北京市各区2012年高考数学一模试题分类解析(11) 线性规划、直线与圆的方程 理
【教师版】2012年北京高三模拟题分类汇编之线性规划

2012年北京高三模拟题分类汇编之线性规划精心校对版△注意事项:1.本系列试题包含2012北京市各城区一模二模真题。
2.本系列文档有相关的试题分类汇编,具体见封面。
3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 i. 、填空题(本大题共4小题,共0分) 1.(2012北京朝阳区高三二模数学(文))若实数,x y 满足10,0,x y x -+≤⎧⎨≤⎩则22x y +的最小值是 . 【答案解析】122.(2012北京西城区高三二模数学(文))设变量x ,y 满足11,11,x y x y -≤+≤⎧⎨-≤-≤⎩则2x y +的最小值是_____.【答案解析】2-;3.(2012北京石景山高三一模数学(文))已知点(,)P x y 的坐标满足条件4,,1.x y y x y +≤⎧⎪≤⎨⎪≥⎩点O 为坐标原点,那么PO 的最小值 等于______,最大值等于_____.4.(2012北京朝阳区高三一模数学(文))设,x y 满足约束条件0, , 230,y y x x y ≥⎧⎪≤⎨⎪+-≤⎩则目标函数姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●2z x y =-的最大值是 ;使z 取得最大值时的点(,)x y 的坐标是 .【答案解析】3 ;3,02⎛⎫⎪⎝⎭ii.、选择题(本大题共4小题,每小题0分,共0分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)5.(2012北京丰台区高三一模数学(文))若变量x ,y 满足约束条件0,21,43,y x y x y ≤⎧⎪-≥⎨⎪-≤⎩则z =3x +5y的取值范围是(A) [3,)+∞ (B) [-8,3](C) (,9]-∞(D) [-8,9]【答案解析】D6.(2012北京海淀区高三一模数学(文))若满足条件020x y x y y a -≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y 恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为 (A )3- (B ) 2- (C )1- (D )0【答案解析】C7.(2012北京西城区高三一模数学(文))若实数x ,y 满足条件0,10,01,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则|3|x y -的最大值为( )(A )6(B )5(C )4(D )3 【答案解析】B ;8.(2012北京东城区高三一模数学(文))若点(,)P x y 在不等式组,,2y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则2z x y =+的最大值为(A )0 (B )2 (C ) 4 (D )6 【答案解析】D。
北京市各区2012年高考数学一模试题分类解析(9) 线性规划、直线与圆的方程 文

九、线性规划、直线与圆的方程(必修二)7.(2012高考模拟文科7)设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( D ) A .26B .24C .16D .1415.(2012高考模拟文科15)若点P 在直线03:1=++y x l 上,过点P 的直线2l 与曲线22:(5)16C x y -+=只有一个公共点M ,则PM 的最小值为__________;答案:4;3.(2012东城一模文科)若点(,)P x y 在不等式组,,2y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则2z x y=+的最大值为( D )A .0B .2C . 4D .63.(2012丰台一模文科)若变量x ,y 满足约束条件0,21,43,y x y x y ≤⎧⎪-≥⎨⎪-≤⎩则z=3x+5y 的取值范围是( D )A .[3,)+∞ B .[-8,3] C .(,9]-∞ D .[-8,9]6.(2012石景山一模文科)直线5x y +=和圆22: x 40O y y +-= 的位置关系是( A )A .相离 B .相切 C .相交不过圆心 D .相交过圆心11. (2012石景山一模文科)已知点(,)P x y 的坐标满足条件4,,1.x y y x y +≤⎧⎪≤⎨⎪≥⎩点O 为坐标原点,那么PO 的最小值等于______,最大值等于_____. 答案:7. (2012高考仿真文科)已知点),(y x P 的坐标满足条件⎪⎩⎪⎨⎧≥+-≥≥0321y x x y x ,那么点P 到直线0943=--y x 的距离的最小值为( C )A .514 B .56 C . 2 D . 