信号波形合成实验电路
信号波形合成实验电路+电路图

信号波形合成实验电路+电路图信号波形合成实验电路+电路图第一章技术指标1 系统功能要求2 系统结构要求第二章整体方案设计1 方案设计2 整体方案第三章单元电路设计1 方波振荡器2 分频电路设计3 滤波电路设计4 移相电路设计5加法电路设计6整体电路图第四章测试与调整1 分频电路调测2 滤波电路调测3 移相电路调测4加法电路调测5整体指标测试第五章设计小结1 设计任务完成情况2 问题与改进3 心得体会第一章技术指标1 系统功能要求1.1 基本要求(1)方波振荡器的信号经分频滤波处理,同时产生频率为10kHz和30kHz 的正弦波信号,这两种信号应具有确定的相位关系;(2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V;(3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kH和 30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图1所示。
图1 利用基波和3次谐波合成的近似方波1.2 发挥部分再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波。
2 系统结构要求2.1 方波振荡器:产生一个合适频率的方波,本实验中选择6MHz;2.2 分频器:将6MHz方波分频出10kHz、30kHz和50kHz的方波;2.3 滤波器:设计中心频率为10kHz、30kHz、50kHz三个滤波电路,产生相应频率的正弦波;2.4 移相器:调节三路正弦信号的相位;2.5 加法器:将10kHz、30kHz和50kHz三路波形通过加法电路合成,最终波形如图2。
2.6该系统整体结构如图3图2 基波、三次谐波和五次谐波合成的方波图3 电路示意图第二章整体方案设计1 方案设计1.1理论分析周期性函数的傅里叶分解就是将周期性函数展开成直流分量、基波和所有n阶谐波的迭加。
数学上可以证明方波可表示为:(1)其中A=4h/ ,h为方波信号峰值。
已知基波峰峰值要求为6V,故A=3 ,所以3次谐波对应的幅值为1V,5次谐波对应的幅值为0.6V。
第五组--信号波形合成电路实验(2010年电子竞赛C题论文)2

高,在高压、高频、大功率的场合不适用。 综合以上的分析,由 TI 公司生产的宽带低失真单位增益稳定的电压反馈运算放
大器 OPA842 组成的滤波电路满足本次设计的要求,因此选择方案二。 1.1.3 移相电路
方案一:用双极性运算放大器 OP07 组成的移相电路,由于 OP07 具有非常低的 输入失调电压,所以在很多应用场合不需要额外的调零措施。OP07 是一种低噪声, 非斩波稳零的双极性运算放大器,由它组成的移相电路具有电路简单、工作可靠、成 本低、波形好、适应性强,而且可以提供 180°的相移。
表一:信号编码表
A0
A1
X
1
0
0
1
0
波形 正弦波 方波 三角波
A0、A1 表示波形设定端;X 表示任意状态;1 为高电平;0 为低电平。 74LS14 非门对输出的信号进行整形,使输出的波形更加的理想。 3.1.2 分频电路 分频电路如附录图 3 所示,由 74LS90、74LS00、CD4013 三片芯片组成。先将 300KHz 的方波信号进行 3 分频、5 分频、15 分频,再通过 D 触发器二分频,最终得到 50KHz、 30KHz、10KHz 的正弦波信号。 74LS90 不仅可以用于计数,还能用于分频,一片 74LS90 可构成最大进制计数器 是十进制,若分频数大于 10,则要用两片或多片级联,级联后高位的周期即为分频 后的周期,但占空比并非 50%,这就需要用 D 触发器对分频后的方波进行整形。74LS00 是四集成与非门,在电路中起缓冲隔离的作用。CD4013 是由两个相同的、相互独立 的数据型触发器构成。每个触发器有独立的数据、置位、复位、时钟输入和 Q 及 Q
方案三:用 MAX038 精密、高频波形发生器来产生方波信号,电路结构简单,能产 生 0.1Hz~20MHz 的方波信号,波形的频率和占空比可以由电流、电压或电阻控制 。 MAX038 构成的电路低失真、低漂移、外围元件少、可靠性和稳定性好,但相对于上 面的方案而言,价格会稍高一点。
波形产生电路实验报告

