2008年北京市中学生数学竞赛高一年级复赛试题及解答
2008年全国高中数学联赛试题

2008试题部分第一试一、 选择题(每小题6分,共36分) 1. 函数254()2x x f x x-+=-在(,2)-∞上的最小值是( )(A) 0 (B) 1 (C) 2 (D) 32. 设[)2,4A =-,{}240B x x ax =--≤。
若B A ⊆,则实数a 的取值范围是( ) (A) [)1,2- (B) []1,2- (C) []0,3 (D) [)0,3 3. 甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止。
设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立。
则比赛停止时已打局数ξ的期望E ξ为( )(A)24181(B) 26681(C)27481(D)6702434. 若三个棱长均为整数(单位:cm )的正方体的表面积之和为5642cm ,则这三个正方体的体积之和为( )(A) 7643cm 或3586cm (B) 7643cm (C) 3586cm 或3564cm (D) 3586cm5. 方程组000x y z xyz xy yz xz y ++=⎧⎪=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为( )(A) 1 (B) 2 (C) 3 (D) 4 6. 设A B C 的A ∠、B ∠、C ∠所对的边a 、b 、c 成比例。
则sin cot cos sin cot cos A C A B C B++的取值范围是( )(A) ()0,+∞(B) 10,2⎛⎫⎪ ⎪⎝⎭(C) 11,22⎛⎫⎪ ⎪⎝⎭(D) 1,2⎛⎫+∞ ⎪ ⎪⎝⎭二、 填空题(本题满分54分,每小题9分) 7. 设()f x ax b =+(a 、b 为实数),1()()f x f x =,1()(())(1,2,)n n f x f f x n +==若7()128381f x x =+,则a b +=__________. 8. 设()cos 22(1cos )f x x a x =-+的最小值为12-。
2008年全国高中数学联赛一试二试试题整理详解汇编(一试+二试AB卷)(学生版)

2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。
中国数学会普及工作委员会和重庆市数学会负责命题工作。
2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括6道选择题、6道填空题和3道大题,满分150分。
答卷时间为100分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括3道大题,其中一道平面几何题,试卷满分150分。
答卷时问为120分钟。
一 试4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。
(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。
(A ) 1 (B ) 2 (C ) 3 (D ) 46.设ABC ∆的内角A B C 、、所对的边a b c 、、成等比数列,则的取值范围是( )。
(A )(0,)+∞ (B ) 51+ (C )5151()-+ (D )51)-+∞ 二、填空题(每小题9分,共54分)11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为46则该小球永远不可能接触到的容器内壁的面积是 .三、解答题(每小题20分,共60分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.加 试(A 卷)一、(本题满分50分)如图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(1)求证:当()f P 达到最小值时,P A B C 、、、四点共圆;(2)设E 是ABC ∆外接圆O 的AB上一点,满足:32AE AB =,31BC EC=-,12ECB ECA ∠=∠,又,DA DC 是O 的切线,2AC =,求()f P 的最小值. 二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明:(1)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (2)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件: 答一图1(1)010n n x x x +=<<,1,2,3,n =;(2)lim n n x →∞存在; (3)200820071110n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =.2008年全国高中数学联合竞赛加试(B 卷)试题参考答案说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,ABCD 是圆内接四边形.AC 与BD 的交点为P ,E 是弧AB 上一点,连接EP 并延长交DC 于点F ,点,G H分别在CE ,DE 的延长线上,满足EAG FAD ∠=∠,EBH FBC ∠=∠,求证:,,,C D G H 四点共圆.二、(本题满分50分)求满足下列关系式组 2222,50,x y z z y z ⎧+=⎨<≤+⎩的正整数解组(,,)x y z 的个数.三、(本题满分50分)设0k a >,1,2,,2008k =.证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件: (ⅰ)010n n x x x +=<<,1,2,3,n =;(ⅱ)lim n n x →∞存在; (ⅲ)200820071110n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n =.题一图。
2008年高一数学竞赛试题(新课程)

2008年城东中学高一数学竞赛试题班别 姓名 分数(时间:100分钟, 满分150分)一、选择题(共6小题,每小题6分,共48分)1、已知四边形ABCD 在映射f :),(y x →)2,1(+-y x 作用下的象集为四边形D C B A ''''。
四边形ABCD 的面积等于6,则四边形D C B A ''''的面积等于( ) A .9B .26C .34D .62.若052>++c x ax 的解是2131<<x ,则a 和c 的值是( ) A .a=6,c=1 (B)a=6,c=-1 (C)a=--6,c=1 (D)a=-6,c=--13、根据图中骰子的三种不同状态显示的数字,推出?处的数字是( ) (A)1 (B)2 (C)3 (D)6 5 1 ? 4 1 2 3 4 54、函数12xy -=的图象是 ( )5、函数()log [1,2]xa f x a x =+在上的最大值和最小值之差为21a a -+,则的a 值为 ( )(A )2或21 (B)2或4 (C)21或4 (D)26、有A 、B 、C 、D 、E 共5位同学一起比赛象棋,每两人之间只比赛1盘,比赛过程中统计比赛的盘数知:A 赛了4盘,B 赛了3盘,C 赛了2盘,D 赛了1盘,则同学E 赛了( )盘 (A )1 (B )2 (C )3 (D )47函数2()log (321)a f x ax x a =-++-对于任意的(0,1]x ∈恒有意义,则实数a 的取值范围是 ( )(A) 0a >且1a ≠ (B) 12a ≥且1a ≠ (C) 12a >且1a ≠ (D) 1a >8、若x=20lg 7, 7.0lg )21(=y 则xy 的值为( )(A) 12 (B)13 (C)14 (D)151 2 3 4 5 6 7 8二、填空题(共6小题,每小题7分,共42分)9、已知函数(0)()(0)x x f x x x ≥⎧=⎨-<⎩,奇函数()g x 在0x =处有定义,且0x <时,()(1)g x x x =+,则方程()()1f x g x +=的解是 。
