)100 25 ················································· 4分(2)正确补全折线图(如右图所示) ··························· 2分 (3)144 10% ································································ 4分 注:第(1)、(3)题每空2分,第(2)题正确画出一段得1分 22.(12分,第(1)小题2分,第(2)小题3分,第(3)小题7分)(1)()134A --, ······················································· 2分 (2)正确画出图形 ····················································· 3分(3)正确画出图形 ····················································· 3分 32 ········································································ 5分 16n ···································································· 7分 注:第(1)题每空1分,第(2)、(3)小题每正确画出一个顶点给1分23.(12分,第(1)小题5分,第(2)小题7分)(1)设A 种篮球每个x 元,B 种篮球每个y 元 ··················································· 1分依题意,得614720128840x y x y +=⎧⎨+=⎩ ········································································ 3分解得5030x y =⎧⎨=⎩ ·································································································· 4分答:A 种篮球每个50元,B 种篮球每个30元 ················································· 5分(2)(法一)设购买A 种篮球m 个,则购买B 种篮球()20m -个 ··················· 1分 依题意,得()5030208008m m m +-⎧⎪⎨⎪⎩≤≥ ····················································· 2分解得810m ≤≤ ····························································································· 3分∵篮球的个数必须为整数∴m 只能取8、9、10 ······················································································ 4分 可分别设计出如下三种方案:方案①:当8m =时,2012,m -=5083012760⨯+⨯=即购买A 种篮球8个,B 种篮球12个,费用共计760元 ············· 5分方案②:当9m =时,2011,m -=5093011780⨯+⨯=即购买A 种篮球9个,B 种篮球11个,费用共计780元 ···························· 6分 方案③:当10m =时,2010,m -=50103010800⨯+⨯=即购买A 种篮球10个,B 种篮球10个,费用共计800元 ·························· 7分(法二)设购买篮球的费用共w 元,A 种篮球购买m 个,依题意,可得总费用w (元)与m (个)之间的函数关系式为 ······························································································· 1分 ()503020w m m =+- ()8m ≥ ··················································································· 2分 ∴20600w m =+∵800w ≤∴20600800m +≤ 10m ≤ ∴810m ≤≤ ························································································································ 3分 注:以下过程同(法一)三种方案写对一种分别得1分 24.(13分,第(1)小题4分,第(2)小题4分,第(3)小题5分)(1)解: (法一)设所求的抛物线解析式()20y ax bx c a =++≠ ··················································· 1分∵点A B C 、、均在此抛物线上.∴42016404a b c a b c c -+=⎧⎪++=⎨⎪=-⎩∴1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩······················································································································· 2分 ∴所求的抛物线解析式为2142y x x =-- ··································································· 3分 顶点D 的坐标为912⎛⎫-⎪⎝⎭, ···························································································· 4分 (法二)设所求的抛物线解析式()()24y a x x =+- ················································· 1分 ∵点C 在此抛物线上 ∴()()02044a +-=-12a =··························································································································· 2分 ∴所求的抛物线解析式为()()1242y x x =+-即2142y x x =-- ······································································································ 3分顶点D 的坐标为912⎛⎫-⎪⎝⎭, ···························································································· 4分 注:顶点横、纵坐标错一个不给分(2)EBC △的形状为等腰三角形 ······················································································· 1分 证明:(法一)∵直线MN 的函数解析式为y x =-∴ON 是BOC ∠的平分线 ······························································································ 2分 ∵B C 、两点的坐标分别为(4,0),(0,-4) ∴4CO BO ==∴MN 是BC 的垂直平分线 ··························································································· 3分 ∴CE BE =即ECB △是等腰三角形 ································································································· 4分 (法二)∵直线MN 的函数解析式为y x =-∴ON 是BOC ∠的平分线∴COE BOE ∠=∠ ························································································· 2分 ∵B C 、两点的坐标分别为()()4004-,、, ∴4CO BO == 又∵CE BE =。

相关文档
最新文档