波形产生电路实验报告一、实验目的本实验旨在探究波形产生电路的基本原理和实现方法,并通过实验操作,了解不同电路参数对波形产生的影响。
二、实验器材1.示波器2.函数信号发生器3.电阻、电容等元器件4.万用表三、实验原理1.基本原理:波形产生电路是指能够产生各种规定形状的周期性信号的电路。
其中,常见的信号有正弦波、方波、三角波等。
2.具体实现:通过改变元器件参数或改变连接方式,可以得到不同形状和频率的周期性信号。
例如,正弦波可以通过RC滤波电路产生;方波可以通过比较器电路和反相放大器电路产生;三角波可以通过积分放大器电路和反相放大器电路产生。
四、实验步骤及结果分析1.正弦波产生电路:(1)将函数信号发生器输出连接至RC滤波电路输入端;(2)调节函数信号发生器输出频率为1000Hz;(3)调节RC滤波电路中的R值和C值,观察示波器上输出的正弦波形状,并记录下所使用的元器件参数;(4)重复以上步骤,改变RC电路中的R和C值,观察输出波形的变化情况。
实验结果:通过调节RC电路中的R和C值,可以得到不同频率和振幅的正弦波。
2.方波产生电路:(1)将函数信号发生器输出连接至比较器电路输入端;(2)设置比较器电路阈值电压为0V;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的方波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变比较器电路阈值电压和函数信号发生器输出频率,观察输出波形的变化情况。
实验结果:通过调节比较器电路阈值电压和函数信号发生器输出频率,可以得到不同占空比和频率的方波。
3.三角波产生电路:(1)将函数信号发生器输出连接至积分放大器电路输入端;(2)将积分放大器电路输出连接至反相放大器输入端;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的三角波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变积分放大器电路中的R和C值,观察输出波形的变化情况。
波形发生电路实验报告总结

波形发生电路实验报告总结[object Object]本次实验主要目的是研究和掌握波形发生电路的基本原理和调节方法。
通过实验,我对波形发生电路的工作原理和参数调节有了更深入的了解。
在实验中,我们使用了两种常见的波形发生电路:多谐振荡电路和综合波形电路。
通过对多谐振荡电路的实验,我了解到多谐振荡电路是通过反馈网络产生多个频率的正弦波信号。
我们使用了电容、电感和电阻来构建反馈网络,并通过调节这些元件的数值来控制输出信号的频率和幅值。
实验中,我观察到当调节电容和电感的数值时,输出信号的频率和幅值会产生相应的变化。
这说明了通过调节反馈网络的元件数值可以实现对波形发生电路输出信号的调节。
在综合波形电路的实验中,我了解到综合波形电路可以通过适当的组合和调节,产生各种复杂的波形信号,如方波、三角波和锯齿波等。
我们通过将多个正弦波信号相加,并调节它们的幅值和相位差,可以合成出所需的复杂波形信号。
实验中,我观察到当改变正弦波信号的幅值和相位差时,输出信号的波形会发生相应的变化。
这说明了通过合成和调节多个正弦波信号可以实现对综合波形电路输出信号的调节。
通过本次实验,我不仅学习到了波形发生电路的工作原理和调节方法,还掌握了使用示波器进行波形观测和测量的基本技巧。
在实验中,我通过示波器对实验电路的输入和输出信号进行了观测和测量,并记录了相应的数据。
这对于分析实验结果和验证实验原理起到了重要的作用。
总体而言,本次实验使我对波形发生电路有了更深入的了解。
通过实验,我熟悉了波形发生电路的工作原理和调节方法,并学会了使用示波器进行波形观测和测量。
这对于我今后的学习和研究工作都具有重要的意义。
信号波形合成实验电路的设计与制作