2008年全国中学生数学能力竞赛决赛试题高一年级组

%"&$ !- $" !$#! ’""/ H 0 I ’- J ’! K !" L ". M%NOPQRSTUGVWXYZ[K\%NO]^_ ‘’abcdefghijklmnopqnors*tueabcd’vw’xyzw {xy|}~xy%vw’xy*% vw’*%#$i s’2%vw’|vwxy’]7 *#$v w’w{xy= $ ! ! ! 1$"%}~xy= $ 1$"K%vw’= ’#2’ 1345"%}~ ! ! ! ’xy= $ 6 , !" 1$"K%vw’= ’ 1345"* ! !"EFvw’ " |}~xy ! ’A ! ’"}~xy= ¡K%vw’¢£¤ !/ 1345:
89
8:
8
Hale Waihona Puke "; # $ %
!"#$%& ! !"#$%&’()*+,-./0123456789: ;$%<=>?@$%8 AB?@CDE !FGHI)?@JKLM$ %8N!G?@OPQRSTU2VWX
!" =>??@ABCDEFGH’IJKL’MNO8PQRSTDU’VWXY’Z’[\ ]^_D‘ab’cdefg!??Ihij8klmno/$:Hpqrstuv’As8 wxyz{|}~S-i!t oMNOS’!/V /o ($$$ BMNOo ¡*n ! ¢ Y£T2¤ " ¢ Z¥ ’¦§ ! ) *+,! ¨8©ª«¬MNO*M . B8*nA®8¯°± " " - % ’
=> 78K L "#$ MN L "#$
2008年全国高中数学联赛试题及解答

2008全国高中数学联合竞赛一试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次. 一、选择题(本题满分36分,每小题6分) 1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是(C)A .0B .1C .2D .3 [解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x+-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D )A .[1,2)-B .[1,2]-C .[0,3]D .[0,3) [解] 因240x ax --=有两个实根12a x =-22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a , 解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181B.26681C.27481D.670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜.由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=, 1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==, 故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A )A. 764 cm 3或586 cm 3B. 764 cm 3C. 586 cm 3或564 cm 3D. 586 cm 3 [解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为( B )A. 1B. 2C. 3D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列, 则sin cot cos sin cot cos A C A B C B ++的取值范围是A. (0,)+∞B.C.D.)+∞ [解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++sin()sin()sin sin()sin()sin A C B B bq B C A A aππ+-=====+-.因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩从而1122q <<,因此所求的取值范围是. 二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += 5 . [解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -;(2) 2a <-时,()f x 当cos 1x =-时取最小值1;(3)22a -≤≤时,()f x 当cos 2ax =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种. [解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. [解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =112(1)n n n -+. [解]1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n .令1(1)n n b a n n =++,111122b a =+= (10a =), 有112n n b b +=,故12n nb =,所以)1(121+-=n n a nn . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅,因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+-200822007=+.[解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=, 6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,答12图1故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+. 12.一个半径为1的小球在一个内壁棱长为内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B CA B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅, 故44PD OD r==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则2211PP PO OP =-==. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为答13图答12图21PEF ,如答12图2.记正四面体的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有11cos PM PP MPP =⋅==,故小三角形的边长12PE PA PM a =-=-.小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB P EFS S ∆∆-22())a a =--2=-.又1r =,a =1PAB P EF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为三、解答题(本题满分60分,每小题20分) 13.已知函数|sin |)(x x f =的图像与直线y kx =)0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证: 2cos 1sin sin 34ααααα+=+.[证]()f x 的图象与直线y kx = )0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->.