2007年北京市中学生数学竞赛初二
(2021年整理)分式的化简求值经典练习题(带答案)

分式的化简求值经典练习题(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(分式的化简求值经典练习题(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为分式的化简求值经典练习题(带答案)的全部内容。
分式的化简一、比例的性质:⑴比例的基本性质:a c ad bc bd=⇔=,比例的两外项之积等于两内项之积.⑵更比性(交换比例的内项或外项): ( ) ( )( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c=⇒=⑷合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kd b d b d±±=⇒=(k 为任意实数)⑸等比性:如果....a c m b d n ===,那么......a c m a b d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a c b d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c⋅÷=⨯=⋅乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)知识点整数指数幂运算性质: ⑴mnm na a a +⋅=(m 、n 为整数) ⑵()m nmna a =(m 、n 为整数) ⑶()n n nab a b =(n 为整数)⑷m n m na a a -÷=(0a ≠,m 、n 为整数)负整指数幂:一般地,当n 是正整数时,1nnaa -=(0a ≠),即na -(0a ≠)是na 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在。
分式的恒等变形精讲精练

一、化分式为部分分式的和【例1】 (4级)(第10届华罗庚金杯决赛)下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B .【例2】 (4级)若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 .【例3】 (5级)若213111a M Na a a -=+--+,求M 、N 的值.【例4】 (3级)(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【例5】 (4级)(2004年第15届培训题)已知正整数,a b 满足1114a b +=,则a b +的最大值是 .【例6】 (4级)若对于3±以外的一切数,28339m n xx x x -=+--均成立,求mn .【例7】 (5级)若关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx Nx x ++-为最简分式,且有a b >,a b c +=, 求N .【例8】 (4级)将269x -化为部分分式.分式恒等变形(竞赛部分)【例9】 (4级)化21(1)(2)x x x ---为部分分式.【例10】 (4级)将下列分式写成部分分式的和的形式:2342x x x +--.【例11】 (4级)将下列分式写成部分分式的和的形式:32222361(1)(3)x x x x x -++++.【例12】 (5级)将下列分式写成部分分式的和的形式:32241338(1)(2)(1)x x x x x x -+++--.【例13】 (4级)计算:2132x x x -++262x x ---2104x x ---.【例14】 (4级)将下列分式写成部分分式的和的形式:4322231(1)(1)x x x x x ++-+-.二、分式的恒等证明【例15】 (4级)(1994广东潮州市初中数学竞赛)求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【例16】 (5级)已知x 、y 、z 为三个不相等的实数,且111x y z y z x+=+=+,求证:2221x y z =.【例17】 (5级)已知:a c b d=,求证:22222222a b c d a b c d abcd ----++++++=.【例18】 (5级)若a b x a b -=+,b c y b c -=+,c az c a-=+,求证:(1)(1)(1)(1)(1)(1)x y z x y z +++=---【例19】 (5级)若1abc =,求证:1111a b ca ab b bc c ca++=++++++.【例20】 (5级)(2003年第1届“创新杯”数学邀请赛初中二年级第二试试题)已知1111a b ca ab b bc c ca++=++++++,求证:1abc =.【例21】 (6级)(1986年中国数学奥林匹克竞赛赛前培训试题) 已知2220a b cbc a ca b ab c ++=---,求证:()()()2222220a b cbc a ca b ab c ++=---.【例22】 (6级)已知0a b cb c c a a b++=---,求证:2220()()()a b c b c c a a b ++=---.【例23】 (5级)(2002年北京市中学生数学竞赛初二复赛题二)已知0abc ≠,证明:下列四个数3333()()()(),,,a b c b c a c a b a b c abc abc abc abc++------中至少有一个不小于6.【例24】 (5级)已知223344371642a b a b a b a b x y x y x x x y +=+=+=+=,,,,求证:5520a bx y+=。
