TI杯设计报告(赛区一等奖)信号波形合成实验电路

合集下载

模板—信号波形合成实验电路设计报告电子竞赛一等奖

模板—信号波形合成实验电路设计报告电子竞赛一等奖

信号波形合成实验电路(C题)摘要:本系统利用有源晶振产生方波,设计了分频、滤波和放大电路得到基波至9次谐波正弦信号,通过移相电路,将不同频率的信号进行特定的相移,基于同相加法器实现信号相加,合成出近似方波信号和近似三角波信号,超出了发挥部分的要求,最后利用TI公司MSP430单片机和检波电路实现各个正弦信号的幅度测量和数字显示。

关键词:信号合成,傅里叶分解,分频,移相,MSP430一、系统方案1. 方案比较与选择该系统要求通过分频与滤波方式产生基波和各次谐波,基于此合成近似的方波和三角波信号,经过计算选择42MHz有源晶振产生方波,经过分频准确地产生10kHz至70kHz各个方波信号和近似90kHz方波信号,为有效地将各个方波信号中的谐波分量滤除,须保证滤波器具有优良的近似垂直截止特性,为此选择独立设计针对各个方波信号的四阶低通有源滤波电路。

经隔直电路后,选择反相比例放大电路,可将各个正弦信号的峰峰值灵活地放大或衰减至合成所需的数值。

为保证信号经过移相后不改变幅值,设计了有源滞后网络。

在信号处理末级电路中,选择同相加法器完成方波和三角波的合成。

1.1 方波信号产生方案一:利用TI公司的555芯片为核心实现,但难以产生高频方波信号且波形容易失真。

方案二:采用施密特触发器结合RC充放电电路实现,但此种实现方式频率稳定度不高。

方案三:直接利用有源晶振产生,可以得到所需频率的方波信号,且频率稳定度高。

经过比较,方波信号产生选择方案三实现。

1.2 分频电路方案一:利用FPGA技术,易于实现,但FPGA价格昂贵,增大了作品实现成本。

方案二:以TI公司的74系列数字集成电路为主,设计分频电路,在每个分频电路的最后一级采用D触发器构成的T触发器,可保证分频后信号50%的占空比,且电路的稳定性较好。

经过比较,为提升作品性价比,放弃现有的FPGA模块,选择方案二实现分频。

2. 系统设计方案本设计采用有源晶振产生方波,利用数字电路分频得到占空比为50%的各个频率的方波信号,经滤波后得到对应于基波和各次谐波的正弦信号,经放大后用滞后网络移相,进而进行信号叠加。

信号波形合成实验电路设计报告

信号波形合成实验电路设计报告

信号波形合成实验电路设计报告计算机学院计算机科学与技术系学号:B08030403姓名:李佑娟信号波形合成实验电路目录第一章技术指标1 系统功能要求2 系统结构要求第二章整体方案设计1 方案设计2 整体方案第三章单元电路设计1 方波震荡器电路设计2 分频电路设计3 滤波电路设计4 移相和加法电路设计5 整体电路图6 整体元件清单第四章测试与调整1 方波振荡电路调测2 分频电路调测3 滤波电路调测4 移相和加法电路调测5 整体指标测试第五章设计小结1 设计任务完成情况2 问题与改进3 心得体会第一章技术指标1 系统功能要求1.1 基本要求(1)方波振荡器的信号经分频滤波处理,同时产生频率为10kHz和30kHz 的正弦波信号,这两种信号应具有确定的相位关系;(2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V;(3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kH和30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图1所示。

图1 利用基波和3次谐波合成的近似方波1.2 发挥部分再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波。

2 系统结构要求2.1 方波振荡器产生方波2.2 由CPLD编程实现分频和移相电路2.3 通过滤波电路才能产生比较干净稳定的正弦波2.4 方波通过分频和滤波后,再通过限幅电路,将10kHz、30kHz以及50kHz的正弦波的峰峰值分别调整为6V、2V和1.2V。

2.5 最后通过一个加法电路,将10kHz和30kHz的波形合成,由移相电路调整使波形如图1为止;再将10kHz、30kHz和50kHz三路波形通过假发电路合成,同上调整,最终波形如图2。

图2 基波、三次谐波和五次谐波合成的方波2.6 该系统整体结构第二章整体方案设计1 方案设计该系统设计可以分为五部分:方波振荡器、分频器、滤波器、移相器和加法器。