…5分分组分解12108x x x +-1086222x x x ++-864444x x x ++-642x x x ++-4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,2211(022x x ---+-->. …15分所以2x ,即x <x >故原不等式解集为(,)-∞+∞ . …20分[解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.…5分即6422232262133122(1)2(1)x x x x x x x x+<+++++=+++, )1(2)1()1(2)1(232232+++<+x x xx , …10分令3()2g t t t =+,则不等式为221()(1)g g x x<+,显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于答15图2211x x <+, …15分即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为(,)-∞+∞ . …20分15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y b y b x x --=,化简得000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+, 易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则 22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥=.当20(2)4x -=时,上式取等号,此时004,x y ==±.因此PBC S ∆的最小值为8. …20分2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分; 2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、(本题满分50分)如题一图,给定凸四边形ABCD ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是ABC ∆外接圆O 的 AB 上一点,满足:AE AB=,1BC EC=,12ECB ECA ∠=∠,又,DA DC 是O的切线,AC 求()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅.因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅PB CA PD CA ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P 在ABC ∆的外接圆且在AC 上时, ()()f P PB PD CA =+⋅.…10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为ABC ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆.…20分(Ⅱ)记ECB α∠=,则2ECA α∠=,由正弦定理有sin 2sin 3AE ABαα==,从而32sin 2αα=34sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-,…30分解得cosα=cos α=, 故30α= ,60ACE ∠= .由已知1BC EC=()0sin 30sin EAC EAC∠-∠,有sin(30)1)sin EAC EAC ∠-=∠ ,1cos 1)sin 2EAC EAC EAC ∠-∠=∠,整理得1cos2EAC EAC ∠=∠,故tan 2EAC ∠== 可得75EAC ∠= , …40分 从而45E ∠= ,45DAC DCA E ∠=∠=∠= ,ADC ∆为等腰直角三角形.因AC =1CD =.又ABC∆也是等腰直角三角形,故BC =,212215BD =+-⋅=,BD =故min ()f P BD AC =⋅=.…50分[解法二] (Ⅰ)如答一图2,连接BD 交ABC ∆的外接圆O 于0P 点(因为D 在O 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在ACD ∆内,从而在111A B C ∆内,记ABC∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,所以111A B C ∆∽ABC ∆. …10分设11B C BC λ=,11C A CA λ=,11A B AB λ=, 则对平面上任意点M ,有0000()()f P P A BC P D CA P C AB λλ=⋅+⋅+⋅ 011011011P A B C P D C A PC A B =⋅+⋅+⋅ 1112A B C S ∆=111111MA B C MD C A MC A B ≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅()f M λ=,从而0()()f P f M ≤.由M 点的任意性,知0P 点是使()f P 达最小值的点. 由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值11102()A B C f P S λ∆=2ABC S λ∆=,记ECB α∠=,则2ECA α∠=,由正弦定理有sin 2sin 3AE AB αα==,从而答一图232sin 2αα=34sin )4sin cos αααα-=,所以2cos )4cos 0αα--=,整理得24cos 0αα-=, …30分解得cosα=cos α=,故30α= ,60ACE ∠= . 由已知1BC EC=()0sin 30sin EAC EAC∠-∠,有sin(30)1)sin EAC EAC ∠-=∠ ,即1cos 1)sin 2EAC EAC EAC ∠-∠=∠,整理得1cos2EAC EAC ∠=∠,故tan 2EAC ∠== 可得75EAC ∠= , …40分 所以45E ∠=︒,ABC ∆为等腰直角三角形,AC 1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BDC 为矩形,11B C BD ===故λ=min ()21f P == …50分[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 PA BC PC AB PA BC PC AB⋅+⋅≥⋅+⋅ ,所以 ()()()()A P C B C P B A --+--()()()()A P CBC P B A ≥--+-- (1)P C A B C B P A =-⋅-⋅+⋅+⋅()()B P C A PB AC=--=⋅,从而PA BC PC AB PD CA⋅+⋅+⋅PB AC PD AC ≥⋅+⋅()PB PD AC =+⋅BD AC≥⋅ . (2) …10分(1)式取等号的条件是 复数 ()()A P C B --与()()C P B A --同向,故存在实数0λ>,使得()()()()A P C B C P B A λ--=--,A PB AC P C Bλ--=--, 所以 arg()arg()A P B A C P C B--=--,向量PC 旋转到PA 所成的角等于BC旋转到AB 所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上. 故当()f P 达最小值时P 点在ABC ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期; (Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m=且(,)1m n =,从而存在整数,a b ,使得 1ma nb +=.