2007年初二数学竞赛答案

2007年江干区数学小能手竞赛8年级解答一、选择题(40分)题号 1 2 3 4 5 6 7 8 答案DABDCCAB二、填空题(40分)题号 9 10 11 12 13 14 15 16 答案 1711921237.444110或914.44,提示:如图,连接OC ,就有(x+10): y =20: 16,(16+y ):x =20:10,可求得x =20, y =24.三、解答题(40分) 17.18.解:由题意知△DEF 为等腰直角三角形,△ABE ≌△BFE , ∵DE =1,∴DF =1,AE =EF =2,AD=BC =2+1(4分) 设AB=x ,则CF = x -1 ∵222BF CF BC =+∴222(1)(12)x x =-++,解得x =2+2(4分)∴矩形ABCD 的面积=(2+2)(2+1)=4+32(2分)(第17题)(第18题)19.解:设两辆公交车发车的间隔时间x为分。
(1分)由题意得方程11113()105x x-=-,(5分)解得x=8,(2分)经检验,x=8是原方程的解且符合题意。
(1分)答:(略)(1分)(本题解法多样,本解法的关键是把两车的间隔距离看作1,利用速度的3倍关系列方程)20.如图,将相邻的圆圈染成一黑一白,则16个圆圈染成如图的颜色.(4分)由题意,旅游的路线必为:白→黑→白→黑→白→黑…,或黑→白→黑→白→黑→白….(3分)由于有 16个城市,因此,应是黑点、白点各8个.但图中的白点有7个,黑点有9个,所以,不可能找到一条不重复地走遍这16个城市的旅游路线.(3分)(20题)。
2018年北京市中学生数学竞赛初二试题(含答案)

2018年北京市中学生数学竞赛初二试题一、选择题(每小题5分,共25分)1.在1~100这100个自然数中,质数所占的百分比是().(A)25% (B)24% (C)23% (D)22%2.一个三角形的三边长都是整数,它的周长等于10,则这个三角形是().(A)直角三角形(B)钝角三角形(C)恰有两边相等的三角形(D)恰有一个内角为60°的三角形3.已知n为正整数,S=1+2+…+n.则S的个位数字不能取到的数字是().(A)0,1,2,3 (B)3,4,5,6(C)3,5,6,8 (D)2,4,7,94.如图1,四边形ABCD的对角线AC、BD相交于点O.S△AOB=4,S△COD=9.则S四边形的最小值是().ABCD(A)22 (B)25 (C)28 (D)32(1)(2) (3)5.如果│a-b│=1,│b+c│=1,│a+c│=2,则│a+b+2c│等于().(A)3 (B)2 (C)1 (D)0二、填空题(每小题7分,共35分)1.如图2,大圆的两条直线AC、BC垂直相交于点O,分别以边AB、BC、CD、DA为直径向大圆外侧作四个半圆,图中四个“月形”阴影的总面积是2cm2.•则大圆的半径等于_______cm.2.2 005被两位的自然数去除,可能得到的最大余数是_______.3.已知a2+bc=14,b2-2bc=-6.则3a2+4b2-5bc=_________.4.如图3,在凸六边形ABCDEF中,AD、BE、CF三线共点于O,•每相邻三个顶点所组成的三角形的面积都等于1,则S六边形ABCDEF=_______.5.有6个被12除所得余数都相同的自然数,它们的连乘积为971 425.则这6•个自然数之和的最小值是________.三、(15分)已知非零实数a、b、c满足a+b+c=0.求证:(1)a3+b3+c3=3abc;(2)(a bc-+b ca-+c ab-)(ca b-+ab c-+bc a-)=9.四、(15分)如图,在△ABC中,∠BAC=∠BCA=44°,M为△ABC形内一点,•使得∠MCA=30°,∠MAC=16°,求∠BMC的度数.五、(10分)某学生在黑板上写出了17个自然数,•每个自然数的个位数码只能是0,1,2,3,4这5个数字中的一个.证明:从这17个数中可以选出5个数,•它们的和能被5整除.参考答案一、1.A在1~100这100个自然数中,有质数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97共25个,所以,其中质数所占的百分比是25%.2.C将10分拆成三个正整数之和,有10=1+1+8=1+2+7=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+4共八种情况.由“三角形两边之和大于第三边”可知,只有(2,4,4),(3,3,4)两组可构成三角形.由于等腰三角形两个底角都是锐角,于是,以2、4、4为边的等边三角形中,最小边2对的顶角也是锐角.以3、3、4为边的等腰三角形中,由32+32>42,•知顶角也是锐角.所以,以2、4、4为边的等腰三角形以及以3、3、4为边的等腰三角形都是锐角三角形,排除选项(A)、(B)•.•又由于等腰三角形中恰有一个内角为60°时变为等边三角形,与边为(2,4,4)、(3,3,4)的条件矛盾,排除选项(D).由(2,4,4)、(3,3,4)为边的三角形是恰有两边相等的三角形.3.D.由S=(1)2n n+,又n、n+1是两个连续的自然数,知n(n+1)的个位数字只能取0,2,6.•所以,S的个位数字只能是0,1,3,5,6,8这六个数字.因此,S的个位数字不能取到的是2,4,7,9.4.B如图1,设S△AOD=x,S△BOC=y,则S四边形ABCD=4+9+x+y≥13+2xy.由49xy=,有xy=36.所以,S四边形ABCD≥13+2xy=13+12=25.故S四边形ABCD的最小值是25.此时,AB∥DC,即四边形ABCD是梯形.5.A.由│a-b│=1,知a-b=1或a-b=-1;由│b+c│=1,知b+c=1或b+c=-1;由│a+c│=2,知a+c=2或a+c=-2.