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作

信号波形合成实验电路的设计与制作任何电信号都是由不同频率、幅值、初相的正弦波叠加而成的。

本方案设计了一个信号波形的合成电路,通过方波振荡器产生的一定频率的方波,经分频,滤波后得到按傅里叶级数展开的基波和3次、5次谐波,经移相后将其中的基波与多次谐波相叠加后模拟合成方波。

本方案采用了大量TI公司的芯片例如CD4046、CD4018、MSP430F149、OPA820等。

标签:CD4046 CD4018 MSP430F149 OPA820 基波谐波方波1 方案设计1.1 系统分析系统设计框图如图1所示。

图1 系统分析该系统主要由方波振荡电路、分频滤波电路、移相电路、加法电路及幅值测量显示电路组成。

由方波振荡电路产生150KHZ方波,经分频分别得到10KHZ、30KHZ和50KHZ的方波,通过滤波得到10KHZ、30KHZ和50KHZ正弦波。

正弦波经移相后由加法电路叠加生成合成信号,同时由幅值测量显示电路显示对应正弦波的幅值。

1.2 系統设计与理论计算振荡电路振荡电路如图2所示。

该模块主要由锁相环CD4046构成的电路来实现。

要产生频率为10kHz和30kHz,幅度为6V和2V的正弦波信号,则输入信号幅度必须大于6V,锁相环锁定在30KHZ附近。

图2 振荡电路CD4046是通用的CMOS锁相环集成电路,其锁相环采用的是RC型压控振荡器。

当9脚输入端输入5V电源时,电路即起基本方波振荡器的作用。

振荡器的充、放电电容C1接在6脚与7脚之间,调节电阻R2的阻值即可调整振荡器振荡频率,振荡方波从4脚输出。

f0=1/8*C1*((V1-VGS)R1+(VDD-2*VTP)R2)其中V1是9脚的输入电压,VGS是锁相环内部MOS管的栅-源极压降,VTP是栅极的开启阈值电压,VDD是工作电压。

当C1=103Pf,R1=100k时,振荡频率变化范围为80-150KHZ。

分频电路CD4018是一个高电压型可预置1/N计数分频器,固定可编程2,3,4,5,6,7,8,9,10分频。

【原创】信号波形合成实验电路

【原创】信号波形合成实验电路

信号波形合成实验电路摘要:本文介绍了一个信号波形合成的电路方案。

该电路能产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和三角波。

该电路用运放构成的迟滞比较器并结合RC震荡电路产生了方波,产生的方波再经滤波电路进行分频产生出不同频率的正弦波,这些不同频率的正弦波经移相电路形成不同相位的正弦波,再经由运放构成的加法器电路最终产生合成信号。

此外,该电路还以LM3s811为主控制器对产生的信号的幅度和频率进行测量和数字显示。

所有指标都达到题目要求。

关键词:方波电路分频与滤波移相电路加法器电路Abstract:This article describes a signal waveform synthesis circuit scheme. The circuit can produce several different frequency sinusoidal signal, and these signals and then to an approximate square wave synthesis and other signals. The circuit amplifier consisting of comparator with hysteresis RC oscillation circuit produced a square wave, square wave generated by the filter circuit for frequency division produces different frequency sine wave, these different frequency sine wave and then via the formation phase-shift circuit different phase sine wave, then through the amplifier consisting of Adder the resulting composite signal. In addition, this circuit is also the main controller LM3s811 circuit on the amplitude of the signal measurement and digital display. All indicators have reached the required title.Key words::The shock wave circuit, frequency division and filtration, phase-shifting circuit, adder circuit一、作品简介根据题目要求,此波形发生器的设计主要包括四个部分:方波振荡电路、分频与滤波电路、移相电路、加法器电路。

电子设计大赛——信号波的合成

电子设计大赛——信号波的合成

信号波形合成摘要:本系统通过TI的NE555定时芯片来产生一个60KHZ方波,方波经过整形后输出,经过2分频与6分频产生30KHZ与10KHZ的方波,方波经整形后输出,分别经过35KHZ和12K的低通滤波器产生正弦波,产生的正弦波经过运放放大,10KHZ的正弦波幅值为6V,30KHZ的正弦波的幅值为2V,将这两个正弦信号输入移相电路,通过加法器合成方波。