112. (2012朝阳一模文科)设,x y 满足约束条件0, , 230,y y x x y ≥⎧⎪≤⎨⎪+-≤⎩则目标函数2z x y =-的最大值是 ; 使z 取得最大值时的点(,)x y 的坐标是 . 答案:3 ;3,02⎛⎫⎪⎝⎭8. (2012东城示范校二模文)如果直线1+=kx y 与圆0422=-+++my kx y x 相交于P 、Q 两点,且点P 、Q 关于直线0=+y x 对称,则 不等式组⎪⎩⎪⎨⎧≥≤-≥+-.y ,my kx ,y kx 0001表示的平面区域的面积是 ( D ) A .2B .1C .21 D .415.(2012房山一模文科)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30030x y x y x ,则y x z -=2的最小值为( C ) A . 6- B . 29-C . 3-D . 911.(2012房山一模文科)过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为 . 答案:326.(2012海淀一模文科)若满足条件020x y x y y a -≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y 恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( C )A . 3-B . 2-C . 1-D . 011.(2012海淀一模文科)以抛物线24y x =上的点0(,4)x 为圆心,并过此抛物线焦点的圆的方程是 . 答案:22(4)(4)25x y -+-=7.(2012门头沟一模文科)下列直线方程,满足“与直线x y =平行,且与圆01622=+-+x y x 相切”的是( A )A . 01=+-y xB . 07=-+y xC . 01=++y xD . 07=+-y x11. (2012门头沟一模文科)已知平面区域M 满足条件⎩⎨⎧≤-+-≤-+.4)2()2(;0622y x y x 则平面区域M 的面积是 . 答案:π3+27.(2012密云一模文科)设变量x ,y 满足约束条件2,,2x y x x y ≤⎧⎪≤⎨⎪+≥⎩则目标函数2z x y =+的最小值为( C ) A .6B .4C .3D .27. (2012师大附文科) 设1x 、2x 是关于x 的方程0122=+++mmx x 的两个不相等的实数根,那么过两点),(211x x A ,),(222x x B 的直线与圆122=+y x 的位置关系是( A ) A. 相切 B. 相离 C. 相交 D. 随m 的变化而变化10. (2012师大附文科)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥,632,,1y x x y x 则y x z +=2的最大值为 。
2012年北京市海淀区高考数学一模试卷(理科)(附答案解析)

2012年北京市海淀区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A ={x|x >1},B ={x|x <m},且A ∪B =R ,那么m 的值可以是( ) A.−1 B.0 C.1 D.22. 在等比数列{a n }中,a 1=8,a 4=a 3a 5,则a 7=( ) A.116B.18C.14D.123. 在极坐标系中,过点(2,3π2)且平行于极轴的直线的极坐标方程是( )A.ρsin θ=−2B.ρcos θ=−2C.ρsin θ=2D.ρcos θ=24. 已知向量a →=(1, x),b →=(−1, x),若2a →−b →与b →垂直,则|a →|=( )A.√2B.√3C.2D.45. 执行如图所示的程序框图,输出的k 值是( )A.4B.5C.6D.76. 从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是( ) A.12 B.24C.36D.487. 已知函数f(x)={−x 2+ax ,x ≤1,ax −1,x >1, 若∃x 1,x 2∈R ,x 1≠x 2,使得f(x 1)=f(x 2)成立,则实数a 的取值范围是( ) A.a <2 B.a >2C.−2<a <2D.a >2或a <−28. 在正方体ABCD −A′B′C′D′中,若点P (异于点B )是棱上一点,则满足BP 与AC′所成的角为45∘的点P 的个数为( )A.0B.3C.4D.6二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.复数a+2i1−i 在复平面内所对应的点在虚轴上,那么实数a =________.过双曲线x 29−y 216=1的右焦点,且平行于经过一、三象限的渐近线的直线方程是________.若tan α=12,则cos (2α+π2)=________.设某商品的需求函数为Q =100−5P ,其中Q ,P 分别表示需求量和价格,如果商品需求弹性EQEP 大于1(其中EQ EP=−Q ′QP ,Q ′是Q 的导数),则商品价格P 的取值范围是________.