这样,可以得到23=8个三元一次方程组:(1)a-b=1,b+c=1,a+c=2;(2)a-b=1,b+c=1,a+c=-2;(3)a-b=1,b+c=-1,a+c=2;(4)a-b=1,b+c=-1,a+c=-2;(5)a-b=-1,b+c=1,a+c=2;(6)a-b=-1,b+c=1,a+c=-2;(7)a-b=-1,b+c=-1,a+c=2;(8)a-b=-1,b+c=-1,a+c=-2.对于(2)~(7),将前两个方程相加得到的a+c的值与后一个方程不同,所以,不会出现这六种情况.对于(1),有a=2-c,b=1-c,所以,a+b+2c=3.对于(8),有a=-2-c,b=-1-c,所以,a+b+2c=-3.故│a+b+2c│=3.二、1.1.由勾股定理知AD2+CD2=AC2.所以,上面半个大圆的面积等于以AD、CD为直径的两个半圆的面积.同理,下面半个大圆的面积等于以AB、BC为直径的两个半圆的面积.•因此,正方形ABCD的面积等于四个“月形”的总面积.容易计算,大圆的半径OD是1cm.2.85.由2 005依次被99,98,97,…去除,观察所得余数的值变化得2 005=99×20+25=98×20+45=97×20+65=96×20+85=95×21+10=94×21+31=93×21+52=92×21+73=91×22+3=90×22+25=89×22+47=88×22+69=87×23+4=86×23+27=85×23+50.以下的余数不会大于84,故可能得到的最大余数是85.3.18.3a2+4b2-5bc=3(a2+bc)+4(b2-2bc)=3×14+4×(-6)=18.4.6.如图5,连结BD、CE.因为S△BCD=S△ECD=1,所以,BE∥CD.因为S△BAF=S△EAF,所以,BE∥AF.因此,BE∥AF∥CD.同理,CF∥DE∥BA,AD∥FE∥BC.由AD、BE、CF三线共点于O,可知四边形OCDE、四边形OEFA、四边形OABC 都是平行四边形,易知,每个平行四边形的面积都等于2.5.150.因为971 425被12除余1,而971 425=5×5×7×7×13×61,其中被12除余5、余7、余1的质因数各都是两个,由于两个被12除余5(余7)的数的乘积被12除余1,而971 425与若干个1的积仍为971 425,被12除余1,所以,•只能是6个被12除余1的数的乘积为971 425.计算得知:971 425=1×1×1×1×1×971 425,这6个因数之和为1+1+1+1+1+971 425=971 430;971 425=1×1×1×1×13×74 725,这6个因数之和为1+1+1+1+13+74 725=74 742;971 425=1×1×1×13×25×2 989,这6个因数之和为1+1+1+13+25+2 989=3 030.事实上,设a、b都是被12除余1的大于1的自然数,且a≥b,则a≥b>2,易知ab>a×2=a+a>a+b.①根据式①得971 425=13×74 725>13+74 725=13+25×2 989>13+25+2 989=13+25+49×61>13+25+49+61.因为971 425=52×72×13×61=1×1×13×25×49×61,所以,971 425表为6•个被12除余1的自然数,它们和的最小值等于1+1+13+25+49+61=150.三、(1)由a+b+c=0,得a+b=-c,因此,(a+b)3=-c3.于是,有a3+3a2b+3ab2+b3=-c3.故a3+b3+c3=-3ab(a+b)=-3ab(-c)=3abc.(2).(a bc-+b ca-+c ab-)·ca b-=1+(b ca-+c ab-)·ca b-=1+22cab.同理,(a bc-+b ca-+c ab-)·ab c-=1+22abc.(a bc-+b ca-+c ab-)·bc a-=1+22bac故(a bc-+b ca-+c ab-)(ca b-+ab c-+bc a-)=1+22cab+1+22abc+1+22bac=3+3332()a b cabc++=3+23abcabc⨯=9.四、在△ABC中,由∠BAC=∠BCA=44°,得AB=BC,∠ABC=92°.如图6,作BD⊥AC于点D,延长CM交BD于点O,连结OA,则有∠OAC=∠MCA=30°,∠BAO=∠BAC-∠OAC=44°-30°=14°.∠OAM=∠OAC-∠MAC=30°-16°=14°.所以,∠BAO=∠MAO.又∠AOD=90°-∠OAD=90°-30°=60°=∠COD,所以,∠AOM=120°=∠AOB.又AO=AO,因此,△ABO≌△AMO.故OB=OM.由于∠BOM=120°,从而,∠OMB=∠OBM=1802BOM︒-∠=30°.所以,∠BMC=180°-∠OMB=150°.五、如果17个数的末位数字0,1,2,3,4每个都有,可选出5•个数的末位数字恰分别为0,1,2,3,4,则这5个数之和的末位数字为0,其和被5整除.如果17个数的末位数字不是0,1,2,3,4每个都有,则最多只有4•种不同的末位数字.这时,根据轴屉原理,这17个数中至少有5个数的末位数字一样.于是,这5•个数之和被5整除.。
2007年北京市初二数学竞赛试题

