精品解析:【校级联考】安徽省皖南八校2019届高三第三次联考数学(文科)试题(原卷版)
安徽省皖南八校2019届高三第三次联考数学(文科)试题 Word版含解析

“皖南八校”2019届高三第三次联考数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|10}A x x =+>,{1,0,1}B =-,则A B =( )A. {1}B. {}1-C. {0,1}D. {1,0}-【答案】C 【解析】 【分析】求得集合{|10}{|1}A x x x x =+>=>-,根据集合的交集运算,即可求解. 【详解】由题意,集合{|10}{|1}A x x x x =+>=>-,又由{1,0,1}B =-, 所以{0,1}AB =,故选C .【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合A ,再利用集合的交集运算求解是解答的关键,着重考查了运算与求解能力. 2.已知复数11iz i+=-,则i z +=( )A. 0B. 1D. 2【答案】D 【解析】 【分析】根据复数的运算法则,求得221ii z i++=-,再根据复数模的计算公式,即可求解.【详解】由题意复数11i z i +=-,则212211i i i ii z i i ++-++==--,所以2i z +==,故选D .【点睛】本题主要考查了复数的运算,以及复数模的计算,其中解答中熟记复数的运算法则,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.3.从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )A. 抽出的100人中,年龄在40~45岁的人数大约为20B. 抽出的100人中,年龄在35~45岁的人数大约为30C. 抽出的100人中,年龄在40~50岁的人数大约为40D. 抽出的100人中,年龄在35~50岁的人数大约为50 【答案】A 【解析】 【分析】根据频率分布直方图的性质,求得0.04a =,再逐项求解选项,即可得到答案.【详解】根据频率分布直方图的性质得(0.010.050.060.020.02)51a +++++⨯=,解得0.04a =所以抽出的100人中,年龄在40~45岁的人数大约为0.04510020⨯⨯=人,所以A 正确; 年龄在35~45岁的人数大约为(0.060.04)510050+⨯⨯=人,所以B 不正确; 年龄在40~50岁的人数大约为(0.040.02)510030+⨯⨯=人,所以C 不正确; 年龄在35~50岁的人数大约为(0.060.040.02)510060++⨯⨯=,所以D 不正确; 故选A .【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及利用矩形的面积表示频率,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.若x ,y 满足约束条件24010220x y x y x y -+≥⎧⎪++≥⎨⎪+-≤⎩,则3z x y =+的最大值为( )A. 2B. 3C. 4D. 5【答案】D 【解析】 【分析】作出约束条件所表示的平面区域,结合图象得到目标函数的最优解,即可求解目标函数的最大值,得到答案.【详解】由题意,作出约束条件所表示的平面区域,如图所示,目标函数3z x y =+,可化为直线3y x z =-+,当3y x z =-+经过点A 时,直线在y 轴上的截距最大,此时目标函数取得最大值,又由10220x y x y ++=⎧⎨+-=⎩,解得3,4x y ==-,即(3,4)A -,所以目标函数的的最大值为3345z =⨯-=,故选D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题. 5.已知tan 74πα⎛⎫+= ⎪⎝⎭,则tan2α=( ) A.724B.247C. 724-D. 247-【答案】B 【解析】 【分析】根据两角和的正切公式,求得3tan 4α=,再由正切的倍角公式,即可求解,得到答案. 【详解】由题意,根据两角和的正切公式,得tan 1tan()741tan πααα++==-,解得3tan 4α=,又由正切的倍角公式,得22322tan 244tan 231tan 71()4ααα⨯===--,故选B . 【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟练应用两角和的正切和正切的倍角公式,合理化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.6.函数f (x )=3344x x -的大数图象为( )A. B.C.D.【答案】A 【解析】 【分析】由函数()f x 是奇函数,图象关于原点对称,排除C 、D 项;再由当()0,1x ∈时,函数()f x 值小于0,排除B ,即可得到答案.【详解】由题知,函数()f x 满足()333()3()4444xx x x f x f x ---==-=---,所以函数()f x是奇函数,图象关于原点对称,排除C 、D 项;又由当()0,1x ∈时,函数()f x 的值小于0,排除B ,故选A.【点睛】本题主要考查了函数图象的识别,其中解答中熟练应用函数的奇偶性和函数的取值范围,利用排除法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 7.七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )A.516B.1132C. 38D.1332【答案】A 【解析】 【分析】求出阴影部分的面积,根据面积比的几何概型,即可求解其相应的概率,得到答案. 【详解】设正方形的边长为4,则正方形的面积为4416S =⨯=,此时阴影部分所对应的直角梯形的上底边长为,所以阴影部分的面积为1152S =⨯=, 根据几何概型,可得概率为1516S P S ==,故选A .【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A P N=求解,着重考查了分析问题和解答问题的能力. 8.某几何体的三视图如图所示,则该几何体的体积为( )A. 4643π-B. 6412π-C. 12πD.443π 【答案】D 【解析】 【分析】根据三视图得到该几何体是圆柱中挖去了一个圆锥,其中圆柱的底面圆的半径为2R =,母线长为4l =,圆锥的底面圆的半径为1r =,高为4h =,再由体积公式求解,即可得到答案. 【详解】由三视图知,此几何体是圆柱中挖去了一个圆锥,其中圆柱的底面圆的半径为2R =,母线长为4l =,圆锥的底面圆的半径为1r =,高为4h =, 所以几何体的体积为:2213V R l r h ππ=-=22144241433πππ⨯⨯-⨯⨯=,故选D. 【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9.在正方体1111ABCD A B C D -中,若点M 为正方形ABCD 的中心,则异面直线1AB 与1D M 所成角的余弦值为( )A.6B.3C.6D.3【答案】C 【解析】【分析】建立空间直角坐标系,利用空间向量的夹角公式,即可求解. 【详解】建立如图所示的空间直角坐标系,不妨设2AB =,则11(2,0,0),(2,2,2),(0,0,2),(1,1,0)A B D M , 则向量11(0,2,2),(1,1,2)AB D M ==-, 则向量1AB 与1D M的夹角为1111cos 62AB D MAB D M θ⋅===⋅, 即异面直线1AB 与1D M C .【点睛】本题主要考查了利用空间向量求解异面直线所成的角,其中解答中建立适当的空间直角坐标系,合理利用向量的夹角公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.10.已知1F ,2F 是椭圆C :22221(0)x y a ba b +=>>的两个焦点,以12F F为直径的圆与直线22x a b+=相切,则椭圆C 的离心率为() A.3B.3C.2D.2【答案】D 【解析】 【分析】由圆222x y c +=与直线22x a +=相切,利用圆心到直线的距离等于半径和离心率的定义,即222b a c =-,整理422320e e --=,即可求解.