如图,以△ABC 的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF ⊥AB 于点F ,AF =3BF ,BE =2EC =2,那么∠CDE =________,CD =________.已知函数f(x)={1,x ∈Q0,x ∈C R Q 则(I)f (f(x))=________;(II )给出下列三个命题: ①函数f(x)是偶函数;②存在x i ∈R(i =1, 2, 3),使得以点(x i , f(x i ))(i =1, 2, 3)为顶点的三角形是等腰直角三角形; ③存在x i ∈R(i =1, 2, 3, 4),使得以点(x i , f(x i ))(i =1, 2, 3, 4)为顶点的四边形为菱形. 其中,所有真命题的序号是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列. (1)若b =√13,a =3,求c 的值;(2)设t =sin A sin C ,求t 的最大值.在四棱锥P −ABCD 中,AB // CD ,AB ⊥AD ,AB =4,AD =2√2,CD =2,PA ⊥平面ABCD ,PA =4. (Ⅰ)设平面PAB ∩平面PCD =m ,求证:CD // m ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所成角的正弦值为√33,求PQPB的值.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0, 100],样本数据分组为[0, 20),[20, 40),[40, 60),[60, 80),[80, 100].(1)求直方图中x 的值;(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(3)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)已知函数f(x)=e −kx (x 2+x −1k )(k <0). (1)求f(x)的单调区间;(2)是否存在实数k ,使得函数f(x)的极大值等于3e −2?若存在,求出k 的值;若不存在,请说明理由.在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(−1, 0),P 为椭圆G 的上顶点,且∠PF 1O =45∘.(Ⅰ)求椭圆G 的标准方程;(Ⅱ)已知直线l 1:y =kx +m 1与椭圆G 交于A ,B 两点,直线l 2:y =kx +m 2(m 1≠m 2)与椭圆G 交于C ,D 两点,且|AB|=|CD|,如图所示. (ⅰ)证明:m 1+m 2=0;(ⅱ)求四边形ABCD 的面积S 的最大值.对于集合M ,定义函数f M (x)={−1,x ∈M1,x ∉M. 对于两个集合M ,N ,定义集合M △N ={x|f M (x)⋅f N (x)=−1}.已知A ={2, 4, 6, 8, 10},B ={1, 2, 4, 8, 16}.(Ⅰ)写出f A (1)和f B (1)的值,并用列举法写出集合A △B ;(Ⅱ)用Card(M)表示有限集合M 所含元素的个数,求Card(X △A)+Card(X △B)的最小值; (Ⅲ)有多少个集合对(P, Q),满足P ,Q ⊆A ∪B ,且(P △A)△(Q △B)=A △B ?参考答案与试题解析2012年北京市海淀区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】根据题意,做出集合A,由并集的定义分析可得,若A∪B=R,必有m<1,分析选项,即可得答案.【解答】根据题意,若集合A={x|x>1},B={x|x<m},且A∪B=R,必有m>1,分析选项可得,D符合;2.【答案】B【考点】等比数列的性质【解析】由等比数列的性质可知,a4=a3a5=a42可求a4,然后由a1⋅a7=a42可求【解答】由等比数列的性质可知,a4=a3a5=a42∵a4≠0∴a4=1∵a1=8∴a1⋅a7=a42=1∴a7=183.【答案】A【考点】圆的极坐标方程【解析】如图所示,在Rt△OPQ中,利用直角三角形的边角关系及诱导公式可得ρ=2cos(θ−3π2)=2−sinθ,即可.【解答】解:如图所示,在Rt△OPQ中,ρ=2cos(θ−3π2)=2−sinθ,可化为ρsinθ=−2.故选A.4.【答案】C【考点】数量积判断两个平面向量的垂直关系平面向量数量积【解析】根据向量的坐标运算先求出2a→−b→,然后根据向量垂直的条件列式求出x的值,最后运用求模公式求|a→|.【解答】解∵a→=(1,x),b→=(−1,x),∴2a→−b→=2(1,x)−(−1,x)=(3, x),由(2a→−b→)⊥b→⇒3×(−1)+x2=0,解得x=−√3,或x=√3,∴a→=(1,−√3)或a→=(1,√3),∴|a→|=√12+(−√3)2=2,或|a→|=√12+(√3)2=2.故选C.5.