2007年北京市初二数学竞赛试题一、选择题(每小题5分,共25分)1、若c b a 、、是三个不同的正整数,并且16=abc ,则a c b c b a +-可能的最大值是( ).(A )249 (B )253 (C )263 (D )2642、已知三个连续的正整数的倒数和等于504191. 则这三个数之和等于( ). (A )27 (B )24 (C )21(D )18 3、分母是2007的正的最简真分数有( )个. (A )675 (B )1326 (C )21329(D )1332 4、对于实数x ,符号[]x 表示不大于x 的最大整数,例如,[][]859.7,314.3-=-=. 则关于x 的方程4773=+x 的整数根有( )个. (A )4 (B )3 (C )2 (D )15、如图1,已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平. 则重叠部分(阴影三角形)的面积是( ).(A )10 (B )12 (C )14 (D )16二、填空题(每小题7分,共35分)1、将正整数从1开始依次按如图2所示的规律排成一个数阵,其中,2在第一个拐角处,3在第2个拐角处,5在第3个拐角处,7在第4个拐角处,……,那么,在第2007个拐角处的数是 .2、在一个3×3的方格表中填有1,2,3,4,5,6,7,8,9九个数,每格只填一个数. 现将每行中放有最大数的格子染成红色,放有最小数的格子染成绿色. 设M 是红格中的最小数,m 是绿格中的最大数. 则M -m 可以取到 个不同的值.3、如图3,已知在等腰三角形ABC 中,AB =AC ,P 、Q 分别是边AC 、AB 上的点,且AP =PQ =QB =BC. 则∠PCQ = .4、化简⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++d c b a c b a d b a c a b a 111111111111111111111111的值为 .5、如图4,在长方形ABCD 中,E 、F 、G 分别是边AB 、BC 、CD 的中点. 已知长方形ABCD 的面积是40cm 2. 则四边形MFNP 的面积是 cm 2.三、(15分)已知c b a 、、是实数. 若abc b ac b a bc a c b 2a 2c 2222222222-+-+-+、、之和恰等于1,求证:这三个分数的值有两个为1,一个为-1.四、(10分)如图5,在△ABC 中,∠ABC =46°,D 是边BC 上的一点,DC =AB ,∠DAB =21°. 试确定∠CAD 的度数。
2018年北京市中学生数学竞赛初二年级获奖名单

2018年北京市中学生数学竞赛初二年级获奖名单一等奖(94名)姓名学校年级姓名学校年级唐锦琪人大附中初一樊骏一人大附中初一袁浩然人大附中初二杨丽鸿清华附中初二陈竞帆人大附中初二段睿思清华附中初二关乃粼人大附中早六宋知轩清华附中初一张世奇人大附中初二沈芸伍清华附中初二张世潇北师大实验中学初一许易清华附中初二赵亦阳十一学校初二张一锐清华附中初二王浩霖人大附中初一潘宇锐北京一零一中初二廖昱博人大附中初一陈昕宇北京一零一中初二李永一人大附中初一李昊轩人大附中初一王原北大附中初二苗硕人大附中初二邹听雨十一学校初一黄安辀人大附中初一张书豪十一学校初二梁恒睿人大附中分校初一黄亦骐人大附中早六王俣涵北大附中初二宋嘉玺人大附中初二武正坤人大附中初一胡殊闻人大附中早六卢远人大附中初一王誉墨北师大实验中学初二谢昊霖人大附中初一贾博暄人大附中初二黄鹤鸣人大附中初一黄子萌北师大实验中学初二曲兆轩牛栏山一中实验学校初二张涵之人大附中初二阮宗泽人大附中初一陈嘉雪人大附中初二王慕涵人大附中初二徐健十一学校初一许睿泽北师大实验中学初二徐文昕人大附中初一许远航北京一零一中初二周亚琪清华附中初二刘若易北师大实验中学初二肖子健清华附中初一李海峰清华附中初一孙胤博人大附中初一许子涵人大附中初一王小龙人大附中早六朱祎然北京二中分校初二陈吉轲人大附中初二张元之清华附中初二李思学北大附中初二郭逸远北京一零一中初一廖原北京五中分校初二吴迪北师大实验中学初二王默涵清华附中初一钟沐阳人大附中初二刘星彤清华附中初二陈宇轩人大附中早六张皓翔北京一零一中初一蓝漩十一学校初二张章北京一零一中初二邓宇晨人大附中初一修时雨人大附中初二邓怡馨人大附中初一游天宇人大附中初一刘馨阳人大附中初一孙晓森清华附中初二吕博涵清华附中初二刘睿韬清华附中初一高子昂清华附中初一邹岳桐人大附中初二虞明达清华附中初一何翰韬十一学校初一李祖豫人大附中早六徐烨堃十一学校初二王中天人大附中初二张翔宇人大附中初二左泽成北师大实验中学初二张皓天北师大实验中学初一吴紫菱北师大实验中学初二张远洋人大附中初一罗天择人大附中初二高梓博人大附中初二卢天戈北大附中初二陈坤宁人大附中初二范唯楚清华附中初一张庭语人大附中初一付紫成人大附中初一二等奖(144名)姓名学校年级姓名学校年级范天舒人大附中初二齐锴人大附中初一张家铭人大附中初二李安之北京二中分校初二蔡振浩人大附中初二肖翊宸人大附中初一王凤怡人大附中初二袁籁人大附中初一孟博彰人大附中初一张泰然人大附中初一晁一沣人大附中初二彦昕人大附中初一王培阳清华附中初一孙嘉鸿人大附中初一毛嘉琛人大附中初一郭尉含章人大附中初二刘一铭清华附中初一栗选丞人大附中早六陈胤彤清华附中初二葛皓天人大附中初一李汝诚清华附中初二董亦麟人大附中初二曾广宇清华附中初二查益清华附中初二曹硕清华附中六年顾芸萌北师大实验中学初二张邵博清华附中初一丛诗雨北京一零一中初二张智清人大附中初二于天润北京一零一中初二王梓畅人大附中初一王梓翔人大附中初一杨昊源北京一零一中初二刘俊宏人大附中初一李宗润北师大实验中学初二洪维清华附中初一张一博北师大实验中学初二蒋辰昊人大附中初一刘以诺清华附中初二高慈欣北京一零一中初二吴梦晗清华附中初二董昀翱人大附中初一刘嫁新清华附中初二张天意北师大实验中学初二孙嘉阳清华附中初一翟凌飞人大附中早六夏海闻北师大实验中学初一朱泽睿人大附中初二陈宇奇人大附中初一周以端十一学校初二董天诺人大附中初二张煦恒人大附中初一吴飞扬人大附中初二李易铭人大附中初一段文博人大附中初二李飞跃十一学校初二郑元彬人大附中初二王羽健十一学校初二夏一桐人大附中初一斯文人大附中初二苗可明人大附中初一吴奕涵人大附中初一钱海天人大附中初一赵宸宇北京二中分校初二陆雪松人大附中初二李佳俊清华附中初二肖旭磊十一学校初一陈彦旭清华附中初二李春进人大附中早六王子兮清华附中初二乔铎北京亦庄实验中学初二李子豪清华附中初一郭俊游人大附中早六常三思人大附中初一黄俊维人大附中早六吕逍依人大附中初一王雨晗十一学校初二王镜廷