【详解】由题意,以12,F F 为直径的圆的方程为222x y c +=,其中圆心(0,0)O ,半径为r c =,又由圆222x y c +=与直线22x a b+=相切,则圆心(0,0)O 到直线220bx ab +-=的距离为d c ==,又由222b a c =-,整理得42242320c a c a --=,即422()3()20cc a a--=, 即422320e e --=,解的212e =,又由01e <<,所以2e =,故选D . 【点睛】本题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围). 11.已知函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,则满足(21)(32)f x f x +<-的实数x 的取值范围是( ) A. (,0]-∞ B. (3,)+∞C. [1,3)D. (0,1)【答案】B 【解析】 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解.【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1x ≥时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得(21)(32)f x f x +<-,则2132321x x x +<-⎧⎨->⎩,解得3x >, 即不等式(21)(32)f x f x +<-的解集为(3,)+∞,故选B .【点睛】本题主要考查了函数的单调性的应用,其中根据函数的解析式,得出函数单调性,合理利用函数的单调性,得出不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.已知函数()2sin(2)6f x x π=+,若对任意的(1,2)a ∈,关于x 的方程()0(0)f x a x m -=≤<总有两个不同的实数根,则m 的取值范围为( )A. 2,23ππ⎡⎤⎢⎥⎣⎦B. ,32ππ⎡⎤⎢⎥⎣⎦C. 2,23ππ⎛⎤ ⎥⎝⎦D.,63ππ⎛⎤⎥⎝⎦【答案】B 【解析】 【分析】令()1f x =,且0x ≥,解得20,,,,323x πππ=,根据12a <<且()2f x ≤,结合图象,即可求解.【详解】由题意,函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,令()1f x =,且0x ≥, 即2sin 26x π⎛⎫+= ⎪⎝⎭±1,解得20,,,,323x πππ=,又因为12a <<,且()2f x ≤,所以要使得()0f x a -=总有两个不同实数根时,即函数()y f x =与12()y a a =<<的图象由两个不同的交点, 结合图象,可得32m ππ≤≤,所以实数m 的取值范围是,32m ππ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟练应用三角函数的性质,结合图象求解是解答的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题 .二、填空题:本题共4小题,每小题5分,共20分.13.若平面向量(1,2)a =,(,3)b x =,且a b ⊥,则()a a b ⋅-=__________. 【答案】5 【解析】 【分析】由a b ⊥,则0a b ⋅=,可得所以22()a a b a a b a ⋅-=-⋅=,即可求解. 【详解】由题意,平面向量(1,2)a =,(,3)b x =,且a b ⊥,则0a b ⋅=, 所以2222()(15a a b a a b a⋅-=-⋅===.【点睛】本题主要考查了向量的数量积的运算,其中解答中熟记平面向量的数量积的运算公式,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知1x =是函数2()()x f x x ax e =+的一个极值点,则曲线()y f x =在点(0,(0))f 处的切线斜率为__________. 【答案】32- 【解析】 【分析】由1x =是函数2()()xf x x ax e =+的一个极值点,求得32a =-,进而求得3'(0)2f =-,根据导数的几何意义,即可得到答案.【详解】由题意,函数2()()x f x x ax e =+,则2'()(2)xf x x ax x a e =+++, 又由1x =是函数2()()xf x x ax e =+的一个极值点,所以'(1)(32)0f a e =+=,解得32a =-,即213'()()22x f x x x e =+-, 所以3'(0)2f =-,所以函数()f x 在点(0,(0))f 处切线的斜率为32-.【点睛】本题主要考查了利用函数的极值点求参数,以及导数的几何意义的应用,其中解答中熟记函数的极值点的定义,合理利用导数导数的几何意义求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.已知P 是双曲线2221(0)y x b b-=>上一点,1F 、2F 是左、右焦点,12PF F ∆的三边长成等差数列,且1290F PF ∠=︒,则双曲线的渐近线方程为__________.【答案】y =± 【解析】 【分析】设12,PF m PF n ==,不妨设点P 位于第一象限,则由已知条件和双曲线的定义,列出发方程组,求得5c =,进而求得b =. 【详解】由题意,设12,PF m PF n ==,不妨设点P 位于第一象限,则由已知条件和双曲线的定义,可得2m n -=且()2222m n c +=且22n c m +=, 整理得2650c c -+=,解得5c =,又由22224b c a =-=,即b =所以双曲线的渐近线的方程为by x a=±=±. 【点睛】本题主要考查了双曲线的几何性质的应用,其中解答中熟练应用双曲线的定义和几何性质,列出方程组求得c 的值是解答的关键,着重考查了运算与求解能力,属于基础题. 16.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2cos b C c B a B +=,且2a =,3b =,则ABC ∆的面积是__________.【解析】 【分析】由正弦定理化简得()sin 2sin cos B C A B +=,进而得到1cos 2B =,再由余弦定理得到关于c 的方程,求得c 的值,进而利用面积公式,即可求解. 【详解】由题意,可知cos cos 2cos bC c B a B +=,由正弦定理得sin cos sin cos 2sin cos B C C B A B +=,即()sin 2sin cos B C A B +=, 又由在ABC ∆中,()A B C π=-+,则sin sin[()]sin()A B C B C π=-+=+, 即sin 2sin cos A A B =,又由(0,)A π∈,则sin 0A >,所以1cos 2B =, 由余弦定理得2222cos b a c ac B =+-,即2942c c =+-,整理得2250c c --=,解得1c =所以ABC ∆的面积为11sin 2(12222S ac B ==⨯⨯⨯=. 【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.各项均为整数的等差数列{}n a ,其前n 项和为n S ,已知11a =,且2a ,5a ,52S +成等比数列.(1)求{}n a 的通项公式;(2)已知数列{}n b 满足2n an b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2(41)3nn T =-. 【解析】【分析】(1)设{}n a 的公差为d ,利用等差数列的通项公式,求得2d =,即可得出数列的通项公式; (2)由(1)得2112242na n nn b -===⋅,再利用等比数列的求和公式,即可求解. 【详解】(1)设{}n a 的公差为d ,由题意知()25522a S a =+. ∵11a =,∴()()()2141710d d d +=++,解得2d =或12d =-. 又{}n a 各项为整数,∴2d =. 