于是11ma nb a bT a b T m m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅ 是()f x 的周期. …20分(Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令21111a a a ⎡⎤=-⎢⎥⎣⎦,……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a TT ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设ka 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得n a 均是()f x 的周期. …50分三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x满足以下条件:(1)010n n x x x +=<<,1,2,3,n = ; (2)lim n n x →∞存在; (3)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n = .[证] 必要性:假设存在{}n x 满足(1),(2),(3).注意到(3)中式子可化为2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N,其中00x =.将上式从第1项加到第n 项,并注意到00x =得111222200820082008()()()n n n n x a x x a x x a x x +++=-+-++- .…10分由(1)可设lim n n b x →∞=,将上式取极限得 112220082008()()()b a b x a b x a b x =-+-++-20081122200820081()k k b a a x a x a x ==⋅-+++∑20081kk b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1kk k f s a s ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10k k f a ==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =.…30分下取数列{}n x 为01n k n k x s ==∑,1,2,n = ,则明显地{}n x 满足题设条件(1),且100101n nkn k s s x s s +=-==-∑.因001s <<,故1lim 0n n s+→∞=,因此10000lim lim 11n n n n s s sx s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ).…40分最后验证{}n x 满足(3),因0()0f s =,即2008011k k k a s ==∑,从而200820082008101111()()nk n n k n n k k k n k n k k k k x x s a s s a sa x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(1),(2),(3). …50分。
高一数学竞赛试题北京

高一数学竞赛试题北京【试题一:代数问题】题目:已知函数\( f(x) = ax^2 + bx + c \),其中\( a \),\( b \),\( c \)为常数,且\( a \neq 0 \)。
若函数\( f(x) \)在\( x = 1 \)处取得极小值,求\( a \),\( b \),\( c \)之间的关系。
解答:首先,我们知道一个二次函数的极值点可以通过求导数来找到。
对于函数\( f(x) \),其导数为\( f'(x) = 2ax + b \)。
由于\( x = 1 \)是极小值点,我们有\( f'(1) = 2a + b = 0 \)。
又因为极小值点处的导数为0,我们可以得出\( a \)和\( b \)之间的关系。
同时,我们可以利用极小值的定义,即\( f(1) \)是\( x \)在\( 1 \)附近的最小值,进一步确定\( a \)的符号。
由于\( a \)是二次项系数,它决定了函数的开口方向,而极小值意味着开口向上,所以\( a > 0 \)。
结合以上信息,我们可以得出\( b = -2a \)。
【试题二:几何问题】题目:在直角三角形ABC中,∠C = 90°,AB是斜边,且AC = 6,BC = 8。
求直角三角形ABC的周长。
解答:根据勾股定理,我们知道在直角三角形中,斜边的平方等于两直角边的平方和。
即\( AB^2 = AC^2 + BC^2 \)。
将已知的AC和BC的值代入,我们得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以\( AB = 10 \)。
直角三角形的周长是三边之和,所以周长为\( AC+ BC + AB = 6 + 8 + 10 = 24 \)。
【试题三:数列问题】题目:给定数列\( \{a_n\} \),其中\( a_1 = 1 \),\( a_{n+1} =a_n + 2n \)。
北京市中学生数学竞赛高一年级复赛试题及解答

2011年北京市中学生数学竞赛高一年级复赛参考解答一、选择题(满分40分,每小题8分,将答案写在下面相应的空格中)1.二次三项式x 2+ax +b 的根是实数,其中a 、b 是自然数,且ab =22011,则这样的二次三项式共有 个.答:1341.我们发现,实际上,数a 和b 是2的非负整数指数的幂,即,a =2k ,b =22011–k ,则判别式Δ=a 2– 4b =22k – 422011–k =22k – 22013–k ≥0,得2k ≥2013–k ,因此k ≥32013=671,但k ≤2011,所以k 能够取2011–671+1=1341个不同的整数值.每个k 恰对应一个所求的二次三项式,所以这样的二次三项式共有1341个.2.如右图,在半径为1的圆O 中内接有锐角三角形ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = .解:易知,圆心O及垂心H 都在锐角三角形ABC 的内部,延长AO 交圆于N ,连接AH 并延长至H 1与BC 相交,连接CN ,在Rt △CAN 和Rt △AH 1B 中,∠ANC =∠ABC ,于是有∠CAN =∠BAH 1,再由AL 是△ABC 的角平分线,得∠1=∠2.由条件AP ⊥OH ,得AH=AO=1.连接BO 交圆于M ,连接AM 、CM 、CH ,可知AMCH 为平行四边形,所以CM=AH=AO =1,BM =2,因为△MBC 是直角三角形,由勾股定理得BC ==3.已知定义在R 上的函数f (x )=x 2和g (x )=2x +2m ,若F (x )=f (g (x )) – g (f (x ))的最小值为14,则m = .答:14-.解:由f (x )=x 2和g (x )=2x +2m ,得F (x )= f (g (x )) – g (f (x ))=(2x +2m )2–(2x 2+2m )=2x 2+8mx +4m 2–2m ,F (x )=2x 2+8mx +4m 2–2m 的最小值为其图像顶点的纵坐标()2222242(42)84284242m m m m m m m m ⨯⨯--=--=--⨯.由已知,21424m m --=,得21202m ⎛⎫+= ⎪⎝⎭,所以1.4m =-4.tan 37.5=o . 答:6232-+-.解1:作Rt △ADB ,使得∠ADB =90º,AD =1,AB =2,则∠B =30º,BD =3.延长BD 到C ,使BC =2,则DC =23-.连接AC ,则∠ACB =(180º–30º)÷2=75º.作∠ACD 的平分线交AD 于E ,则∠ECD =37.5º.由于AC 2=AD 2+DC 2=1+(2–3)2=8–43,所以 ()2843621226262AC =-=-+=-=-.