人大附中早六龙韬智十一学校初二祝世博十一学校初二吴青阳人大附中初二陆洲锋北京二中分校初二龚云锋牛栏山一中实验学校初二黄兆屹人大附中分校初二方郑琦牛栏山一中实验学校初二张广源清华附中初一徐定坤人大附中初二刘一晨北京一零一中初二周蔚然人大附中初二张致远北京二中分校初二崔焱扬北京二中分校初二陈炫东北大附中初二张逸轩北大附中初一赵泽昕人大附中分校初二陈灵钧北京五中分校初二肖惠文清华附中六年黎丹宇北大附中初二张殊赫北京一零一中初二申君皓清华附中初二李依桐北京一零一中初二赵培源清华附中初二汪远北京一零一中初二韩羽霄清华附中初二姚亦嵩北京一零一中初二关清元人大附中初一李思颖北京一零一中初二余凌越清华附中初二李奕含北师大实验中学初二卞皓晨北师大实验中学初二吕彦荣北师大实验中学初二陈霁芸人大附中早六田昊霖人大附中初一耳昶玮人大附中初二孟晙阳北京二中分校初二王子初北京二中分校初二刘语玹人大附中初二刘任达北京四中初二郭晟毓十一学校初二申奕坤人大附中初二徐皓天人大附中初二马迹昀十一学校初一胡晓君人大附中初二阮家琪人大附中初一张子睿人大附中分校初一王子鸣人大附中初一徐金人大附中初二吴雨轩人大附中初二王子涵人大附中早六李铭泽清华附中初一陈智谦人大附中初二徐启鑫清华附中初一董雪瑞北大附中初二郑睿阳清华附中初二杨子谦北京五中分校初二杨舒涵清华附中初二付浩辰十一学校初二刘语涵清华附中初一赵柯人大附中初一荆明健清华附中初二蒋穆清人大附中初一李浩明北师大实验中学初一许景粟人大附中初一张涵钰清华附中初一郑睿阳清华附中初二三等奖(123名)姓名学校年级姓名学校年级刘相卿清华附中初二赵天珺十一学校-初二杜胤臻清华附中初二杨成科人大附中初一钱铭阳清华附中初二李卓言北京五中分校初二张文健清华附中初二李天圣北大附中初一陈楚瑜清华附中初二陈桢懿北大附中初二董予人大附中初一陈灿首师大附中初二赵一辰北师大实验中学初二张逸扬北京二中分校初二陈誉霄人大附中初二蔡泊屹北大附中初一周子昂人大附中初二马昊宇十一学校初二张雪桢北京二中分校初二苗瀚文人大附中初一王帅烨人大附中早六鲍俊辰清华附中初二张冰喆人大附中初一张宁远清华附中初二王泽尘人大附中初二张天翼清华附中初二田笑冰北京五中分校初二贺家琦北师大实验中学初一李昀濠清华附中初一张雨桐北京一零一中初二李金宸清华附中初一余瑶北师大实验中学初二孙一文清华附中初一张杰辰北京一零一中初二陆宜行十一学校初二杨谨毓北京一零一中初一周雪阳清华附中初一梁毓北师大实验中学初二孙家瑞人大附中初二杨博涵北师大实验中学初二李一申北京五中分校初二诸晨岳清华附中初二韩沛瑾人大附中初一郭馨锴清华附中初二康恺文牛栏山实验中学初二王一飞清华附中初二梁宸菲牛栏山实验中学初二关澜清华附中初二张喆人大附中初二宋清岳清华附中初二李诗均北大附中初一许赫男清华附中初一杜恒奕北京二中分校初二杨凡楷清华附中初二卢思翰人大附中早六吕桉驰清华附中初二杨紫雄人大附中初二汪佳萱北师大实验中学初二朱炯亦首师大附中初一李子闻北师大实验中学初一匡天一北京二中分校初二杨润欣北师大实验中学初一王彦翔北京四中初二刘孟歆北师大实验中学初一石家霖人大附中初二徐鼎新人大附中分校初一徐隽镕人大附中早六姬奕晨北京一零一中初二罗嘉祺北京一零一中初二高飞人大附中初二张亦鑫人大附中初一张沁月北大附中初二汪宁北京二中分校初二贾天歌人大附中初一王雨桉北京四中初二吴道宁人大附中初一张童开首师大附中初二李思海人大附中初一丁牧云北京市第十二中学初二魏梦萱人大附中初一刘涵柞人大附中初二邢琬瑜人大附中早六高欢瑜人大附中早六方大容人大附中初一何思远清华附中初二陈瑞泽首师大附中初一任墨也人大附中初二郑文博首师大附中初二王禹腾清华附中初二里正阳北京四中初二陈禹铭清华附中初二何阳松人大附中初二侯博文十一学校初一许昊翔人大附中早六东紫昭十一学校初二丁天岚人大附中初一王润山十一学校初一王泽芃北京四中初二隋远昊十一学校初一陈子璐北京一零一中初二史洪毓人大附中初一高江山清华附中初二杨佳营北京五中分校初二纪明悦清华附中初二迟嘉会北京五中分校初二李熙民北师大实验中学初二张语轩人大附中初二战治成师达中学初二王众一人大附中初二张斗和人大附中初二温雪岭人大附中初二王心睿人大附中初二刘羿镝人大附中初二孟繁钰人大附中初二张皓翔人大附中初二张婧婷十一学校初一刘俊扬人大附中初一闫岳霖牛栏山一中实验学校初二张戈飞人大附中早六张天艺牛栏山一中实验学校初二侯梓超人大附中初二杨卓然首师大附中初二陈含哲北京一零一中初二。
北京市初二数学竞赛学生版

【题 9】△ABC 中,∠BAC=45°,∠ABC=60°,高线 AD 与 BE 相交于 H,若 AB=1,求四边形 CDHE 的面 积_________.
x
一点,则 OP 的最小值是( )
A.1
B. 2
C. 3
D.2
O
B M
Ax
【题 4】已知 a 555555 ,则 a 除以 84 所得余数是( )
2016个5
A.0
B.21
C.42
D.63
【题 5】一张三角形纸片的长为 1 的边仅与一个边长为 1 的正 12 边形纸片的一条边重合,平放在桌面上, 则所得到的凸多边形的边数一定不是( )
A.11
B.12
C.13
D.14
【题 6】已知 24 t2 8 t2 2 ,求 24 t2 8 t2 的值为_______.
【题 7】正数 a,b,c 使得等式 a2 a 1 b2 b 1 c2 c 1 a a 1 bb 1 c c 1 成立,试确定
1956a2 1986b2 2016c2 的值为________.
A C1 C2
B2 B1
B A1 A2 C
【题 13】一个自然数 n 若能表示为若干个正整数的和,且这些正整数的倒数和也恰等于 1,则称 n 为“金 猴数”,比如 2 4 8 8 22 且 1 1 1 1 1 ,22 就是一个“金猴数” 2488
(1)证明:11 与 28 是两个“金猴数”; (2)证明:如果 n 是“金猴数”,则 2n 2 、 2n 9 也是“金猴数”; (3)请你判定:2016 也是“金猴数”.