所以数列的通项公式21n a n =-. (2)由题意,2112242na n nn b -===⋅,故{}n b 为等比数列,首项为2,公比为4, 则其前n 项和()()()112142411143nnnn b q T q--===---.【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,根据通项公式和求和公式,列出方程组,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质是两种数列基本规律的深刻体现,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18.如图,在四棱锥P ABCD -中,PC ⊥平面ABCD ,点M 为PB 中点,底面ABCD 为梯形,//AB CD ,AD CD ⊥,12AD CD PC AB ===.(1)证明://CM 平面PAD ;(2)若四棱锥P ABCD -的体积为4,求点M 到平面PAD 的距离. 【答案】(1)详见解析;(2. 【解析】 【分析】(1)取PA 中点E ,连接DE ,ME ,根据平行四边形的性质,证得//DE CM ,再利用线面平行的判定定理,即可证得//CM 平面PAD .(2)设AD x =,利用四棱锥P ABCD -的体积,求得2x =,又由//CM 平面PAD 知,点M 到平面PAD 的距离等于点C 到平面PAD 的距离,过C 作CF PD ⊥,证得CF ⊥平面PAD ,即可求得答案.【详解】(1)如图所示,取PA 中点E ,连接DE ,ME , ∵M 是PB 中点,∴//ME AB ,12ME AB =, 又//AB CD ,12CD AB =,∴//ME CD ,ME CD =, ∴四边形CDEM 为平行四边形,∴//DE CM .∵DE ⊂平面PAD ,CM ⊄平面PAD ,∴//CM 平面PAD . (2)设AD x =,则CD PC x ==,2AB x =, 由ABCD 是直角梯形,PC ⊥平面ABCD 知, 则四棱锥P ABCD -的体积为()2112432x x x ⨯+=,解得2x =, 由//CM 平面PAD 知,点M 到平面PAD 的距离等于点C 到平面PAD 的距离, 过C 作CF PD ⊥,垂足为F , 由PC ⊥平面ABCD ,得PC AD ⊥, 又AD CD ⊥,∴AD ⊥平面PCD ,∵CF ⊂平面PCD ,∴AD CF ⊥,∴CF ⊥平面PAD .由2PC CD ==,PC CD ⊥知CF =∴M 到平面PAD【点睛】本题主要考查了线面平行的判定与证明,以及点到平面的距离公式的求解,其中解答中熟记线面平行与垂直的判定与证明,以及合理转化点到平面的距离是解答的关键,着重考查了推理与论证能力,以及运算与求解能力,属于基础题.19.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:甲种生产方式:乙种生产方式:(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?【答案】(1)①优等品3件,合格品2件;②35;(2)选择乙生产方式.【解析】【分析】(1)①根据频数分布表知:甲的优等品率为0.6,合格品率为0.4,即可得到抽去的件数;②记3件优等品为A,B,C,2件合格品分别为a,b,从中随机抽2件,列举出基本事件的总数,利用古典概型及其概率的计算公式,即可求解;(2)分别计算出甲、乙种生产方式每生产100件所获得的利润为1T 元2T 元,比较即可得到结论.【详解】(1)①由频数分布表知:甲的优等品率为0.6,合格品率为0.4,所以抽出的5件产品中,优等品3件,合格品2件.②记3件优等品为A ,B ,C ,2件合格品分别为a ,b ,从中随机抽2件,抽取方式有AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10种,设“这2件中恰有1件是优等品的事件”为M ,则事件M 发生的情况有6种, 所以()63105P M ==. (2)根据样本知甲种生产方式生产100件农产品有60件优等品,40件合格品;乙种生产方式生产100件农产品有80件优等品,20件合格品. 设甲种生产方式每生产100件所获得的利润为1T 元, 乙种生产方式每生产100件所获得的利润为2T 元, 可得()()16055154025152800T =-+-=(元),()()28055202025202900T =-+-=(元),由于12T T <,所以用样本估计总体知乙种生产方式生产的农产品所获得的利润较高,该扶贫单位要选择乙生产方式来帮助该扶贫村来脱贫较好.【点睛】本题主要考查了频率分布直方表与频率分布直方图的应用,其中解答中熟记在频率分布直方图中,各小长方形的面积表示相应各组的频率,且所有小长方形的面积的和等于1,合理利用古典概型及其概率的计算公式求解概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20.在平面直角坐标系xOy 中,已知抛物线C :22(0)x py p =>,过抛物线焦点F 且与y 轴垂直的直线与抛物线相交于A 、B 两点,且OAB ∆的周长为2. (1)求抛物线C 的方程;(2)若过焦点F 且斜率为1的直线l 与抛物线C 相交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点P ,求:2PF MF NF -⋅的值.【答案】(1)22x y =;(2)0.【解析】 【分析】 (1)将2p y =代入抛物线C 的方程可得点A 、B 的坐标分别为,2p p ⎛⎫- ⎪⎝⎭、,2p p ⎛⎫ ⎪⎝⎭,进而利用三角形的周长为2,列出方程,求得1p =,即可得到抛物线的方程; (2)将直线l 方程为12y x =+与抛物线的方程联立,利用根与系数的关系,得到直线12,l l 的方程,进而得到点P 的坐标为11,2⎛⎫-⎪⎝⎭,再利用抛物线的几何性质,即可作出证明. 【详解】(1)由题意知,焦点F 的坐标为0,2p ⎛⎫ ⎪⎝⎭, 将2p y =代入抛物线C 的方程可求得22x p =,解得x p =±, 即点A 、B 的坐标分别为,2p p ⎛⎫- ⎪⎝⎭、,2p p ⎛⎫ ⎪⎝⎭, 又由2AB p =,2OA OB p ===,可得OAB ∆的周长为2p +,即22p +=1p =, 故抛物线C 的方程为22x y =. (2)由(1)得10,2F ⎛⎫ ⎪⎝⎭,直线l 方程为12y x =+, 联立方程21212y x y x ⎧=+⎪⎪⎨⎪=⎪⎩消去y 整理为:2210x x --=,则12122,1x x x x +==-,所以121213y y x x +=++=,2212121144y y x x ==. 又因为212y x =,则21112y x =, ∴可得直线1l 的方程为()211112y x x x x -=-,整理为21112y x x x =-.同理直线2l 的方程为22212y x x x =-.联立方程2112221212y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121222x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,则点P 的坐标为11,2⎛⎫- ⎪⎝⎭.由抛物线的几何性质知112MF y =+,112NF y =+,PF ==有()12121211112224MF NF y y y y y y ⎛⎫⎛⎫=++=+++ ⎪⎪⎝⎭⎝⎭ 1312424=++=. ∴20PF MF NF -⋅=.【点睛】本题主要考查抛物线的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与抛物线(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 21.已知函数221()ln (1)()2f x a x a x ax a R =-++∈. (1)讨论()f x 的单调性;(2)若()0f x x +>对1x >恒成立,求a 的取值范围.【答案】(1)详见解析;(2)1(0,]2. 【解析】 【分析】(1)求得函数的导函数()()()1'(0)ax x a f x x x--=>,分类讨论即可求解函数的单调性,得到答案;(2)由题意()0f x x +>,即221ln 02a x a x ax -+>,当0a >时,转化为ln 1 2x a x x <+,令()ln 12x g x x x =+,1x ≥,利用导数求得函数()g x 的单调性与最值,即可得到结论. 