一、系统方案论证1.1.方波发生电路方案方案一:利用msp430单片机和DAC产生一个方波,此方案编程较方便,但是由于DAC芯片价格较高,频率调节不方便,性价比低,故不是理想方案。

方案二:利用专门波形产生芯片ICL8038来产生方波,但通过实际测试产生的方波不稳定。

故不选择此方案。

方案三:利用TI公司的NE555定时器芯片来产生一个方波,555定时器芯片性价比高,输出波形也较稳定,发生电路也较简单。

因此,我们选择此方案。

1.2 分频电路方案方案一:利用TI公司的分频芯片,但考虑到分频芯片只能分n2频,使我们设计需要2分频和6分频,所以不考虑用此芯片。

方案二:利用芯片74LS160和74LS74搭建数字电路来进行数字分频,可以实现2分频和6分频。

该分频电路比较简单,实用作为方波分频电路很适合。

1.3 滤波电路的选择方案方案一:使用3阶的巴特沃斯低通滤波器,该滤波器结构比较简单,滤波效果也比较好。

方案二:使用切比雪夫低通滤波器,其滤波效果好,但是其电路结构比较复杂,不太容易实现。

系统实现框图方波发生器60KHZ2分频30KHZ 6分频10KHZ10KHZ滤波30KHZ滤波放大器放大器移相电路加法器合成方波二、理论分析与计算方波电路:对于题目要求产生的方波要能分频出10KHZ 和30KHZ 的方波。

故我们设计的方波的频率为60KHZ ,以便于之后的分频。

方波频率的计算公式为: f=121)(7.01C R R + 我们选择了1C =680pf ,R1、R2为两个20K Ω的可调滑动变阻器。

TI杯方案设计书报告(赛区一等奖)信号波形合成实验电路

TI杯方案设计书报告(赛区一等奖)信号波形合成实验电路

封面作者:PanHongliang仅供个人学习全国大学生电子设计竞赛2010年TI杯模拟电子系统专题邀请赛设计报告题目:信号波形合成实验电路(C题)学校:武汉大学指导老师:参赛队员姓名:日期:2010年08月24日2010年TI杯模拟电子系统专题邀请赛试卷信号波形合成实验电路(C题)一、课题的任务和要求课题任务是对一个特定频率的方波进行变换产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波和近似三角波。

课题要求是首先设计制作一个特定频率的方波发生器,并在这个方波上进行必要的信号转换,分别产生10KHz、30KHz和50KHz的正弦波,然后对这三个正弦波进行频率合成,合成后的目标信号为10KHz近似方波和近似三角波。

另外设计一个正弦信号幅度测量电路,以测量出产生的10KHz、30KHz和50KHz正弦波的的幅度值。

课题还给出了参考的实现方法,见下图。

图1 电路示意图图1 课题参考实现方案二、实现方案的分析1.基本方波发生器方案的分析方波的产生方法很多,如用运算放大器非线性产生、用反向器及触发器产生、也可用模数混合时基电路ICL7555产生等。

本例采用第一种方案,最符合题意要求。

2.波形变换电路方案的分析从某方波中提取特定频率的正弦波方案很多,如用窄带滤波器直接从方波中提取所需的基波或谐波;用锁相方法进行分频或倍频产生所需频率;用数字分频方案,从较高频率的方波或矩形波中通过分频获得所需频率方波并进行变换获得正弦波。