北京市中学生数学竞赛初二年级获奖名单

2018年北京市中学生数学竞赛初二年级获奖名单一等奖(94名)姓名学校年级姓名学校年级唐锦琪人大附中初一樊骏一人大附中初一袁浩然人大附中初二杨丽鸿清华附中初二陈竞帆人大附中初二段睿思清华附中初二关乃粼人大附中早六宋知轩清华附中初一张世奇人大附中初二沈芸伍清华附中初二张世潇北师大实验中学初一许易清华附中初二赵亦阳十一学校初二张一锐清华附中初二王浩霖人大附中初一潘宇锐北京一零一中初二廖昱博人大附中初一陈昕宇北京一零一中初二李永一人大附中初一李昊轩人大附中初一王原北大附中初二苗硕人大附中初二邹听雨十一学校初一黄安辀人大附中初一张书豪十一学校初二梁恒睿人大附中分校初一黄亦骐人大附中早六王俣涵北大附中初二宋嘉玺人大附中初二武正坤人大附中初一胡殊闻人大附中早六卢远人大附中初一王誉墨北师大实验中学初二谢昊霖人大附中初一贾博暄人大附中初二黄鹤鸣人大附中初一黄子萌北师大实验中学初二曲兆轩牛栏山一中实验学校初二张涵之人大附中初二阮宗泽人大附中初一陈嘉雪人大附中初二王慕涵人大附中初二徐健十一学校初一许睿泽北师大实验中学初二徐文昕人大附中初一许远航北京一零一中初二周亚琪清华附中初二刘若易北师大实验中学初二肖子健清华附中初一李海峰清华附中初一孙胤博人大附中初一许子涵人大附中初一王小龙人大附中早六朱祎然北京二中分校初二陈吉轲人大附中初二张元之清华附中初二李思学北大附中初二郭逸远北京一零一中初一廖原北京五中分校初二吴迪北师大实验中学初二王默涵清华附中初一钟沐阳人大附中初二刘星彤清华附中初二陈宇轩人大附中早六张皓翔北京一零一中初一蓝漩十一学校初二张章北京一零一中初二邓宇晨人大附中初一修时雨人大附中初二邓怡馨人大附中初一游天宇人大附中初一刘馨阳人大附中初一孙晓森清华附中初二吕博涵清华附中初二刘睿韬清华附中初一高子昂清华附中初一邹岳桐人大附中初二虞明达清华附中初一何翰韬十一学校初一李祖豫人大附中早六徐烨堃十一学校初二王中天人大附中初二张翔宇人大附中初二左泽成北师大实验中学初二张皓天北师大实验中学初一吴紫菱北师大实验中学初二张远洋人大附中初一罗天择人大附中初二高梓博人大附中初二卢天戈北大附中初二陈坤宁人大附中初二范唯楚清华附中初一张庭语人大附中初一付紫成人大附中初一二等奖(144名)姓名学校年级姓名学校年级范天舒人大附中初二齐锴人大附中初一张家铭人大附中初二李安之北京二中分校初二蔡振浩人大附中初二肖翊宸人大附中初一王凤怡人大附中初二袁籁人大附中初一孟博彰人大附中初一张泰然人大附中初一晁一沣人大附中初二彦昕人大附中初一王培阳清华附中初一孙嘉鸿人大附中初一毛嘉琛人大附中初一郭尉含章人大附中初二刘一铭清华附中初一栗选丞人大附中早六陈胤彤清华附中初二葛皓天人大附中初一李汝诚清华附中初二董亦麟人大附中初二曾广宇清华附中初二查益清华附中初二曹硕清华附中六年顾芸萌北师大实验中学初二张邵博清华附中初一丛诗雨北京一零一中初二张智清人大附中初二于天润北京一零一中初二王梓畅人大附中初一王梓翔人大附中初一杨昊源北京一零一中初二刘俊宏人大附中初一李宗润北师大实验中学初二洪维清华附中初一张一博北师大实验中学初二蒋辰昊人大附中初一刘以诺清华附中初二高慈欣北京一零一中初二吴梦晗清华附中初二董昀翱人大附中初一刘嫁新清华附中初二张天意北师大实验中学初二孙嘉阳清华附中初一翟凌飞人大附中早六夏海闻北师大实验中学初一朱泽睿人大附中初二陈宇奇人大附中初一周以端十一学校初二董天诺人大附中初二张煦恒人大附中初一吴飞扬人大附中初二李易铭人大附中初一段文博人大附中初二李飞跃十一学校初二郑元彬人大附中初二王羽健十一学校初二夏一桐人大附中初一斯文人大附中初二苗可明人大附中初一吴奕涵人大附中初一钱海天人大附中初一赵宸宇北京二中分校初二陆雪松人大附中初二李佳俊清华附中初二肖旭磊十一学校初一陈彦旭清华附中初二李春进人大附中早六王子兮清华附中初二乔铎北京亦庄实验中学初二李子豪清华附中初一郭俊游人大附中早六常三思人大附中初一黄俊维人大附中早六吕逍依人大附中初一王雨晗十一学校初二王镜廷人大附中早六龙韬智十一学校初二祝世博十一学校初二吴青阳人大附中初二陆洲锋北京二中分校初二龚云锋牛栏山一中实验学校初二黄兆屹人大附中分校初二方郑琦牛栏山一中实验学校初二张广源清华附中初一徐定坤人大附中初二刘一晨北京一零一中初二周蔚然人大附中初二张致远北京二中分校初二崔焱扬北京二中分校初二陈炫东北大附中初二张逸轩北大附中初一赵泽昕人大附中分校初二陈灵钧北京五中分校初二肖惠文清华附中六年黎丹宇北大附中初二张殊赫北京一零一中初二申君皓清华附中初二李依桐北京一零一中初二赵培源清华附中初二汪远北京一零一中初二韩羽霄清华附中初二姚亦嵩北京一零一中初二关清元人大附中初一李思颖北京一零一中初二余凌越清华附中初二李奕含北师大实验中学初二卞皓晨北师大实验中学