【详解】(1)由题意,函数()()221ln 12f x a x a x ax =-++,可得()()()21'1(0)ax x a a f x a ax x x x--=--+=>,当0a ≤时,()'0f x <,()f x 单调减区间为()0,+∞,没有增区间. 当01a <<时,当1a x a <<,()'0f x <;当0x a <<或1x a>,()'0f x >. ∴()f x 单调增区间为()0,a 与1,a ⎛⎫+∞⎪⎝⎭,单调减区间1,a a ⎛⎫⎪⎝⎭. 当1a =时,()'0f x ≥对0x >成立,()f x 单调增区间()0,+∞,没有减区间.当1a >时,当1x a a <<,()'0f x <;当10x a<<或x a >时,()'0f x >. ∴()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭与(),a +∞,单调减区间为1,a a ⎛⎫⎪⎝⎭.(2)由()0f x x +>,即221ln 02a x a x ax -+>, 当0a >时,21ln 02x ax x -+>,ln 12x a x x <+, 令()ln 12x g x x x =+,1x ≥,则()2221ln 122ln '22x x x g x x x--+=+=, 令()222ln h x x x =-+,则()2'2h x x x=-, 当1x ≥时,()'0h x ≥,()h x 是增函数,()()130h x h ≥=>,∴()'0g x >. ∴1x ≥时,()g x 是增函数,()g x 最小值为()112g =,∴102a <≤. 当0a =时,显然()0f x x +>不成立, 当0a <时,由()g x 最小值为12知,()a g x >不成立, 综上a 的取值范围是10,2⎛⎤ ⎥⎝⎦.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数).以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为(cos 2sin )2ρθθ+=.(1)求曲线C 的普通方程;(2)若l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程.【答案】(1)2214x y +=;(2)2cos sin ρθθ=+. 【解析】 【分析】(1)利用同角三角函数的基本关系,消去参数,即可得到曲线C 的普通方程;(2)将直线的极坐标方程化为22x y +=,联立方程组,求得()2,0A ,()0,1B ,得到AB 为直径的圆的直角坐标方程,进而可得圆的极坐标方程.【详解】(1)由2x cos y sin αα=⎧⎨=⎩(α为参数),得2xcos y sin αα⎧=⎪⎨⎪=⎩(α为参数), 故曲线C的普通方程为2214x y +=.(2)由()cos 2sin 2ρθθ+=,得22x y +=,联立221422x y x y ⎧+=⎪⎨⎪+=⎩,得()2,0A ,()0,1B ,可得AB 中点坐标为11,2⎛⎫ ⎪⎝⎭,且AB =,故以AB 为直径的圆的直角坐标方程为()2215124x y ⎛⎫-+-= ⎪⎝⎭. 即2220x y x y +--=,将cos x ρθ=,sin y ρθ=代入得2cos sin ρθθ=+.【点睛】本题主要考查了参数方程与普通方程,以及极坐标方程与直角坐标方程的互化,其中熟记参数方程与普通方程,以及极坐标方程与直角坐标方程的互化公式,以及确定以AB 为直径的圆的方程是解答的关键,着重考查了运算与求解能力,属于基础题.23.已知函数()3223f x x x =---.(1)求不等式()f x x >的解集;(2)若关于x 的不等式2()2f x a a <+恰有3个整数解,求实数a 的取值范围. 【答案】(1)15(,)(,)24-∞-+∞;(2)11[1,)(0,]22--. 【解析】【分析】 (1)由题意,分类讨论,即求解不等式()f x x >的解集.(2)由(1)结合函数的单调性,以及()2f -,()1f -,()0f ,()1f ,()2f 的值,得到不等式,即可求解. 【详解】(1)由题意,函数()3223f x x x =---,可得()21,32355,3231,2x x f x x x x x ⎧--≤⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩, 因为()f x x >,所以当23x ≤时,1x x -->,12x <-, 当2332x <<时,55x x ->,5342x <<, 当32x ≥时,1x x +>,32x ≥, 所以不等式()f x x >的解集为15,,24⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. (2)由(1)知()f x 的单调减区间为2,3⎛⎫-∞ ⎪⎝⎭,单调增区间为2,3⎛⎫+∞ ⎪⎝⎭, 又()21f -=,()10f -=,()01f =-,()10f =,()23f =,所以2021a a <+≤,所以112a -≤<-或102a <≤, 故a 的取值范围为111,0,22⎡⎫⎛⎤--⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】本题主要考查了含绝对值不等式的求解及应用,其中解答中熟记含绝对值不等式的解法,以及合理利用绝对值不等式的性质是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。
安徽省皖南八校2021届高三第三次联考数学(文科)试题

8.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.
Cபைடு நூலகம் D.
9.在正方体 中,若点 为正方形 的中心,则异面直线 与 所成角的余弦值为( )
A. B.
C. D.
10.已知 , 是椭圆 : 的两个焦点,以 为直径的圆与直线 相切,则椭圆 的离心率为( )
A. B. C. D.
(2)若关于 的不等式 恰有3个整数解,求实数 的取值范围.
参考答案
1.C
【分析】
求得集合 ,根据集合的交集运算,即可求解.
【详解】
由题意,集合 ,又由 ,
所以 ,故选C.
【点睛】
本题主要考查了集合的交集运算,其中解答中正确求解集合A,再利用集合的交集运算求解是解答的关键,着重考查了运算与求解能力.
15.已知 是双曲线 上一点, 、 是左、右焦点, 的三边长成等差数列,且 ,则双曲线的渐近线方程为__________.
16.在 中,角 , , 所对的边分别为 , , ,若 ,且 , ,则 的面积是__________.
三、解答题
17.各项均为整数的等差数列 ,其前 项和为 ,已知 ,且 , , 成等比数列.
【校级联考】安徽省皖南八校2019届高三第三次联考数学(文科)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 , ,则 ( )
A. B. C. D.
2.已知复数 ,则 ( )
A.0B.1C. D.2
3.从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )
2019届安徽省江淮十校高三第三次联考数学(文)试题(解析版)