由三角形的角平分线定理,得AE AC ED DC =,于是AE ED AC DCED DC++=,即()()()()322162233221ED AD DC AC CD ====-++-+-+-,所以()()tan 37.53221EDDC==-+o 6232=-+-.解2:作等腰直角三角形ABC ,使∠C =90º,AC =BC =1,则AB =2. 作∠CAD =30º,则CD =33,AD =233,则∠DAB =15º.作∠BAD 的平分线AE ,记CE =x ,则BE =1–x ,DE =x –3. 所以33232x -=,整理得 ()()213221623 2.3232x +-+===-+--+tan 37.562321CE xAC ===-+-o . 5.设f (x ) =113xx+-,定义f 1(x ) = f (f (x )),f n (x )=f (f n –1(x )) (n =2, 3,…),f 2011(2011)= . 答:10053017.A21 30º解:记01()()13x f x f x x +==-,则()111113()()1131313xx x f x f f x x x x++--===--+-⋅-; ()211113()()11313xx f x f f x x x x--+===-+⋅+;()3201()()()()13x f x f f x f x f x x +====-; 接下来有41()()f x f x =,52()()f x f x =,63()()f x f x =,…,f n (x )的表达式是循环重复的,以3项为一周期.所以,20113670111()()()13x f x f x f x x ⨯+-===+,20112011120101005(2011)13201160343017f -===+⨯.二、(满分15分)D 是正△ABC 的边BC 上一点,设△ABD与△ACD 的内心分别为I 1,I 2,外心分别为O 1,O 2,求证:(I 1O 1)2+(I 2O 2)2=(I 1I 2)2.证明:作以A 为中心、逆时针旋转60o 的变换(,60)R A o ,使△ABD 到△ACD 1,由于∠ADC +∠AD 1C =∠ADC +∠ADB =180º,所以A 、D 、C 、D 1共圆,因此2O 是△AD 1C 的外心,也就是(,60)12R A O O −−−−→o,因此AO 1=DO 1=AO 2=DO 2=O 1O 2,所以∠O 1AO 2=∠O 1DO 2=60º.由∠AO 1O 2+∠ACB =120º+60º=180º,O 1在△ACD 的外接圆⊙O 2上.由于111(180)6012012022AI D ABD ABD ∠=∠+-∠=+⨯=o o o o ,所以I 1在⊙O 2上,因此11118018030150O I D O AD ∠=-∠=-=o o o o ,111118015030I O D I DO ∠+∠=-=o o o .同理可证,I 2在△ABD 的外接圆⊙O 1上,所以22150DI O ∠=o .由于12118090,2I DI ∠=⨯=o o 而22111212906030I DO I DO I DI O DO ∠+∠=∠-=-=o o o ,比较可得1122I O D I DO ∠=∠.在△O 1I 1D 与△DI 2O 2中,因为已证O 1D=DO 2,1122150,O I D DI O ∠=∠=o 又1122.I O D I DO ∠=∠因此 △O 1I 1D ≌△DI 2O 2.所以,I 1O 1=DI 2,DI 1= I 2O 2.由于1290,I DI ∠=o △I 1DI 2是直角三角形.根据勾股定理,有()()()2221212,DI DI I I +=而I 1O 1=DI 2,DI 1=I 2O 2. 因此()()()222112212.I O I O I I +=1三、(满分15分)n 是正整数,记n !=1×2×3×…×n ,如1!=1,2!=1×2=2,3!= 1×2×3=6,又记[a ]表示不超过a 的最大整数,求方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦L 的所有正整数解.解1:由于当x 是正整数时,[]1!x x ⎡⎤=⎢⎥⎣⎦,2!2x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦≥12x -,3!6x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦>6x –1,所以1126x x x -++-<2011即53x <120122,得方程的正整数解x 满足0<x <1207.5.由于6!=720,7!=5040,所以方程的正整数解x <7!,即07!8!9!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. 因此,方程20111!2!3!4!5!6!x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的解与原方程的解是一样的.设小于7!的正整数x 为上述方程的解,我们写出(1,2,3,4,5,6)!xk k =的带余除法表达式:设16!6!r x a =+,0≤r 1<6!,(0≤a ≤6,a ∈N );因此.6!x a ⎡⎤=⎢⎥⎣⎦① 12665!5!5!r r x a a b =+=++,0≤r 2<5!,(0≤b ≤5,b ∈N ),因此65!x a b ⎡⎤=+⎢⎥⎣⎦. ② 323053054!4!4!r r xa b a b c =++=+++,0≤r 3<4!,(0≤c ≤4,c ∈N ), 因此3054!x a b c ⎡⎤=++⎢⎥⎣⎦. ③341202*********!3!3!r r xa b c a b c d =+++=++++,0≤r 4<3!,(0≤d ≤3,d ∈N ); 因此1202043!x a b c d ⎡⎤=+++⎢⎥⎣⎦. ④5436060123360601232!2!2!r r xa b c d a b c d e =++++=+++++,0≤r 5<2, (e =0,1,2);因此360601232!x a b c d e ⎡⎤=++++⎢⎥⎣⎦. ⑤5720120246272012024621!1!r xa b c d e a b c d e f =+++++=+++++,(f =0,1); 因此72012024621!x a b c d e f ⎡⎤=+++++⎢⎥⎣⎦. ⑥①~⑥相加得1237a +206b +41c +10d +3e +f =2011.显然a =1,因此206b +41c +10d +3e +f =2011–1237=774; 易知b =3,因此41c +10d +3e +f =774–206×3=156; 易知c =3,于是10d +3e +f =156–41×3=33; 类似求得d =3,e =1,f =0.所求的x =1×720+3×120+3×24+3×6+1×2+0×1=1172.x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦K 的唯一正整数解.解2:设f (x )=1!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦L ,因为对于所有的正整数k ,!x k ⎡⎤⎢⎥⎣⎦都是单调增的,其和f (x )就是增函数;又因为对于正整数x ,11!x +⎡⎤⎢⎥⎣⎦=1!x ⎡⎤⎢⎥⎣⎦+1,所以f (x )是严格单调的.经估数,将x =1172带入,求f (1172)的值,得f (1172)=2011,所以,x =1172是方程20111!2!3!10!11!x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦K 的唯一正整数解.四、(满分15分)平面上的n 个点,若其中任3个点中必有2个点的距离不大于1,则称这样的n 个点为“标准n 点组”.要使一个半径为1的圆纸片,对任意“标准n 点组”都能至少盖住其中的25个点,试求n 的最小值. 答案:49.解:首先证明,n min >48.