【答案】B【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出k的值.【解答】解:第一次循环:n=3×5+1=16,k=0+1=1,继续循环;第二次循环:n=162=8,k=1+1=2,继续循环;第三次循环:n=82=4,k=2+1=3,继续循环;第四次循环:n=42=2,k=3+1=4,继续循环;第五次循环:n=22=1,k=4+1=5,结束循环.输出k=5.故选B .6.【答案】 D【考点】排列、组合及简单计数问题 【解析】先分类:(1)不选甲,有A 43种选法;(2)选甲,共C 21⋅A 42种,相加可得. 【解答】解:(1)若不选甲,则有A 43=24种选法;(2)若选甲,则先从令两个位置中选一个给甲,再从其余的4人中选2人排列,共有C 21⋅A 42=24种, 由分类计数原理可得总的方法种数为24+24=48, 故选D 7. 【答案】 A【考点】全称命题与特称命题分段函数的解析式求法及其图象的作法【解析】若∃x 1,x 2∈R ,x 1≠x 2,使得f(x 1)=f(x 2)成立,则说明f(x)在R 上不单调,分a =0及a ≠0两种情况分布求解即可. 【解答】解:若∃x 1,x 2∈R ,x 1≠x 2,使得f(x 1)=f(x 2)成立,则说明f(x)在R 上不单调.①当a =0时,f(x)={−x 2,x ≤1,−1,x >1,,其图象如图所示,满足题意;②当a <0时,函数y =−x 2+ax 的对称轴x =a2<0,其图象如图所示,满足题意;③当a >0时,函数y =−x 2+ax 的对称轴x =a2>0,其图象如图所示, 要使得f(x)在R 上不单调,则只要二次函数的对称轴x =a2<1, ∴ a <2.综上可得,a <2.故选A. 8.【答案】 B【考点】异面直线及其所成的角 【解析】通过建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数. 【解答】解:建立如图所示的空间直角坐标系,不妨设棱长AB =1,B(1, 0, 1),C(1, 1, 1).①在Rt △AA′C 中,tan ∠AA′C =|AC||AA ′|=√2,因此∠AA′C≠45∘.同理A′B′,A′D′与A′C 所成的角都为arctan √2≠45∘.故当点P 位于(分别与上述棱平行)棱BB′,BA ,BC 上时,与A′C 所成的角都为arctan √2≠45∘,不满足条件. ②当点P 位于棱AD 上时,设P(0, y, 1),(0≤y ≤1),则BP →=(−1, y, 0),A ′C →=(1, 1, 1). 若满足BP 与AC′所成的角为45∘,则√22=|cos <BP →,A ′C →>|=|BP →⋅A ′C →||BP →||A ′C →|=|−1+y|√1+y 2√3,化为y 2+4y +1=0,无正数解,舍去.同理,当点P 位于棱B′C 上时,也不符合条件.③当点P 位于棱A′D′上时,设P(0, y, 0),(0≤y ≤1), 则BP →=(−1, y, −1),A ′C →=(1, 1, 1). 若满足BP 与AC ′所成的角为45∘,则√22=|cos <BP →,A ′C →>|=|BP →⋅A ′C →||BP →||A ′C →|=√2+y 2⋅√3,化为y 2+8y −2=0,∵ 0≤y ≤1,解得y =3√2−4,满足条件,此时点P(0,3√2−4,0).④同理可求得棱A′B′上一点P(√3−1,0,0),棱A′A 上一点P(0,0,√3−1). 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个. 故选B .二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. 【答案】 2【考点】复数代数形式的乘除运算 复数的基本概念【解析】由题意,可先对所给的进行化简,由复数的除法规则,将复数化简成代数形式,再由题设条件其在复平面上对应的点在虚轴上,令实部为零即可得到参数的方程,从而解出参数的值 【解答】 解:复数a+2i 1−i=(a+2i)(1+i)(1−i)(1+i)=a−2+(a+2)i2又复数a+2i 1−i在复平面内所对应的点在虚轴上所以a −2=0,即a =2 故答案为2 【答案】4x −3y −20=0 【考点】 双曲线的特性 【解析】根据双曲线方程,可得右焦点的坐标为F(5, 0),且经过一、三象限的渐近线斜率为k =43.由平行直线的斜率相等,可得所求的直线方程的点斜式,再化成一般式即可. 【解答】解:∵ 双曲线的方程为x 29−y 216=1∴ a 2=9,b 2=16,得c =√a 2+b 2=5 因此,该双曲线右焦点的坐标为F(5, 0) ∵ 双曲线x 29−y 216=1的渐近线方程为y =±43x∴ 双曲线经过一、三象限的渐近线斜率为k =43∴ 经过双曲线右焦点,且平行于经过一、三象限的渐近线的直线方程是y =43(x −5) 化为一般式,得4x −3y −20=0. 