2019届安徽省江淮十校高三第三次联考数学(文)试题一、单选题1.已知集合,,则()A.B.C.D.【答案】A【解析】先解不等式得集合A,B,再根据交集定义得结果.【详解】,,,故选.【点睛】本题考查解指数不等式、解一元二次不等式以及交集定义,考查基本求解能力,属基础题.2.已知复数满足(其中为虚数单位),则()A.B.C.D.【答案】B【解析】根据复数除法法则化简即可.【详解】由知:,,故选.【点睛】本题考查复数除法法则,考查基本求解能力,属基础题.3.如图所示,程序框图的输出结果是()A.B.C.D.【答案】C【解析】读懂流程图,其功能是求四项的和,计算求值即可.【详解】计算结果是:,故选.【点睛】本题考查循环结构流程图,考查基本分析求解能力,属基础题.4.已知数列满足,则的最小值为()A.B.C.8 D.9【答案】C【解析】先根据叠加法求,再利用数列单调性求最小值.【详解】由知:,,…,,相加得:,,又,所以,所以最小值为,故选. 【点睛】本题考查数列通项公式以及数列单调性,考查基本分析求解能力,属中档题.5.已知一个四棱锥的正视图、侧视图如图所示,其底面梯形的斜二测画法的直观图是一个如图所示的等腰梯形,且该梯形的面积为,则该四棱锥的体积是()A.4 B.C.D.【答案】A【解析】根据三视图以及斜二测画法确定四棱锥的高以及底面面积,再根据锥体体积公式求结果.【详解】由三视图可知,该四棱锥的高是3,记斜二测画法中的等腰梯形的上底为,高为,则斜二测中等腰梯形的腰为,而积,由斜二测画法的特点知直观图中底面梯形的高为,面积,,故四棱锥的体积,故选.(也可用结论直接得出:,,)【点睛】本题考查三视图、斜二测画法以及四棱锥体积,考查基本分析求解能力,属中档题. 6.对具有线性相关关系的变量,,有一组观测数据,其回归直线方程为,且,则实数的值是()A.B.C.D.【答案】C【解析】先求均值,再根据回归直线方程性质求【详解】由知:,,又回归直线一定过样本点的中心,故,.故选【点睛】本题考查回归直线方程性质,考查基本分析求解能力,属基础题.7.甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲乙“心有灵屏”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.【答案】C【解析】先确定总事件数,再列举“心有灵犀”的事件数,最后根据古典概型概率公式求结果.【详解】甲乙两人猜数字时互不影响,故各有5种可能,故基本事件是种,“心有灵犀”的情况包括:,,,,,,,,,,,,共13种,故他们“心有灵犀”概率为,故选.【点睛】本题考查古典概型概率,考查基本分析求解能力,属基础题.8.已知奇函数,(其中,)在有7个零点,则实数的取值范围是()A.B.C.D.【答案】D【解析】先利用辅助角公式化简,再根据奇函数得,最后根据零点个数列不等式,解得结果.【详解】,且为奇函数,,,,令,得,由题意恰有7整数满足.则满足条件的整数为-3,-2,-1,0,1,2,3,故,即故选.【点睛】本题考查正弦函数性质,考查基本分析求解能力,属基础题.9.已知为坐标原点,,若点的坐标满足,则的最大值是()A.5 B.6 C.7 D.8【答案】C【解析】先作可行域,再化简,结合图象确定最优解,解得结果.【详解】作出不等式组对应的可行域为如图所示的,且,,,,则对于可行域内每一点,令,先求的取值范围.当点过点时,;当过点时,,,,即,故当过点时,,故选.【点睛】本题考查线性规划求最值,考查基本分析求解能力,属中档题.10.当动点在正方体的棱上运动时,异面直线与所成角的取值范围()A.B.C.D.【答案】C【解析】通过平行找线线角,再根据三角形求角.【详解】设正方体棱长为1,,则,连接,,由可知,∠即为异面直线与所成角,在中,,,故,又,,又在为单调减函数,,故选.【点睛】本题考查异面直线所成角,考查基本分析求解能力,属基础题.11.已知在中,角,,所对的边分别为,,,且,点为其外接圆的圆心.已知,则的最小值为()A.B.C.D.【答案】A【解析】先化简得,再根据余弦定理以及基本不等式求最小值.【详解】设中点为,则,,即,由知角为锐角,故,当且仅当,即时最小,故选.【点睛】本题考查余弦定理、基本不等式以及向量数量积,考查基本分析求解能力,属中档题.12.已知函数有唯一的零点,且,则实数的取值范围是()A.B.C.D.【答案】A【解析】将函数零点问题转化为两个函数图象交点问题,再结合图象确定满足的条件,解得结果.【详解】令即:,在同一坐标系中分别作出与的图象知,为增函数,而为减函数,要是交点的横坐标落在区间内,必须:,即:,故选【点睛】本题考查函数零点,考查数形结合思想方法以及基本分析求解能力,属中档题.二、填空题13.若命题“,”的否定是假命题,则实数的取值范围是____.【答案】【解析】先转化为原命题为真,再根据函数最值求实数的取值范围.【详解】因为命题的否定是假命题,故原命题为真,即不等式对恒成立,又在为增函数,,即.即实数的取值范围是:.【点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析转化求解能力,属中档题.14.已知函数是定义在上的奇函数,且当时,,且不等式对任意的恒成立,则实数的取值范围是_____.【答案】答案:【解析】先根据函数奇偶性得函数解析式以及单调性,再根据单调性化简不等式,最后将不等式恒成立问题转化为对应函数最值问题,解得结果.【详解】由为奇函数,.设,,,即,故,从而,故不等式同解于,又为上的单调增函数,故,即对任意的恒成立,,即或.【点睛】本题考查函数奇偶性、单调性以及不等式恒成立问题,考查基本分析转化求解能力,属中档题.15.已知椭圆的离心率为,过右焦点作倾斜角60°的直线交于,两点(A在第一象限),则________.【答案】【解析】先根据直线方程与椭圆方程解得A横坐标,再根据椭圆定义化简求值.【详解】因为离心率为,所以,设直线的方程代入椭圆方程:得:,又∵点在第一象限,故,所以【点睛】本题考查直线与椭圆交点以及椭圆定义,考查基本分析转化求解能力,属中档题. 16.在中,角,,的对边分别为,,,且,若,的面积记为,则当取得最小值时,______.【答案】【解析】先根据正弦定理化边的关系,再根据余弦定理求,最后根据基本不等式求最值,进而确定S值,解得结果.【详解】由正弦定理及得:,即:,由余弦定理可知:,,又,当且仅当时,即时,取得最小值,此时,.【点睛】本题考查正弦定理、余弦定理以及基本不等式求最值,考查基本分析转化求解能力,属中档题.三、解答题17.数列中,,,其中,,,令.(1)证明:数列是等差数列,并求的通项公式;(2)若,求数列的前项和.【答案】(1)见证明,,(2)【解析】(1)先根据向量数量积得递推关系,再根据等差数列证结论,最后根据等差数列通项公式得结果,(2)利用错位相减法求和.【详解】(1),得:,即,故数列是等差数列,且,,(2),,,①,②①-②得:,.【点睛】本题考查等差数列定义、等差数列通项公式以及错位相减法求和,考查基本分析转化求解能力,属中档题.18.三棱柱中,为的中点,点在侧棱上,平面.(1)证明:是的中点;(2)设,四边形是边长为2的正方形,四边形为矩形,且,求三棱锥的体积.【答案】(1)见证明;(2)【解析】(1)取的中点,利用线面平行判定定理与性质定理、面面平行判定定理以及性质定理得,即得结果.(2)先根据线面垂直得线线垂直,再根据直角三角形得,最后根据锥体体积公式得结果.【详解】(1)证明:取的中点,连、,因为为中点,所以.平面,平面,平面.又由已知平面,且,所以平而平而.又平面,所平面.而平面,且平面平面,所以,而为的中点,所以为的中点.(2)因为为正方形,所以,又,所以,而,所以平面.连,则.设,于是,由,知,所以.即,所以【点睛】本题考查线面平行与垂直判定定理与性质定理、面面平行判定定理与性质定理以及锥体体积公式,考查基本分析论证与求解能力,属中档题.19.2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地一养猪场提供技术服务,收费标准是:每天公司收取养猪场技术服务费120元,当天若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每头收取药费8元.(1)设医药公司日收费为(单位:元),每天需要用药的猪的数量为(单位:头),,试写出医药公司日收取的费用关于的函数关系式;(2)若该医药公司从10月1日起对该养猪场提供技术服务,10月31日该养猪场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下列联表.9月份10月份合计未发病4085125发病652085合计105105210根据以上列联表,判断是否有99.9%的把握认为猪未发病与医药公司提供技术服务有关?附:,其中.0.0500.0100.0013.841 6.63510.828【答案】(1)(2)见解析【解析】(1)根据条件列分段函数,(2)根据公式求得,对照数据比较大小作出判断. 【详解】(1)(2)由列联表可得:,∵,所以有99.9%的把握认为猪未发病与医药公司提供技术服务有关.【点睛】本题考查分段函数解析式以及卡方公式,考查基本分析求解能力,属中档题.20.已知抛物线的焦点为,,是抛物线上的两个动点,且,过,两点分别作抛物线的切线,设其交点为.(1)若直线与,轴分别交于点,,且的面积为,求的值;(2)求的值.