在平面上画长为5的线段AB ,分别以A 、B 为圆心,画半径为0.5的两个圆,在每一个圆内,取24个点,则平面上有48个点满足题设条件(其中任意3点中必有2点的距离不大于1),显然,不可能画出一个半径为1的圆,其包含有25个所选的点,所以n >48.下面证明n min =49.若49=n ,设A 是其中的一点,作以A 为圆心半径为1的⊙A ,若所有的点都在圆A 中,那么就满足题设条件.若不是所有的点都在圆A 中,则至少有一点B 不在圆A 中,再作以B 为圆心、半径为1的⊙B ,则A 、B 的距离大于1(如右图),除A ,B 外,余下的47个点中每一点P 都与A 、B 组成3点组,必有两个点的距离不大于1,所以要么P A ≤1,要么PB ≤1,即 点P 要么在⊙A 中,要么在⊙B 中,根据抽屉原理,必有一个圆至少包含了这47个点中的24个点,不妨设这个圆就是⊙A ,再加上圆心A 点,就有不少于25个点在这个半径为1的⊙A 中(圆内或圆周上).所以n 的最小值是49.五、(满分15分)已知函数f :R →R ,使得对任意实数x y z ,,都有11()()()()22f xy f xz f x f yz +-≥14,求[1×f (1)]+[2×f (2)]+[3×f (3)]+…+[2011×f (2011)]的值.其中对于实数a ,[a ]表示不超过a 的最大整数.解:由于已知函数f R R →:,使得对任意实数x y z ,,都满足11()()()()22f xy f xz f x f yz +-≥14,可令0x y z ===,有()211(0)(0)(0)22f f f +-≥14,即21(0)2f ⎛⎫- ⎪⎝⎭≤0,由于f (0)是一个实数,所以1(0).2f =再令1x y z ===,有()211(1)(1)(1)22f f f +-≥14,即21(1)2f ⎛⎫- ⎪⎝⎭≤0,由于f (1)是一个实数,所以1(1).2f =又令0y z ==,有11(0)(0)()(0)22f f f x f +-≥14,代入1(0)2f =得对任意实数x ,都有()f x ≤12. ①又令1y z ==,有11()()()(1)22f x f x f x f +-≥14,代入1(1)2f =得对任意实数x ,都有()f x ≥12. ②综合①、②可得,对任意实数x ,都有1()2f x =.验证:函数1()2f x =满足题设条件,取的是等号,所以满足题设条件的函数的唯一解为1()2f x =.于是[][][][]1(1)2(2)3(3)2011(2011)f f f f ⨯+⨯+⨯++⨯K1234201122222⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦K 011223310051005=+++++++++K() =⨯++++K 21231005 =+⨯(11005)1005=.1011030。
2008年全国高中数学联合竞赛一试试题解析

2008年全国高中数学联合竞赛一试试题一、选择题(本题满分36分,每小题6分)1.函数f (x )=5−4x +x 22−x在(−∞,2)上的最小值是()A.0 B.1 C.2 D.3解答f (x )=2−x +12−x⩾2,等号成立时x =1.所以选C .2.设A =[−2,4),B ={x |x 2−ax −4⩽0},若B ⊆A ,则实数a 的取值范围为()A.[−1,2)B.[−1,2]C.[0,3]D.[0,3)解答设f (x )=x 2−ax −4,依题意f (x )=0的两根x 1,x 2∈[−2,4).由于∆=a 2+16>0,于是 f (−2)=2a ⩾0,f (4)=12−4a >0,a 2∈[−2,4)⇒a ∈[0,3).所以选D .3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.24181 B.26681 C.27481 D.670243解答由于比赛不满6局时胜者比对方多2分,则比赛局数只能是2,4,6.其中2局分胜负的情况为甲或乙胜2局;4局分胜负的情况为甲或乙胜3局负1局,且负的1局在前2局.于是需要比赛6局的情况是在前4局中,甲或乙在1,2局和3,4局中均为1胜1负.相应分布列为局数ξ246概率P (23)2+(13)2C 12·13(23)3+C 12·23(13)34(13)2(23)2于是Eξ=2×59+4×2081+6×1681=26681.所以选B .4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564cm 2,则这三个正方体的体积之和为()A.764cm 3或586cm 3B.764cm 3C.586cm 3或564cm 3D.586cm 3解答设三个正方体的棱长分别为a,b,c ,则6(a 2+b 2+c 2)=564⇒a 2+b 2+c 2=94.由于(3k ±1)2≡1(mod 3),于是a,b,c 中必有2个数为3的倍数,不妨设为a,b .检验得32+62=45⇒c =7;32+92=90⇒c =2.从而a 3+b 3+c 3=586或764.所以选A .5.方程组 x +y +z =0,xyz +z =0,xy +yz +xz +y =0的有理数解(x,y,z )的个数为()A.1B.2C.3D.4解答xyz +z =z (xy +1)=0⇒z =0或xy =−1.当z =0时, x +y =0,xy +y =y (x +1)=0⇒ x =0,y =0或 x =−1,y =1.当xy =−1时, (x +y )2=y −1,xy =−1⇒(y −1y )2=y −1⇒y 2+1y 2=y +1⇒y 4−y 3−y 2+1=(y −1)(y 3−y −1)=0.由于y 3−y −1=0没有有理根,则y =1⇒x =−1.于是有理解(x,y,z )的个数为2,所以选B .6.设△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin A cot C +cos A sin B cot C +cos B的取值范围是()A.(0,+∞) B.(0,√5+12)C.(√5−12,√5+12) D.(√5−12,+∞)解答设等比数列a,b,c 的公比为q ,则b =aq,c =aq 2.于是 a +b >c,b +c >a ⇒ q 2−q −1<0,q 2+q −1>0⇒√5−12<q <√5+12.sin A cot C +cos A sin B cot C +cos B =sin A cos C +cos A sin C sin B cos C +cos B sin C =sin (A +C )sin (B +C )=sin B sin A =b a =q ∈(√5−12,√5+12).所以选C .二、填空题(本题满分54分,每小题9分)7.设f (x )=ax +b ,其中a,b 为实数,f 1(x )=f (x ),f n +1(x )=f (f n (x )),n =1,2,···,若f 7(x )=128x +381,则a +b =.解答f 2(x )=a (ax +b )+b =a 2x +ab +b =a 2x +b (1−a 2)1−a ,f 3(x )=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b =a 3x +b (1−a 3)1−a ,···,f 7(x )=a 7x +b (1−a 7)1−a =128x +381⇒a =2,b =3.所以a +b =5.8.设f (x )=cos 2x −2a (1+cos x )的最小值为−12,则a =.解答设t =cos x ∈[−1,1],则f (x )=2t 2−1−2a (1+t )=2t 2−2at −2a −1=2(t −a 2)2−a 22−2a −1.于是 a 2∈[−1,1],−a 22−2a −1=−12或 a 2>1,1−4a =−12或 a 2<−1,1=−12.解得a =−2±√3(−2−√3舍去).所以a =−2+√3.9.将24个志愿者名额分配给3所学校,则每校至少有一个名额且各校名额互不相同的分配方法共有种.