初二吕彦荣北师大实验中学初二陈霁芸人大附中早六田昊霖人大附中初一耳昶玮人大附中初二孟晙阳北京二中分校初二王子初北京二中分校初二刘语玹人大附中初二刘任达北京四中初二郭晟毓十一学校初二申奕坤人大附中初二徐皓天人大附中初二马迹昀十一学校初一胡晓君人大附中初二阮家琪人大附中初一张子睿人大附中分校初一王子鸣人大附中初一徐金人大附中初二吴雨轩人大附中初二王子涵人大附中早六李铭泽清华附中初一陈智谦人大附中初二徐启鑫清华附中初一董雪瑞北大附中初二郑睿阳清华附中初二杨子谦北京五中分校初二杨舒涵清华附中初二付浩辰十一学校初二刘语涵清华附中初一赵柯人大附中初一荆明健清华附中初二蒋穆清人大附中初一李浩明北师大实验中学初一许景粟人大附中初一张涵钰清华附中初一郑睿阳清华附中初二三等奖(123名)姓名学校年级姓名学校年级刘相卿清华附中初二赵天珺十一学校-初二杜胤臻清华附中初二杨成科人大附中初一钱铭阳清华附中初二李卓言北京五中分校初二张文健清华附中初二李天圣北大附中初一陈楚瑜清华附中初二陈桢懿北大附中初二董予人大附中初一陈灿首师大附中初二赵一辰北师大实验中学初二张逸扬北京二中分校初二陈誉霄人大附中初二蔡泊屹北大附中初一周子昂人大附中初二马昊宇十一学校初二张雪桢北京二中分校初二苗瀚文人大附中初一王帅烨人大附中早六鲍俊辰清华附中初二张冰喆人大附中初一张宁远清华附中初二王泽尘人大附中初二张天翼清华附中初二田笑冰北京五中分校初二贺家琦北师大实验中学初一李昀濠清华附中初一张雨桐北京一零一中初二李金宸清华附中初一余瑶北师大实验中学初二孙一文清华附中初一张杰辰北京一零一中初二陆宜行十一学校初二杨谨毓北京一零一中初一周雪阳清华附中初一梁毓北师大实验中学初二孙家瑞人大附中初二杨博涵北师大实验中学初二李一申北京五中分校初二诸晨岳清华附中初二韩沛瑾人大附中初一郭馨锴清华附中初二康恺文牛栏山实验中学初二王一飞清华附中初二梁宸菲牛栏山实验中学初二关澜清华附中初二张喆人大附中初二宋清岳清华附中初二李诗均北大附中初一许赫男清华附中初一杜恒奕北京二中分校初二杨凡楷清华附中初二卢思翰人大附中早六吕桉驰清华附中初二杨紫雄人大附中初二汪佳萱北师大实验中学初二朱炯亦首师大附中初一李子闻北师大实验中学初一匡天一北京二中分校初二杨润欣北师大实验中学初一王彦翔北京四中初二刘孟歆北师大实验中学初一石家霖人大附中初二徐鼎新人大附中分校初一徐隽镕人大附中早六姬奕晨北京一零一中初二罗嘉祺北京一零一中初二高飞人大附中初二张亦鑫人大附中初一张沁月北大附中初二汪宁北京二中分校初二贾天歌人大附中初一王雨桉北京四中初二吴道宁人大附中初一张童开首师大附中初二李思海人大附中初一丁牧云北京市第十二中学初二魏梦萱人大附中初一刘涵柞人大附中初二邢琬瑜人大附中早六高欢瑜人大附中早六方大容人大附中初一何思远清华附中初二陈瑞泽首师大附中初一任墨也人大附中初二郑文博首师大附中初二王禹腾清华附中初二里正阳北京四中初二陈禹铭清华附中初二何阳松人大附中初二侯博文十一学校初一许昊翔人大附中早六东紫昭十一学校初二丁天岚人大附中初一王润山十一学校初一王泽芃北京四中初二隋远昊十一学校初一陈子璐北京一零一中初二史洪毓人大附中初一高江山清华附中初二杨佳营北京五中分校初二纪明悦清华附中初二迟嘉会北京五中分校初二李熙民北师大实验中学初二张语轩人大附中初二战治成师达中学初二王众一人大附中初二张斗和人大附中初二温雪岭人大附中初二王心睿人大附中初二刘羿镝人大附中初二孟繁钰人大附中初二张皓翔人大附中初二张婧婷十一学校初一刘俊扬人大附中初一闫岳霖牛栏山一中实验学校初二张戈飞人大附中早六张天艺牛栏山一中实验学校初二侯梓超人大附中初二杨卓然首师大附中初二陈含哲北京一零一中初二。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. B.
由[ 3
x+ 7
7
]
=
4
,知
4
≤3 x + 7
7
<
5
,得
7
≤
x
<
28 3
.
故
x
=7
,8
,9.
5. A.
如图 6 ,过 E 作 EF
⊥BD 于 F. 易 知 点 F
为 BD 中点.
又 A 、B 、F、E 四点
共圆 ,故
DE·DA = DF·DB ,
图6
即 DE·8 = 2 5 ×4 5 ] DE = 5.
令 t=
a b
,则 4 t2 + (8 -
k) t + 4 = 0.
解得
t
=
1 8
[
(k
-
8)
+
k ( k - 16) ] .
9. 6 223.
设正方形边长 a = 2 007 , ∠D′DC =α. 则 ∠BD′E = 2α, CD′= atan α, BD′= a (1 - tan α) .
所以 , △BD′E 的周长为
2 ac
2 ab
之和恰等于 1 ,求证 :这三个分数的值有两个
为1 ,一个为 - 1.