【答案】(1)(2)【解析】(1)利用导数求切线斜率,再根据切线方程得点,坐标,最后根据三角形面积解得切点坐标,利用抛物线定义得结果,(2)先求P 点坐标,化简,再联立直线方程与抛物线方程,结合韦达定理代入化简即得的值.【详解】(1)设,,抛物线方程写成,,则以点为切点的抛物线的切线的方程为:,又,即,,,,故,∴,,从而.(2)由(1)知:,即:,同理,解得因为,,三点共线,易知直线斜率不存在时不成立,所以方程可设为,联立,整理得,可得,所以,又,所以,,故,所以.【点睛】本题考查导数几何意义以及直线与抛物线位置关系,考查基本分析求解能力,属中档题. 21.已知函数,.(1)讨论的单调性;(2)若存在,使得对任意的,成立,求实数的取值范围.【答案】(1)见解析;(2)【解析】(1)先求导数,再根据导函数符号确定单调性,(2)先确定最大值,再根据一元二次不等式恒成立列式求解.【详解】(1) ,但是:,故在为增函数,在也为增函数.(2)由(1)可知,当时,为增函数根据题意可知:对任意的恒成立.令,则当时,,令,问题转化为对任意的恒成立,由抛物线的开口向上知:即,解得故实数的取值范围是.【点睛】本题考查利用导数研究函数单调性以及不等式恒成立问题,考查基本分析求解能力,属中档题.22.在直角坐标系中,曲线的参数方程是(为参数),把曲线横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线,直线的普通方程是,以坐标原点为极点,轴正半轴为极轴建立极坐标系;(1)求直线的极坐标方程和曲线的普通方程;(2)记射线与交于点,与交于点,求的值.【答案】(1)直线的极坐标方程:;曲线的普通方程为:(2)【解析】(1)利用化直线的直角方程为极坐标方程,先消参数得曲线的普通方程,再根据变换得结果,(2)将直角方程化为极坐标方程,再代入,解得,,即得结果.【详解】(1)将代人直线的方程,得:,化简得直线的极坐标方程:由曲线的参数方程消去参数得曲线的普通方程为:,经过伸缩变换得代入得:,即,故曲线的普通方程为:(2)由(1)将曲线的普通方程化为极坐标方程:,将代人得,将代入得:,故.【点睛】本题考查直角坐标方程化极坐标方程、参数方程化普通方程以及极坐标方程的应用,考查基本分析求解能力,属中档题.23.已知函数.(1)若对任意的,恒有成立,求实数的取值范围;(2)设,且,时函数的最小值为3,求的最小值.【答案】(1)(2)【解析】(1)根据绝对值定义化简不等式,解得不等式解集,再根据集合包含关系列式解得结果,(2)先根据绝对值三角不等式得,再利用基本不等式求最值. 【详解】(1)不等式同解于,即,故解集为,由题意,,.(2)故.当且仅当即取等号.故的最小值为.【点睛】本题考查解含绝对值不等式、绝对值三角不等式以及基本不等式求最值,考查基本分析求解能力,属中档题.。
2019年合肥市高三第三次模拟考试文科数学试卷答案

高三数学试题(文科)答案 第1 页(共4页)合肥市2019年高三第三次教学质量检测 数学试题(文科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.(0,2) 14.1 33⎡⎤⎢⎥⎣⎦, 15.216.14-三、解答题:17.(本小题满分12分)解:(Ⅰ)由3456a a a +=,得2610q q --=,解得12q =或13q =-.∵数列{}n a 为递减数列,且首项为1 ∴12q =∴1111122n n n a --⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭. …………………………6分(Ⅱ)∵012111111232222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴1231111112322222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 两式相减得0121111111222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11111222221222212nn n nn n n n ⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎝⎭=-=-⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-∴1242n n n T -+=-. ……………………………12分18.(本小题满分12分) 解:(Ⅰ)由题意得:城镇居民 农村居民 合计 经常阅读 100 24 124 不经常阅读 50 26 76 合计150 50 200题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D D A CC D D B B A D高三数学试题(文科)答案 第2 页(共4页)则()2220010026502498005.546 5.02415050124761767K ⨯⨯-⨯==≈>⨯⨯⨯,所以,有97.5%的把握认为经常阅读与居民居住地有关. ……………………………6分 (Ⅱ)采取分层抽样抽取出6人,则其中经常阅读的有4人,不经常阅读的有2人,∴62155P ==. ……………………………12分19.(本小题满分12分)解:(Ⅰ)取AD 的中点为O ,连结OP ,OB ,OC.设OB 交AC 于点H ,连结GH.∵AD ∥BC ,12AB BC CD AD ===∴四边形ABCO 与四边形OBCD 均为菱形 ∴OB ⊥AC ,OB ∥CD ∴CD AC ⊥ PAD PO AD∆∴⊥ 为等边三角形,O为AD中点PAD ABCD PAD ABCD AD PO PAD PO AD PO ABCD⊥=⊂⊥∴⊥ 平面平面且平面平面,平面且平面∵CD ABCD ⊂平面 ∴PO CD ⊥∵H ,G 分别为OB, PB 的中点 ∴GH ∥PO ∴GH CD ⊥又∵GH AC H = ∴CD GAC ⊥平面. ………………………6分(Ⅱ)1:1222D GAC G ADC G ADC ADC P ABC P ABC G ABC ABC V V V S AD V V V S BC---∆---∆=====. ……………………………12分20.(本小题满分12分)解:(Ⅰ)由椭圆C 经过点P (1 2,),且12PF F ∆,得1c =,且221112a b +=.∵222221a b c a b =+∴=+ ∴42222111210112b b b b b+=--==+即,解得 ∴22a =∴椭圆C 的方程为2212xy +=. ……………………………6分(Ⅱ)由(Ⅰ)知()11 0F -,,()21 0F ,.令()11A x y ,,()22B x y ,.若直线l 的斜率不存在,则2272F A F B ⋅= .当直线l 的斜率存在时,设():1l y k x =+,代入椭圆方程得()()2222124210k x k x k +++-=. 则()()4222168121880k k k k ∆=-+-=+>恒成立 .∴2122412k x x k +=-+,()21222112k x x k -=+ ∴()()222121222971721121212k F A F B x x y y k k-⋅=--+==-++高三数学试题(文科)答案 第3 页(共4页)令2121t k =+≥,则()2227971 22221F A F B k ⎡⎫⋅=-∈-⎪⎢+⎣⎭,. 综上可知,22F A F B ⋅ 的取值范围为71,2⎡⎤-⎢⎥⎣⎦. ……………………………12分21.(本小题满分12分)解:(Ⅰ)()()()()211x xx a x a x x a f x e e-++--'==,由()0f x '=得,1x =或x a =. 当1a =时,()0f x '≥,函数()f x 在()-∞+∞,单调递增. 当1a <时,函数()f x 的递增区间为()() 1 a -∞+∞,,,,递减区间为() 1a ,. 当1a >时,函数()f x 的递增区间为()() 1a -∞+∞,,,,递减区间为()1a ,. ……………………………6分(Ⅱ)证明:对[)0x ∀∈+∞,,()1f x ≥-,即证[)0x ∈+∞,,()min 1f x ≥-. ①由(Ⅰ)单调性可知,当1a >,[)0x ∈+∞,时,()()(){}min min 0f x f f a =,. ()1aa f a e --=. 