解答将24个志愿者名额分配给3所学校,每校至少有一个名额的分配方法有C 223=253种;3所学校名额相同的分配方法有1种;有且仅有2所学校名额相同的分配方法(即满足2x +z =24且x =z 的正整数解)有10×3=30种.所以3所学校名额互不相同的分配方法共有253−1−30=222种.10.设数列{a n }的前n 项和S n 满足:S n +a n =n −1n (n +1),n =1,2,···,则通项a n =.解答S n +a n =2S n −S n −1=n −1n (n +1)=2n +1−1n ⇒2(S n −1n +1)=S n −1−1n ⇒数列{S n −1n +1}是公比为12的等比数列,且S 1−12=−12,于是S n −1n +1=−(12)n ⇒S n =1n +1−(12)n (n ∈N ∗).所以a n =S n −S n −1=1n +1−(12)n −1n +(12)n −1=(12)n −1n (n +1).11.设f (x )是定义在R 上的函数,若f (0)=2008,且对任意x ∈R ,满足f (x +2)−f (x )⩽3·2x ,f (x +6)−f (x )⩾63·2x ,则f (2008)=.解答f (2008)=f (0)+[f (2)−f (0)]+[f (4)−f (2)]+···+[f (2008)−f (2006)]⩽2008+3(20+22+···+22006)=2008+41004−1=22008+2007;f (2004)=f (0)+[f (6)−f (0)]+[f (12)−f (6)]+···+[f (2004)−f (1998)]⩾2008+63(20+26+···+21998)=2008+64334−1=22004+2007,又 f (x +6)−f (x )⩾63·2x ,f (x )−f (x +2)⩾−3·2x⇒f (x +6)−f (x +2)⩾60·2x ⇒f (2008)−f (2004)⩾60·22002⇒f (2008)⩾f (2004)+60·22002=64·22002+2007=22008+2007.所以f (2008)=22008+2007.12.一个半径为1的小球在一个内壁棱长为4√6的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.解答如图,小球O 是正四面体P −DEF 的内切球.设AC 的中点为G ,作OM ⊥P G 于M .则有r =1⇒P O =3⇒P M =2√2=13P G ,同理AN =2√2=13AF ⇒MN =2√6.于是小球在正四面体一个面内能接触到的区域是以MN 为边长的正三角形及内部,其面积为正四面体一个面面积的14.所以该小球永远不可能接触到的容器内壁的面积为正四面体表面积的34,即S =34×4×√34×(4√6)2=72√3.三、解答题(本题满分60分,每小题20分)13.已知函数f (x )=|sin x |的图像与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,求证:cos αsin α+sin 3α=1+α24α.解答如图,直线y =kx (k >0)与f (x )=|sin x |的图像相切于点A (α,−sin α)(π<α<3π2),由于(−sin x )′=−cos x,于是有−sin αα=−cos α⇒α=tan α.所以cos αsin α+sin 3α=cos α2sin 2αcos α=12sin 2α=1+tan 2α4tan α=1+α24α.14.解不等式log 2(x 12+3x 10+5x 8+3x 6+1)<1+log 2(x 4+1).解答解析一:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+5x 8+3x 6−2x 4−1<0⇒(x 4+x 2−1)(x 8+2x 6+4x 4+x 2+1)<0⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).解析二:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+3x 8+x 6+2(x 8+x 6)<2x 4+1⇒x 6+3x 4+3x 2+1+2(x 2+1)<2x 2+1x 6⇒(x 2+1)3+2(x 2+1)<(1x 2)3+2x 2⇒x 2+1<1x 2⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).15.如图,P 是抛物线y 2=2x 上的动点,点B 、C 在y 轴上,圆(x −1)2+y 2=1内切于△P BC ,求△P BC 面积的最小值.解答如图,设P (2t 2,2t ),M (1,0),过P 的直线y −2t =k (x −2t 2)与圆M 相切,则有|k (1−2t 2)+2t |√1+k2=1⇒4t 2(t 2−1)k 2−4t (2t 2−1)k +4t 2−1=0设直线P B,P C 的斜率为k 1,k 2,于是y B =2t −2t 2k 1,y C =2t −2t 2k 2,S △P BC =12·2t 2|y B−y C |=2t 4|k 1−k 2|=2t 4·√16t 2(2t 2−1)2−16t 2(t 2−1)(4t 2−1)4t 2(t 2−1)=2t 2·|t |√(2t 2−1)2−(t 2−1)(4t 2−1)t 2−1=2t 4t 2−1=2(t 4−1+1t 2−1)=2(t 2+1+1t 2−1)=2(t 2−1+1t 2−1+2)⩾2(2+2)=8,等号成立时t 2=2⇒t =±√2.所以△P BC 面积的最小值是8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年北京市中学生数学竞赛高一年级复赛试题及解答一、填空题(满分40分,每小题答对得8分)题 号1 2 3 45 答 案N (0.5, 0.25)32137+-509031.5318- 81941.在P (1, 1), Q (1, 2), M (2, 3), N (0.5, 0.25) 四个点中,能成为函数y = a x 的图像与其反函数的图像的公共点的只可能是 .答:因为10.521110.2541616⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,且111616110.25log log 0.542===,所以N (0.5, 0.25)可以是函数116xy ⎛⎫= ⎪⎝⎭的图像与其反函数116log y x =的图像的公共点.易知,其余三点均不可能是函数y = a x 的图像与其反函数的图像的公共点.2.如右图所示,ABCD 是一张长方形纸片,将AD 、BC 折起,使A 、B 两点重合于CD 边上的点P ,然后压平得折痕EF 与GH .若PE =2cm ,PG =1cm ,EG =7cm .则长方形纸片ABCD 的面积为 cm .解:由对称性知:AE =PE =2cm ,BG =PG =1cm ,所以AB = AE +EG +GB = PE +EG +PG = 2+7+1 = 3+7 (cm),又由PE =2cm ,PG =1cm ,EG =7cm ,由余弦定理可知,在△PEG 中,∠EPG =120º,AD 等于△PEG 中边EG 上的高h ,易由△PEG 的面积求得AD = h =sin12021sin120377PE PG EG ⨯⨯⨯==(cm).所以,长方形纸片ABCD 的面积为33321(271)(37)3777++⨯=+⨯=+(cm)2.3.二次函数f (x )满足f (–10) = 9,f (–6) = 7和f (2) = –9,则f (2008) = .解:设f (x ) = ax 2+bx +c ,则由题意可得910010(1)7366(2)942(3)a b ca b ca b c =-+⎧⎪=-+⎨⎪-=++⎩由(1)减(3)得18 = 96a – 12b ,即3 = 16a – 2b ; 由(2)减(3)得16 = 32a – 8b ,即4 = 8a – 2b ; 解最后两式,得a = –18,b = –52. 