41
四 、( 10 分) 如 图
5 , 在 △ABC 中 ,
∠ABC = 46°, D 是 边
BC 上 的 一 点 , DC =
AB , ∠DAB = 21°. 试
确定 ∠CAD 的度数.
图5
五 、(15 分) 若对于任意 n 个连续正整数
AC 、AB 上的点 ,且 A P
= PQ = QB = BC. 则
图3
∠PCQ = .
4. 化简
1 a
+
1 b
1
+
1 a
+
1 c
1
+
1 a
1
+
1 b
+
1 d
1
+
1 a
1+
1 b
1
+
1 c
-
1
+
1 a
1
+
1 b
1+
1 c
1
+
1 d
的值为 .
5. 如图 4 ,在长
方 形 ABCD 中 , E、
191 504
.
则这三个数之和等于
(
)
.
(A) 27 (B) 24 (C) 21 (D) 18 3. 分母是 2 007 的正的最简真分数有 ( ) 个.
(A) 675 (B) 1 326 (C) 1 329 (D) 1 332 4. 对于实数 x ,符号 [ x ] 表示不大于 x
的最大整数 , 例如 , [ 3114 ] = 3 , [ - 7159 ] =
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.
42
中等数学
故
S △BDE
=
1 2
D E·AB
= 10.
二 、1. 1 008 017.
设第 i 个拐角处的数为 ai . 显然 ,
a1 = 2 , a2 i = a2 i - 1 + i ,
a2 i + 1 = a2 i + ( i + 1) . 因 2 007 = 2 ×1 003 + 1 ,所以 ,
a2 007 = 1 + 2 (1 + 2 + …+ 1 003) + 1 004 = 1 0042 + 1 = 1 008 017.
a (1 - tan α) (1 + tan 2α+ sec 2α)
=
a·cos
αcos
sin α
α·cos
2α+ sin 2α+ 1 cos 2α
=
a·cos
αcos
sin α
α·2cos2coαs2 +α2-sinsiαn2·αcos
α
= 2 a = 6 223. 10. 20 或 119. 设 x2 + ( x + 1) 2 = v2 ,则(2 x + 1) 2 = 2v2 - 1. 令 u = 2 x + 1 ,则 u2 - 2 v2 = - 1. 其为佩 尔方程 ,其基本解为 ( u0 , v0 ) = (1 ,1) . 其全部正整数解可由
(1 +
1) c
=
-
1+
(1 +
1 a
)
(1
+
1 b
)
(1
+
1 c
)
(1
+
1 d
)
.
519. 联结 FP 并延长交 AD 于点 Q ,显然 ,点 Q 是 AD 的中点. 则
PQ =
1 2
AE =
1 4
AB
, FP =
3 4
AB .
所以
, MN
=
3 5
BC.
故
= S 四边形MFNP
1 2
FP·MN
=
-
1.
(2) 若 c + a - b = 0 ,同理可得
b2 + c2 2 bc
a2
=1
, c2
+ a2 2 ac
b2 =
- 1,
a2 + b2 2 ab
c2
= 1.
(3) 若 b + c - a = 0 ,同理可得
b2 + c2 2 bc
a2 =
-
1 , c2
+ a2 2 ac
b2 = 1 ,
a2 + b2 2 ab
=
1 2
×3 4
×3 5
S 长方形ABCD
= 9.
三 、由题设
b2 + c2 2 bc
a2
+
c2
+ a2 2 ac
b2 +
a2 + b2 2 ab
c2 = 1 ,
即
b2 + c2 2 bc
a2 - 1
+
a2 + c2 2 ac
b2 - 1
+
a2 + b2 2 ab
c2
+1
=0
]
b2 + c2 - a2 - 2 bc 2 bc
- 8. 则关于
x 的方程
3x +7 7
= 4 的整数根
有 ( ) 个.
(A) 4 (B) 3 (C) 2 (D) 1 5. 如图 1 ,已知长方形的长为 8 ,宽为 4 , 将长方形沿一条对角线折起压平. 则重叠部 分 (阴影三角形) 的面积是 ( ) .
图1
7.
2 3
,
2 - 1 ,1 - 2
2. B. 设此三个连续正整数为 n - 1 , n , n + 1. 则
191 504
=
1 n-
1
+
1 n
+
n
1 +
1
=
3 n2 n ( n2 -
1 1)
,
即 191 n3 - 1 512 n2 - 191 n + 504 = 0.
因式分解得( n - 8) (191 n2 + 16 n - 63) = 0.
c2
= 1.
综合 (1) 、(2) 、(3) 可得 ,三个分数
b2 + c2 - a2 、c2 + a2 - b2 、a2 + b2 - c2
2 bc
2 ac
2 ab
的值有两个为 1 ,一个为 - 1.
2.
令 x = 2 y ,代入原方程得
6 2 y3 + 4 2 y2 - 17 2 y + 18y - 6 + 5 2 = 0.
易知
y=
1 3
满足条件.
故
x1
=
2 3
.
于是
,
3 x3 + 2 2 x2 - (17 - 9 2) x - (6 - 5 2)
= (x-
2 3
)
(3
x2
+
3
2x +9
2 - 15) .
c-
b) +
c ( a +
b + c) ( a + 2 abc
b-
c)
=0
]
(a+ b-
c) ( ab -
ac -
a2 + ab 2 abc
bc -
b2 +
ac +
bc + c2)
=0
]
(a+ b-
c) ( c2 2 abc
(a-
b) 2 ] = 0
]
(a+ b-
c) ( c + a 2 abc
b) ( c -
2008 年第 1 期
(1) 若 a + b - c = 0 ,则
b2 + c2 2 bc
a2
=
b2
+
c2 - ( b 2 bc
-
c) 2 = 1 ;
c2 + a2 2 ac