设()11a a g a a e --=>,,()0a ag a e '=>,∴()g a 在()1+∞,单调递增,故()()211g a g e>=->-,即()1f a >-. 又∵()01f =- ∴()min =1f x -.②当1a =时,函数()f x 在[)0+∞,单调递增,()()min 01f x f ==-.③当31e a -≤<时,由(Ⅰ)单调性可知,[)0x ∈+∞,时,()()(){}min min 01f x f f =,. ()()33311e a f e e---=≥=-. 又∵()01f =- ∴()min =1f x -. 综上,当3a e ≥-时,对[)0x ∀∈+∞,,()1f x ≥-. ……………………………12分22.(本小题满分10分)解:(Ⅰ)曲线C:224x y +=(0y ≥),曲线E:2214x y +=. ……………………………5分(Ⅱ)设A (2cos 2sin αα,),[]0απ∈,,要使得AOB ∆面积的最大,则B (2cos sin αα-,).∴1133sin 2cos sin 2222AOB B S AB x ααα∆=⋅=⋅⋅= ∵[]202απ∈,∴当4πα=时,AOB ∆的面积取最大值32. ……………………………10分高三数学试题(文科)答案 第4 页(共4页)23.(本小题满分10分)解:(Ⅰ)()42131124 1142 1x x f x x x x x x x -+≤-⎧⎪=-++=-+-<<⎨⎪-≥⎩,,,当1x =时,()f x 的最小值为2k =. ……………………………5分(Ⅱ)依题意,2242m n +=.()22222222111414144614444m n m n m n m n ⎛⎫+=+=+++⋅ ⎪+++⎝⎭(222214441314566244n m m n ⎡⎤+=+++≥+=⎢⎥+⎣⎦. 当且仅当222244444n m m n +=+,即220m n ==,时,等号成立. ……………………………10分。
安徽皖南八校2019年高三第三次联考数学(文)试题

安徽皖南八校2019年高三第三次联考数学(文)试题参 考 答 案 【一】选择题1.选B 。
解析:M 为点集,N 为数集。
2.选C 。
解析: B 为(1,2,3)--,||6AB =。
4.选A 。
解析:2sin22sin cos tan 1cos212cos 1θθθθθθ==++- 5.选D 。
解析:m 可能在平面α内。
9.选D 。
解析:从0到2产生的2000个随机数中,落入椭圆内部或边界的有M 个,那么420004S M =,故4500MS =。
10.选B 。
解析:法一:611511161521,151********,78S a d S a d a d a d =+≥=+≤∴+≥+≤。
又1011119(25)(7)(2)(57)a a d x a d y a d x y a x y d =+=+++=+++,得213,99x y =-=。
1011213(25)(7)99a a d a d ∴=-+++213781099≤-⨯+⨯=。
法二:设1,a x d y ==,25778x y x y +≥⎧⎨+≤⎩,目标函数109a z x y ==+ 交点(1,1)处取到最小值10。
257x y +=78x y +=【二】填空题11.14。
解析:2log 3222(log 3)(log 32)22214f f +=++=+=。
12.169,555,671,,105,071 。
第8行第8列的数为8,往后读每次读三位数, 859,169,555,671,998,105,071,751,在不超过800的前五个数。
【三】解答题17.解:①(),(,0)(0,)xe f x x x =∈-∞⋃+∞2(1)()x e x f x x -'∴=…………………………2分当()0f x '=时,1x =。
故:()f x 的增区间为(1,)+∞,减区间为(,0)-∞和(0,1)。
…………………………6分②由()1,(0,)xy g x x e ax x =-=-+∈+∞ ()x g x e a '=-1〕当1a ≤时()0x g x e a '=->,即()g x 在(0,)+∞上递增,此时()g x 在(0,)+∞上无极值点。
安徽省皖南八校2019届高三第三次联考数学(文)试题 含解析

“皖南八校”2019届高三第三次联考数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】求得集合,根据集合的交集运算,即可求解.【详解】由题意,集合,又由,所以,故选C.【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合A,再利用集合的交集运算求解是解答的关键,着重考查了运算与求解能力.2.已知复数,则()A. 0B. 1C.D. 2【答案】D【解析】【分析】根据复数的运算法则,求得,再根据复数模的计算公式,即可求解。
【详解】由题意复数,则,所以,故选D。
【点睛】本题主要考查了复数的运算,以及复数模的计算,其中解答中熟记复数的运算法则,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题。
3.从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是()A. 抽出的100人中,年龄在40~45岁的人数大约为20B. 抽出的100人中,年龄在35~45岁的人数大约为30C. 抽出的100人中,年龄在40~50岁的人数大约为40D. 抽出的100人中,年龄在35~50岁的人数大约为50【答案】A【解析】【分析】根据频率分布直方图的性质,求得,再逐项求解选项,即可得到答案。
【详解】根据频率分布直方图的性质得,解得所以抽出的100人中,年龄在40~45岁的人数大约为人,所以A正确;年龄在35~45岁的人数大约为人,所以B不正确;年龄在40~50岁的人数大约为人,所以C不正确;年龄在35~50岁的人数大约为,所以D不正确;故选A。
【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及利用矩形的面积表示频率,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题。
安徽省皖南八校高三第三次联考文科数学试题word版

安徽省皖南八校届高三第三次联考文科数学试题 (word 版)————————————————————————————————作者:————————————————————————————————日期:安徽省皖南八校 2013 届高三第三次联考文科数学试题一、选择题1.复数 z2i (此中 i 为虚数单位)的轭复数是1 iA . 1 iB . 1 iC . 1 iD . 1 i2.已知向量 a ( 1,2),b (2,0), c (1, 1) ,若向量 ( a b) // c ,则实数 为A .2B .1C .1 D .233.设会合 Ax || x 1 | 1 , Bx | y1 3x ,则A B3A . (, 1 ) B . (0,1) C . (0,1]D .[1, )33334.将图 1 中正三棱锥截去三个角( A 、B 、C 分别是GHI 三边的中点)获得图 2 所法的几何体,则按图2 所示方向为侧视方向,则该几何体的侧视图是5.图 3 是一个算法的程序框图,若输出的结果 s 720 ,则在判断框中应填入对于 k 的判断条件是A . k 7B . k 7C . k 8D . k 86.设 F 1 , F 2 是双曲线 x 2y21 的两个焦点, P 是双曲线上的一点, 且 3 | PF 1 | 4|PF2 |,24则 PF 1F 2 的面积等于A .4 2B .8 3C . 24D .487.用平面 截球 O 所得截面圆的半径为 3,球心 O 到平面的距离为 4,则此球的表面积为100 500C . 75D .100A .B .33y 28.已知变量 x, y 知足拘束条件x y 1,则目标函数 z3x y 的最大值是x y 1A .12B .11C . 3D .19.以下函数中既是偶函数,又在区间(1,2) 内是增函数的是A . ycos 2x, ( x R)B . ye xe x R)2 (xC . ysin | x| ( x R)D . y x 3x( x R)210.已知圆 C : ( x 1) 2y 22 ,过点 A(1,0) 的直线 l 将圆 C 的圆周分红两段弧,且两段弧长之比为 1 : 3,则直线 l 的斜率为A . 1B .2 C .3 D .223二、填空题11.在 ABC ,若 a3,b3, A,则C 的大小为。