以a = –18,b = –52代入 –9 = 4a +2b +c ,得c = –72.AD FE GBC PHCD因此,二次函数 f (x ) =2157822x x ---,所以 22008520087(2008)509031.5822f ⨯=---=-.4.如图所示,线段OA = OB = OC =1,∠AOB = 60º,∠B OC = 30º,以OA ,OB ,OC 为直径画3个圆,两两的交点为M ,N ,P ,则阴影部分的曲边三角形的面积是 .解:如图,连接AC ,AN ,BN ,AM ,BM , MP ,NP ,OM ,ON ,OP ,易知∠OP A =∠OPC =90º,∠ANO =∠BNO = 90º,∠BMO =∠CNO = 90º,所以A ,P ,C 共线;A ,N ,B 共线;B ,M ,C 共线.由OA =OB =OC =1,可知P ,M ,N 分别是AC ,BC ,AB 的中点,MPNB 为平行四边形,BN =MP ,BM =NP ,所以BN 与MP 长度相等,BM 与NP 长度相等,因此,曲边三角形MPN 的面积= S MPNB =12S △ABC , 而 S △ABC = S AOCB – S △AOC= S △AOB + S △BOC – S △AOC =311314424-+-=, 所以,曲边三角形MPN 的面积=12S △ABC =318-.5.对任意正实数x ,用F (x )表示log 2x 的整数部分,则F (1)+ F (2)+ F (3)+…+F (1022)+ F (1023) = .解:对正整数n 我们实验分析找规律:n F (n ) 1 0 2,3 1 4,5,6,7 2 8,9,10,11,12,13,14,15 3 16,17,18,19,20,……,29,30,31 4 …… …… 规律:取值F (1)的正整数有1=20个,取值F (2)的正整数有2=21个, 取值F (3)的正整数有4=22个, …… ……取值F (k )的正整数有2k –1=2F (k )个,所以F (1)+ F (2)+ F (3)+…+ F (1022)+ F (1023)= 0×20+1×21+2×22+3×23+…+9×29设T = 1×21+2×22+3×23+…+9×29,则2T = 1×22+2×23+3×24+…+9×210,于是T = –2–22–23–…–29+9×210 = –1022+9216=8194,即F (1)+ F (2)+ F (3)+…+ F (1022)+ F (1023) = 8194.二、(满分15分)证明:111111tan3tan2tan1tan tan tan tan3tan2tan1tan tan tan 236236--+--=⋅⋅+⋅⋅.证明:1,2,3弧度都不等于2π+n π,n ∈Z ,则tan 1,tan 2,tan 3都有意义.且tan1tan 21⋅≠,于是1tan1tan 20-⋅≠.∵ 1 + 2 = 3, ∴ tan(12)tan3+=,即t a n 1t a n 2t a n 31t a n 1t a n 2+=-⋅, ∴ tan1tan 2tan3tan1tan 2tan3+=-⋅⋅因此 tan3tan 2tan1tan3tan 2tan1--=⋅⋅. (1) 同理 由于 11106324π<<<<,11tan tan 136⋅≠,于是111tan tan 036-⋅≠, ∵ 111632+=, ∴ 111tan tan 632⎛⎫+= ⎪⎝⎭,即 11tan tan163tan 1121tan tan 63+=-⋅, ∴ 111111tan tan tan tan tan tan 632236+=-⋅⋅,因此 111111tan tan tan tan tan tan 236236--=⋅⋅. (2) (1)+(2)得111111tan3tan2tan1tan tan tan tan3tan2tan1tan tan tan 236236--+--=⋅⋅+⋅⋅.三、(满分15分)AB 是已知圆的一条弦,它将圆分成两部分,M 和N 分别是两段弧的中点,以B 为旋转中心,将弓形AMB 顺时针转一个角度成弓形1A B ,如图所示,1AA 的中点为P .求证:MP NP ⊥.证明:取AB 的中点C ,A 1B 的中点C 1,易知A 1B =AB ,于是A 1C 1=AC . 连接MC 1,NC ,则MC 1⊥A 1B ,NC ⊥AB ,在未旋转时,C 1与C 是同一点,MN 是垂直于AB 的直径,由相交弦定理得MC 1·NC =AC ·CB =AC 2. 连接PC ,PC 1,则111//,//PC AC PC AC ,∠A 1C 1P =∠C 1PC =∠ACP ,所以 MC 1·CH =PC 1·PC ,即11MC PC PC CN=, 又 ∠MC 1P =90º+∠A 1C 1P =90º+∠ACP =∠NCP ,所以 △MC 1P ∽△PCN ,所以∠MPC 1=∠PNC .…(12分) 设PN 交AB 于K ,∠C 1PN =∠CKN ,所以 ∠MPN =∠MPC 1+∠C 1PN =∠PNC+∠CKN =90º,因此MP NP ⊥.四、(满分15分)定义在区间[0, 1]上的函数f (x )满足f (0)= f (1)=0,且对任意的x 1, x 2∈[0, 1]都有f (122x x +)≤f (x 1)+ f (x 2).(1) 证明,对任意的x ∈[0, 1]都有f (x )≥0;(2) 求f (34)的值; (3) 计算f (12)+f (14)+…+ f (12k )+…+ f (200812).解:(1) 任取x 1= x 2= x ∈[0, 1],则有f (22x)≤f (x )+ f (x ), 即 f (x )≤2f (x ),于是f (x )≥0,所以,对任意的x ∈[0, 1]都有f (x )≥0.(2) 由f (0)= f (1)=0,得f (012+)≤f (0)+ f (1)=0+0=0,于是f (12)≤0.但由(1)的结果知f (12)≥0,所以f (12)=0,由f (12)=0,f (1)=0,则f (1122+)≤f (12)+ f (1)=0+0=0,于是f (34)≤0.由(1)的结果知f (34)≥0,所以f (34)= 0.(3) 由f (0)=0,f (12)=0,得f (1022+)≤f (0)+ f (12)=0+0=0,于是f (14)≤0. 但由(1)的结果知f (14)≥0,所以f (14)=f (212)=0,继续求下去,可得f (12k)=0,k =1, 2, 3,…, 2008. 因此,f (12)+f (14)+…+ f (12k )+…+ f (200812)=0.五、(满分15分)北京市中学有m (m >2)位中学生为“北京奥运会”共提交了n 条不同的建议,已知其中任两名学生提交的建议中至少有一条建议是相同的,也至少有一条建议是不同的.求证:提交建议的学生数m 不超过2n –1.证明:设A 为m 位中学生所提不同建议的集合,A i (i =1, 2, …, m )表示 第i 个学生提的建议的集合,以│X │表示集合X 中元素的个数,X 表示X 的补集,则│A │=n ;因为任两名学生提出的建议中都至少有一条是相同的,也至少有一条是不同的,所以A i ∩A j ≠ Ø,A i ≠ A j ,(1≤i ≤j ≤m ).因为 A i ∩i A =Ø,可以断定(,1,2,,i j A A i j m ≠=且)i j ≠.如若不然,假设某个i j A A =,由A i ∩i A =Ø可得A i ∩A j = Ø,与A i ∩A j ≠ Ø矛盾! 这样就形成了如下的2m 个集合:1212,,,,,,,m m A A A A A A ,他们都是A 的子集合,且彼此不等.因为n 个元素的集合的子集个数为2n ,所以 2m ≤2n ,即m ≤2n –1.所以,提交建议的学生数m 不超过2n –1.(事实上,等号可以达到,我们通过n = 4的情况说明,m 可以等于24–1=8;比如:{a },{a , b },{a , c },{a , d },{a , c , d },{a , b , c },{a , b , d },{a , b , c , d }就是一例)。