图 7 峰 值 检 波 电路
【 3 】 MSP 4 3 O x 1 x x F a m I v Us e r 。 s Gu i d e E r r a t a , T e x a s I n s t —
r u me n t s . US A.
幅值检 测显 示 电路
2 9 7
1所 示 。
表 ) 实际频 率( H )峰 峰值 ( V) 测量值( V) 测量误差
图 6 加 法 电路
参考文献 :
【 1 慷 华光. 《 电子技术基础——模 拟部分》 , 高等教育出版社 , 2 0 0 6
1.
【 2 ] SL AUO 4 9 D, MSP 4 3 0 x1 x x F a mj l v Us e r ‘ s Gu i d e , T e x a s I n s t —
图 5 移 相 电 路
移 相 电路如 图 5所 示 , 由两 级 运放 组 成 , 本 设计 中采 用L F 3 5 3, 第一 级运 放 与 C1 7 、 R 2 3构 成 有源微 分网络 , 第 图8 MS P 4 3 0 F 1 4 9幅 值测 量 显 示 电路 二级 运放 与 R 2 4 、 C 1 9组 成有 源积 分 网络。 当输 入正 弦 交 其 中 MS P 4 3 0 F 1 4 9是 T I 公司 1 6位 超 低 功 耗 单 片 流信 号 时 , 第 一 级 运放 输 出超 前 相 位信 号 , 第 二级 运 放输 机。由 2个 1 6位定 时器 、 8路 快速 1 2位 A / D 转换器 、 2个 出一 滞 后相 位信 号 ,通过 调 节 R 2 4可 使输 出信 号 与 输入 通用 串行 同步 / 异步 通信 信 号 接 口和 1 8个 I / O 引脚 等构 信 号相 位 发生 变化 。 成 的微 控 制器 。 其特 点是 电源 电压 范 围为 1 . 8 V 一 3 . 6 V , 超低 加 法 电路 功耗 , 内部 集成 看 门狗定 时器 。 加 法 电路 如 图 6所 示 ,本 设计 采 用 同相 输 入 加 法 电 通过 F 1 4 9单 片 机 的 P 1 . 0 、 P 1 . 1和 P 1 . 2口分 别进 行 路。输出 U 。 = ( 1 + R 2 5 , R 2 7 ) ( U1 + U 2 + U 3 】 。当 R 2 5 = R 2 7 时, U 。 = 2 AD采样 ,得 到 1 O K H Z 、 3 0 K H Z和 5 0 K H Z正 弦波 的幅值 , ( U + U 2 + U 。 ) , 此时 实现输 入信 号 叠加 。 通 过 按键 S W1 、 S W2 、 S W 3切 换 在 1 2 8 6 4液 晶 上 显 示 各 自峰值。 2 测试 结果 在 测试 阶段 , 我 们 对得 到 的正 弦波 进 行 了频 率 、 峰 峰 值 的测 量并计 算 了峰峰值 测 量误差 。 测试 得 到 的数 据如 表
方波信号合成电路

摘要:信号波形合成实验电路主要由120KHz的方波发生电路、分频电路、滤波电路、调理电路、加法电路等模块组成。
120KHz的方波信号通过30分频、10分频、6分频产生4KHz、12KHz、20KHz的方波信号。
经滤波电路和调理电路得到正弦波信号,通过加法电路将信号合成近似方波信号。
关键词:信号波形合成;30分频;10分频;6分频一、方案比较与论证(一)、项目总体方案分析(二)1.方波信号产生电路方案一:用555定时器接成的多谐振荡器,能使产生的方波占空比可调,即高电平持续时间与低电平持续时间的比值可调;占空比10%~90%。
产生频率约为1.5KHZ的矩形波,矩形的电压峰峰值为电源电压+5V。
该频率难达到150KHz。
方案二:用TLC083芯片,它是一种迟滞比较器,具有开环特性,压摆率可达到19V/us,带宽10MHz。
通过以上比较分析,我们选用方案二。
2.分频器:方案一:采用可编程逻辑控制器方案二:采用74LS161对120KHZ的方波信号进行分频可得占空比为50%的12K.20KHZ的信号,它的电路构成比较简单,成本较低3.滤波电路方案一:采用RC滤波电路,由于电阻R与频率变化无关,RC低通滤波器在器件选材方面要简单,但不适合大功率输出,仅可作为弱信号处理与微小功率应用。
方案二:采用TLC04芯片,四阶低通滤波器。
TLC04的截止频率的稳定性只与时钟频率稳定性相关,截止频率时钟可调,其时钟一截止频率比为50:1,因而设计截止频率为1/1.69×RF1×CF1×50=251.8Hz,满足了振动时效和振动焊接工艺的要求。
通过以上方案比较,我们选用方案二。
4.调整电路方案一:同相比例运算电路,它是深度电压串联负反馈电路,调节反馈电阻和反相输入电阻比值可调节比例系数,且比例系数大于或等于一方案二:反相比例运算电路,它是深度电压并联负反馈电路,可作为反相放大器,调节反馈电阻和反相输入电阻比值即可调节比例系数,比例系数既可大于一也可小于一,但它不可去处直流分量方案三:在反相比例运算电路的基础上将反相比例运算电路的正向输入端电阻改成可调电阻,并在可调电阻的另两端接上+、-5V 。
【原创】信号波形合成实验电路