安徽皖南八校2019年高三第三次联考文科综合试题(扫描版)

安徽皖南八校2019年高三第三次联考文科综合试题(扫描版)2018皖南八校高三第三次联考文科综合试卷参考答案及评分标准第一卷〔选择题132分,共33小题,每题4分〕1.B解析:此题考察是通货澎胀、纸币贬值与商品市场价格的关系。
1件A商品价格=8+〔8×25%〕=10元;纸币贬值〔10-8〕÷10=20%,故B正确,A、C、D错误。
2、A解析:由图可知甲商品需求量增加,乙商品需求量减少,两者呈反相变化关系。
B呈正相变化关系,不符合题意。
C只反映的是甲商品需求量的变化,不符合题意。
D由图不能得出乙商品的价格一定高于甲商品的价格。
3.B解析:此题考查试客行为对企业和消费者的影响,②③符合题意应入选。
试客行为对企业而言并不能节省生产成本,①排除;试客行为并不能使生活水平大大提高,④应排除。
4.A解析:此题关键词是“从根本上说”,故只有A正确,B、C、D不选。
5.A解析:题干强调“当前”坚持党的领导的原因,故①②符合题意,排除③④。
6.D解析:此题考察主权国家的权利。
我国政府的做法是针对日本非法购岛采取的对策,表达了自卫权;渔政船、海监船的执法巡航和维权巡航是行使管辖权,故①②不选。
7.C解析:①④符合题意,②“自然而然地转化为物质力量”说法错误;③错误,只有先进的文化对人的影响才是积极的主动的。
8.D解析:①符合题意要求,②道德与教育密切相关,正确。
③是从个人角度谈,不选,④错误,非社会主义文化不能简单的取缔,要取其精华,去其糟粕。
9.D解析:①错误;③是辩证法,不符合题意要求;②④符合题意要求。
10.B解析:②错误;量变只有积累到一定程度,才能引起质变;④把握矛盾的特殊性是正确解决矛盾的关键11.A解析:漫画的意思是协力、配合,调强的是整体意识。
B、C不符合题意,D不是哲学启示。
12.A。
解析:传说古代道士炼丹时发现的火药。
B.司南:出现于战国,在道教之前;C.纸:出现于西汉前期,在道教之前;D.简仪:元朝郭守敬研制,虽在道教之后,但是属于天文研究的仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.若 , 满足约束条件
,则
A. 2
B. 3
的最大值为( )
C. 4
D. 5
5.已知
,则
()
A.
B.
C.
D.
6.函数
的大数图象为(中国劳动人民发明
一种中国传统智力玩具, 它由五块等腰直角三角形, 一块正方形和一块
平行四边形共七块板组成 . 清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之
概率;
( 2)所加工生产的农产品,若是优等品每件可售
55 元,若是合格品每件可售 25 元. 甲种生产方式每生产
一件产品的成本为 15 元,乙种生产方式每生产一件产品的成本为
20 元 . 用样本估计总体比较在甲、乙两种
不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?
20. 在平面直角坐标系 相交于 、 两点,且
13. 若平面向量
,
,且
,则
__________.
14. 已知
是函数
的一个极值点,则曲线
在点
__________ .
处的切线斜率为
15.已知 是双曲线
上一点, 、 是左、右焦点,
16. 在
,则双曲线的渐近线方程为 __________. 中,角 , , 所对的边分别为 , , ,若
的三边长成等差数列,且
频率分布直方图如图所示,则下列说法正确的是(
)
的 A. 抽出的 100 人中,年龄在 40~45 岁的人数大约为 20
B. 抽出的 100 人中,年龄在 35~ 45 岁的人数大约为 30 C. 抽出的 100 人中,年龄在 40~ 50 岁的人数大约为 40 D. 抽出 100 人中,年龄在 35~ 50 岁的人数大约为 50
,且
,
,则
的
面积是 __________ .
三、解答题:共 70 分. 解答应写出文字说明、证明过程或演算步骤 . 第 17~21 题为必考题,
每个试题考生都必须作答 . 第 22、 23 题为选考题,考生根据要求作答 .
(一)必考题:共 60 分.
17. 各项均为整数的等差数列
,其前 项和为 ,已知
. 为坚决打赢脱贫攻
坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的
农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间
的为优等品;指标在区间
的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,
各自随机抽取 100 件作为样本进行检测,测试指标结果的频数分布表如下:
(二)选考题:共 10 分. 请考生在第 22、23 题中任选一题作答 . 如果多做,则按所做的第一
题计分 .
22. 在直角坐标系
中,曲线 的参数方程为
( 为参数) . 以直角坐标系的原点为极点, 轴的
正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
.
( 1)求曲线 的普通方程;
( 2)若 与曲线 交于 , 两点,求以 为直径的圆的极坐标方程 .
A.
B.
C.
D.
10.已知 , 是椭圆 : 椭圆 的离心率为( )
A.
B.
两个焦点,以
为直径的圆与直线
C.
D.
相切,则
11. 已知函数
,则满足
的实数 的取值范围是(
)
A.
B.
C.
D.
12. 已知函数
,若对任意的
,关于 的方程
总有两个不同的
的 实数根,则 的取值范围为(
)
A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
“皖南八校” 2019 届高三第三次联考
数学(文科)
一、选择题:本题共 12 小题,每小题 5 分,共 60 分 . 在每小题给出的四个选项中,只有一项 是符合题目要求的 .
1.已知集合
,
,则
()
A.
B.
C.
D.
2.已知复数
,则
()
A. 0
B. 1
C.
D. 2
3.从某地区年龄在 25~ 55 岁 人员中,随机抽出 100 人,了解他们对今年两会的热点问题的看法,绘制出
23. 已知函数
.
( 1)求不等式
的解集;
( 2)若关于 的不等式
恰有 3 个整数解,求实数 的取值范围 .
甲种生产方式:
指标区间
频数
5
15
20
30
15
15
乙种生产方式: 指标区间
频数
5
15
20
30
20
10
( 1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出
5 件产品,①求这 5 件产
品中,优等品和合格品各多少件;②再从这
5 件产品中,随机抽出 2 件,求这 2 件中恰有 1 件是优等品的
,且 , ,
成等比数列 .
( 1)求 的通项公式;
( 2)已知数列 满足
,求数列
前 项和 .
18. 如图,在四棱锥
中,
平面
,点 为 中点,底面
为梯形,
,
,
.
( 1)证明:
平面 ;
( 2)若四棱锥
的体积为 4,求点 到平面 的距离 .
19. 党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一
中,已知抛物线 :
的周长为
.
,过抛物线焦点 且与 轴垂直的直线与抛物线
( 1)求抛物线 的方程;
( 2)若过焦点 且斜率为 1 的直线 与抛物线 相交于 、 两点,过点 、 分别作抛物线 的切线 、 ,切
线 与 相交于点 ,求:
的值 .
21. 已知函数
.
( 1)讨论 的单调性;
( 2)若
对
恒成立,求 的取值范围 .
式多至千余 . 体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之
. 如图是一个用七巧板拼
成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为(
)
的 A.
B.
C.
D.
8.某几何体的三视图如图所示,则该几何体的体积为(
)
A.
B.
C.
D.
9.在正方体
中,若点 为正方形
的中心, 则异面直线 与 所成角的余弦值为 ( )