本课题采用第三种方案。

3.移相方案分析在方波——正弦波转换中,难免会产生附加相移,通过移相来抵消附加相依,以便信号合成时重新实现同步。

根据微分电路实现相位超前、积分电路实现相位滞后的理论,因此,采用微伏和积分来实现移相。

4.信号合成方案分析方波信号经过波形变换和移相后,其输出幅度将有不同程度的衰减,合成前需要将各成分的信号幅度调整到规定比例,才能合成为新的合成信号。

本课题采用反向比利运算电路实现幅度调整,采用反向加法运算实现信号合成。

课程设计-信号波形合成实验电路

课程设计-信号波形合成实验电路

调测结果:
10kHz和30kHz正弦波合成近似方波
测试结果
10kHz、30kHz和50kHz正弦波信号合成 近似方波
课程设计要求:
①实验时间为上午8:00~11:30,下午 13:45~16:55,晚上17:30~20:30;②教师每天点 名;③13日下午和14日全天为查资料时间,可不 在实验室,其他正课时间必须在实验室,未经请 假不到实验室者,按旷课论处,旷课超过3天,将 取消课程设计资格.;④课程设计期间学生请假 离宁,需由指导员批准,任课教师无权批准;⑤课 程设计结束后3天内由各班学习委员将课程设 计报告收齐,交指导教师。
1.基本要求 .
(1)方波振荡器的信号经分频与滤波处理,同 时产生频率为10kHz和30kHz的正弦波信号, 这两种信号应具有确定的相位关系; (2)产生的信号波形无明显失真,幅度峰峰 值分别为6V和2V; (3)制作一个由移相器和加法器构成的信号 合成电路,将产生的10kHz和30kHz正弦波信 号,作为基波和3次谐波,合成一个近似方波, 波形幅度为5V,合成波形的形状如图2所示。 图2 利用基波和3次谐波合成的近似方波
滤波器软件
滤波电路可直接用FilterPro Desktop软件 得到,10kHz、30kHz和50kHz的滤波电 路可通过软件设置,直接算出参数。
CPLD软件
Cpld开发软件采用xilinx的fundation的图 形化设计方法。 用CPLD实现分频或者数字移相功能。
加法电路
加法电路采用TLC084实现
示意图
图2 利用基波和3次谐波合成的近似方波
发挥部分
(1)再产生50kHz的正弦信号作为5次谐 波,参与信号合成,使合成的波形更接 近于方波;
方案介绍

TI杯电子竞赛--信号波形合成设计报告

TI杯电子竞赛--信号波形合成设计报告

基础部分摘要:本作品实现了通过产生不同频率的正弦波,再将这些信号合成为近似方波。

采用的电路主要有:方波发生电路、三分频电路、低通滤波电路、移相电路、加法电路。

30KHz的方波在低通滤波时,通过调整使输出的正弦波峰-峰值为2V,10KHz的正弦波经过放大器放大后峰-峰值达到6V,然后10KHz的正弦波经过移相后与30KHz的正弦波合成形成近似的方波。

其中,低通滤波器采用TLC04ID巴特沃思带开关电容器滤波器,方波发生器采用TLC085放大器,移相电路采用OPA820ID放大器。

一、方案设计方案:首先通过方波发生器产生30KHz的方波,30KHz的方波通过三分频电路产生10KHz的方波,然后将30KHz和10KHz的方波分别经过低通滤波器得到30KHz的正弦波和10KHz的正弦波。

由于题目要求在合成前,30KHz的正弦波峰-峰值为2V,10KHz的正弦波峰-峰值为6V,所以30KHz的方波在低通滤波时,通过调节RC的值可以使输出正弦波的峰-峰值为2V,10KHz的正弦波通过放大电路使峰-峰值达到6V。

再通过移相电路来调节10KHz正弦波的相位,然后与30KHz的正弦波相加得到合成波形。

二、理论分析(1)波的合成与分解一个非正弦周期函数可用傅里叶级数来表示,所以一个方波可以由不同频率、幅度的正弦波来合成。

方波U(t)=4Um/∏*[sin(ωt)+1/3sin(3ωt)+1/5sin(5ωt)+···]因此,频率为10KHz和30KHz的正弦波当幅度比为3:1时可以合成近似的方波信号。

反过来,30KHz的方波经过截止频率为30KHz的低通滤波器时可以滤出30KHz的正弦基波,同理,10KHz的正弦基波也可由10KHz的方波得到。

(2)正弦波的产生方波发生器发生电路,它主要由反相输入的滞回比较器和RC电路组成。

RC电路既作为延迟电路,又作为反馈电路,通过RC充放电实现输出状态的自动转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国大学生电子设计竞赛2010年TI杯模拟电子系统专题邀请赛设计报告题目:信号波形合成实验电路(C题)学校:武汉大学指导老师:参赛队员姓名:日期:2010年08月24日2010年TI杯模拟电子系统专题邀请赛试题信号波形合成实验电路(C题)一、课题的任务和要求课题任务是对一个特定频率的方波进行变换产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波和近似三角波。

课题要求是首先设计制作一个特定频率的方波发生器,并在这个方波上进行必要的信号转换,分别产生10KHz、30KHz和50KHz的正弦波,然后对这三个正弦波进行频率合成,合成后的目标信号为10KHz近似方波和近似三角波。