信号波形合成实验电路摘要:本文介绍了一个信号波形合成的电路方案。
该电路能产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和三角波。
该电路用运放构成的迟滞比较器并结合RC震荡电路产生了方波,产生的方波再经滤波电路进行分频产生出不同频率的正弦波,这些不同频率的正弦波经移相电路形成不同相位的正弦波,再经由运放构成的加法器电路最终产生合成信号。
此外,该电路还以LM3s811为主控制器对产生的信号的幅度和频率进行测量和数字显示。
所有指标都达到题目要求。
关键词:方波电路分频与滤波移相电路加法器电路Abstract:This article describes a signal waveform synthesis circuit scheme. The circuit can produce several different frequency sinusoidal signal, and these signals and then to an approximate square wave synthesis and other signals. The circuit amplifier consisting of comparator with hysteresis RC oscillation circuit produced a square wave, square wave generated by the filter circuit for frequency division produces different frequency sine wave, these different frequency sine wave and then via the formation phase-shift circuit different phase sine wave, then through the amplifier consisting of Adder the resulting composite signal. In addition, this circuit is also the main controller LM3s811 circuit on the amplitude of the signal measurement and digital display. All indicators have reached the required title.Key words::The shock wave circuit, frequency division and filtration, phase-shifting circuit, adder circuit一、作品简介根据题目要求,此波形发生器的设计主要包括四个部分:方波振荡电路、分频与滤波电路、移相电路、加法器电路。
信号波形合成实验电路报告

信号波形合成实验电路(C题)参赛队学校:武汉工业职业技术学院参赛队号: 327001参赛队员:吴思超周杰何远健信号波形合成实验电路(C题)摘要:随着电子技术的发展,电子系统对信号波形的合成要求更高。
本信号波形合成实验电路由555多谐振荡电路输出一个方波,然后对方波信号进行分频和滤波分别得到10kHz、30kHz、和50kHz频率的正弦波信号,最后经过信号放大移相电路和信号加法合成电路得到一个近似的方波和三角波,用单片机控制模块控制经AD转换输出正弦信号的幅值、经LCD液晶数字的显示幅值以及键盘输入的选频电路。
本系统具有结构紧凑,电路简单,涉及的知识范围广、功能强大、可扩展性强等优点。
关键字:555振荡信号;滤波分频;移相;加法合成一.系统方案1.方案论证与选择(1)方波发生电路方案方案一:采用分立元件实现非稳态的多谐振振荡器,然后根据需要加入积分电路等构成正弦、矩形、三角等波形发生器。
这种信号发生器输出频率范围窄,而且电路参数设定较繁琐,其频率大小的测量往往需要通过硬件电路的切换来实现,操作不方便。
方案二:采用555振荡电路或函数信号发生器ICL8038集成模拟芯片,它是一种可以同时产生方波、三角波、正弦波的专用集成电路。
不用依靠单片机,用滑动变阻器调节频率,电路简单。
其缺点是这种模块产生的波形都不是纯净的波形,所以要有滤波电路。
根据题意,本系统需要一个300kHz的方波,所以选择方案二,用555振荡电路产生一个方波。
(2)滤波方案方案一:采用实时DSP数字滤波技术,数字信号灵活性大,可以在不增加硬件成本的基础上对信号进行有效的滤波,但要进行滤波,需要A/D、D/A既有较高的转换速率,处理器具有较高的运算速度,成本高。
方案二:以集成运放为核心的有源滤波电路,结构简单,所需元件少,成本低,且电路输入阻抗高、输出阻抗低,并有专门的设计软件。
所以根据实际情况,选择方案二作为系统的滤波方案。
(3)幅值检测与显示方案通过单片机系统的键盘输入控制选频,选择检测信号的输入,通过TLC549将采集的模拟信号转化为数字信号幅值,从而通过液晶显示器显示出来。