另外设计一个正弦信号幅度测量电路,以测量出产生的10KHz、30KHz和50KHz正弦波的的幅度值。

课题还给出了参考的实现方法,见下图。

图1 电路示意图图1 课题参考实现方案二、实现方案的分析1.基本方波发生器方案的分析方波的产生方法很多,如用运算放大器非线性产生、用反向器及触发器产生、也可用模数混合时基电路ICL7555产生等。

本例采用第一种方案,最符合题意要求。

2.波形变换电路方案的分析从某方波中提取特定频率的正弦波方案很多,如用窄带滤波器直接从方波中提取所需的基波或谐波;用锁相方法进行分频或倍频产生所需频率;用数字分频方案,从较高频率的方波或矩形波中通过分频获得所需频率方波并进行变换获得正弦波。

本课题采用第三种方案。

3.移相方案分析在方波——正弦波转换中,难免会产生附加相移,通过移相来抵消附加相依,以便信号合成时重新实现同步。

根据微分电路实现相位超前、积分电路实现相位滞后的理论,因此,采用微伏和积分来实现移相。

4.信号合成方案分析方波信号经过波形变换和移相后,其输出幅度将有不同程度的衰减,合成前需要将各成分的信号幅度调整到规定比例,才能合成为新的合成信号。

本课题采用反向比利运算电路实现幅度调整,采用反向加法运算实现信号合成。

5.信号检测和显示方案分析信号检测和显示部分采用MSP430单片机,由于信号最高频率仅50KHz ,采用高速运放TLC083I 配合高频检波二极管和周围阻容元件制作一个平均值检测电路,送单片机的10位AD 转换并换算,得到其幅值,送显示器LCD1602控制显示。

三、总体方案的设计与实现1.方波发生器电路的设计与实现本课题的方波发生器部分采用运算放大器设计,作为运算放大器非线性应用的最典型实例之一,通过制作后实测的效果看,所产生的频率稳定可靠。

图中,R1和R2用于改变滞回系数,(R3+RW1)与C5决定了充放电的速率,充电周期为T1,放电周期为T2,且这里的T1=T2,设总的充放电周期为T ,由此可得:T1=T2=(R3+RW1)×C5×Ln (1+2R1/R2) T =T1+T2;T=2T1T=2×(R3+RW1)×C5×Ln (1+2R1/R2)由于R1=R2;所以T=2×(R3+RW1)×C5×Ln (1+2R1/R2)=2.2×(R3+RW1)×C5若所选频率f=300KHz=300000Hz ,并且C5=1000P ,则T=1/f =1/300000Hz (S )=3.333333×10-6(S )则2.2×(R3+RW1)×C5=3.333333×10-6(R3+RW1)=(3.333333×10-6)/(2.2×1000×10-12)=1500(Ω)=1.5(K Ω)选择RW 电位器为2K Ω,配合330Ω的电阻,调节电位器改变振荡频率。

2.分频电路的设计与分析分频电路实现将某方波通过分频产生10KHz 、30 KHz 和50 KHz 的新的方波。

根据题意要求,在某特定频率的方波上要产生几个其他频率方波,可按照这些频率的最小公倍数×2为原则,题目要求的三个频率为10KHz 、30KHz 和50KHz ,其公倍数为150KHz ,再乘以2,则上述方波发生器为300KHz 。

验证一下:300KHz 频率30分频得10KHz ,10分频30KHz ,6分频50KHz 。

采用十进制计数分配器CD4017配合D 触发器CD4013实现分频为上述3个频率的方波,CD4017默认10分频,下图中二极管正极连接位置决定分频系数。

对于CD4013,所起的作用是将由CD4017分频后非50%占空比调节为50%。

设计电路见图3所示,300KHz 输入信号送CD4017的CLK (14pin ),输出信号从CD4013的Q 端送出。

图2 模拟电路300KHz 方波电路图3 分频器电路该图中由于D2接CD4017的Q3,因此实现将300KHz 3分频,为300KHz/3=100KHz再经后级CD4013进行2分频,获得了100KHz/2=50KHz的频率。

对于30KHz和10KHz的分析计算方法相同,不再细述。

3.方波——三角波变换电路方波——三角波变换电路采用由运算放大器组成的有源积分电路实现,见图4所示。

图4 方波——三角波变换电路4.三角波——正弦波变换电路三角波——正弦波变换电路采用单级RC无源积分电路实现,见图5所示。

图5 三角波——正弦波变换电路5.移相电路在上述变换电路中曾出现过RC 积分电路的应用,则会产生一定的相移,为了使合成波形达到相位要求,必须实现三路波形同步,这里的移相电路便实现这个功能,见图6所示。

其中图6(a )实现滞后相移90 o ;图6(b )实现超前相移90 o 。

(a )滞后移相 (b )超前移相图6 移相电路根据需要,后续电路可接入超前移相的或滞后移相的移相器。

6.比例运算和和合成电路的分析和计算课题要求合成后的波形类同于方波和三角波,则三个频率分量要满足傅立叶变换系数的要求,这里就需要系数矫正电路,即比例运算电路,通过比例调节后加到一个加法器组成的叠加电路中,实现所要达到的相应的波形。

设计的电路见图7所示。

图7 比例运算和和叠加电路在进行信号合成前,各波形(10KHz 的基波、30KHz 的三次谐波、50KHz 的五次谐波)的幅度和相位都要进行按规定调节好,以下探讨信号叠加前各波形之间的相位和关系。

1)方波由傅立叶级数对方波予以分解可得...)sin 1...3sin 31(sin 4)(++++=t n n t t n A t f ϖϖωπ可见各级谐波的系数比为51:31:1。

合成方波时,据题意,kHz 10正弦波的峰峰值为6V ,kHz 30正弦波的峰峰值为2V ,kHz 50正弦波的峰峰值应为1.2V 。

另外,这些谐波要求初相位相同,由式可知,初相位均为零。

各自所需幅值可通过调节三个放大器的放大量获得,初相可通过上一节对相位调节电路的调节来获得。

2)三角波同样由傅立叶级数对方波予以分解可得...))1sin()1(1sin 1...5sin 513sin 31(sin 4)(2222t n n t n n t t t n A t f ϖϖϖϖωπ++-+++-=可见前三级各级谐波的系数比为251:91:1-。

合成三角波时,据题意,kHz 10正弦波的峰峰值为6V ,kHz 30正弦波的峰峰值为0.67V ,kHz 50正弦波的峰峰值应为0.24V 。

另外,这些谐波中每隔一个相位取反。

各自所需幅值可通过调节三个放大器的放大量获得,初相可通过上一节对相位调节电路的调节来获得。

6.单片机的监测电路和检测显示流程单片机的任务就是测量某路的正弦波的幅值和送显示,其组成部分有精密检波电路、平滑滤波电路、单片机MSP430F2274最小系统和LCD1602字符液晶显示器等几个部分组成,见图8所示。

图8 单片机检测和显示系统框图该部分精密检波电路采用平均值全波精密检波方案,实现将10KHz 、30 KHz 、50 KHz 各个正弦波被测信号转换为脉动全波直流电,其电路图和波形图如图9所示。

图9 全波精密整流电路及输入输出波形上图中的脉动直流电还不能直接送单片机检测,可加一RC 平滑滤波电路后为平滑直流电,如图10所示。

整个项目的程序编制尤为简单,如下框图所示。

图14 程序流程图四、整机指标及系统测试1.整机指标1)电源供电:双DC8V ±2V ,60mA(a )RC 平滑滤波电路 (b )滤波后的波形图10 RC 平滑滤波电路和波形uiuouo 0t约平均值2)使用环境:温度-20O C——+80 O C;湿度0——95%RH3)外观尺寸420×360×754)MCU检测系统的检测误差:小于等于2%2.系统测试1)目标为方波系统时分解后的各信号测试):10KHz为6.03V;30KHz为2.01V;50KHz为1.18V 分离的正弦波幅度(V P—P分离的正弦波失真度:10KHz为20%;30KHz为16%;50KHz为9%2)目标为三角波系统时分解后的各信号测试):10KHz为6.03V;30KHz为0.63V;50KHz为0.26V 分离的正弦波幅度(V P—P分离的正弦波失真度:10KHz为20%;30KHz为14%;50KHz为21%3)合成后的方波:(10KHz+30KHz)失真度22%,幅值:5.08V(10KHz+30KHz+50KHz)失真度17%,幅值:4.93V4)合成后的三角波:(10KHz+30KHz+50KHz)失真度15%,幅值:7V付录1:信号分解与合成部分整机电路图1附录2:印制电路板图2附录3:合成波形图1(方波10KHz+30KHz)附录4:合成波形图2(方波10KHz+30KHz+50KHz)附录5:合成波形图3(三角波10KHz+30KHz+50KHz)。

相关文档
最新文档