故答案为:4x −3y −20=0 【答案】 −45【考点】同角三角函数间的基本关系二倍角的三角函数【解析】利用同角三角函数的基本关系,诱导公式,二倍角公式化简cos(2α+π2)为−2tanα1+tan2α,把tanα=12代入运算求得结果.【解答】∵tanα=12,∴cos(2α+π2)=−sin2α=−2sinαcosα=−2sinαcosαcos2α+sin2α=−2tanα1+tan2α=−45,【答案】(10, 20)【考点】函数最值的应用【解析】利用Q=100−5P,弹性EQEP大于1,建立不等式,解不等式即可得到结论.【解答】∵Q=100−5P,弹性EQEP大于1∴EQEP =−Q′QP=5P100−5P>1∴(P−10)(P−20)<0∴10<P<20【答案】60∘,3√1313【考点】与圆有关的比例线段【解析】如图所示,设圆心为点O,半径为R,连接OE,AE.利用已知AF=3FB,AF+FB=2R,可得FB=12R,又EF⊥AB,可得OE=EB,即△OEB为等边三角形,从而利用圆内接四边形的性质即可得出∠CDE的大小;也可求出AE.进而求出AC,再利用割线定理即可得出CD.【解答】解:如图所示,设圆心为点O,半径为R,连接OE,AE.由AB为⊙O的直径,∴∠AEB=90∘,∴AE⊥CE.∵AF=3FB,AF+FB=2R,∴FB=12R,又EF⊥AB,∴OE=EB,即△OEB为等边三角形.∴∠ABE=60∘.∴∠CDE=∠ABE=60∘;∴AE=BE tan60∘=2 √3.在Rt△ACE,AC=√AE2+CE2=√(2√3)2+12=√13.由割线定理可得:CD⋅CA=CE⋅CB,∴CD=√13=3√1313.故答案为60∘;3√1313.【答案】1,①③.【考点】命题的真假判断与应用函数解析式的求解及常用方法【解析】(I)对x分类:x∈Q和x∈C R Q,再由解析式求出f(f(x))的值;(II)①对x分类:x∈Q和x∈C R Q,分别判断出f(−x)=f(x),再由偶函数的定义判断出①正确;②由解析式做出大致图象:根据图象和等腰直角三角形的性质,进行判断即可;③取两个自变量是有理数,使得另外两个无理数差与两个有理数的差相等,即可得出此四边形为平行四边形.【解答】解:(I)由题意知,f(x)={1,x∈Q0,x∈C R Q,当x∈Q时,f(x)=1∈Q,则f(f(x))=1,当x∈C R Q时,f(x)=0∈Q,则f(f(x))=1,综上得,f(f(x))=1;(II)①当x∈Q时,则−x∈Q,故f(−x)=1=f(x),当x∈C R Q时,则−x∈C R Q,故f(−x)=0=f(x),∴函数f(x)是偶函数,①正确;②根据f(x)={1,x∈Q0,x∈C R Q,做出函数的大致图象:假设存在等腰直角三角形ABC,则斜边AB只能在x轴上或在直线y=1上,且斜边上的高始终是1,不妨假设A,B在x轴上,如图故斜边AB=2,故点A、B 的坐标不可能是无理数,否则O点不再是中点,故不存在另外,当AB在y=1上,C在x轴时,由于AB=2,则C的坐标应是有理数,故假设不成立,即不存在符合题意的等腰直角三角形,②错误;③根据②做出的图形知,取两个自变量是有理数,使得另外两个无理数差与两个有理数的差相等,即可画出平行四边形,且是对角线相互垂直,可以做出以点(x i, f(x i))(i=1, 2, 3, 4)为顶点的四边形为菱形,③正确.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.【答案】解:(1)因为A,B,C成等差数列,所以2B=A+C.因为A+B+C=π,所以B=π3.因为b=√13,a=3,b2=a2+c2−2ac cos B,所以c2−3c−4=0,解得c=4,或c=−1(舍去).(2)因为A+C=23π,所以,t=sin A sin(2π3−A)=sin A(√32cos A+12sin A)=√34sin2A+12(1−cos2A2)=14+12sin(2A−π6).因为0<A<2π3,所以,−π6<2A−π6<7π6.所以当2A−π6=π2,即A=π3时,t有最大值34.【考点】余弦定理等差数列的通项公式求两角和与差的正弦【解析】(1)由A,B,C成等差数列求得B的值,再由余弦定理求得c的值.(2)因为A+C=23π,利用两角和差的正弦公式化简函数t的解析式,再利用正弦函数的定义域和值域,求得t的最大值.【解答】解:(1)因为A,B,C成等差数列,所以2B=A+C.因为A+B+C=π,所以B=π3.因为b=√13,a=3,b2=a2+c2−2ac cos B,所以c2−3c−4=0,解得c=4,或c=−1(舍去).(2)因为A+C=23π,所以,t=sin A sin(2π3−A)=sin A(√32cos A+12sin A)=√34sin2A+12(1−cos2A2)=14+12sin(2A−π6).因为0<A<2π3,所以,−π6<2A−π6<7π6.所以当2A−π6=π2,即A=π3时,t有最大值34.【答案】(1)如图所示,过点B作BM // PA,并且取BM=PA,连接PM,CM.∴四边形PABM为平行四边形,∴PM // AB,∵AB // CD,∴PM // CD,即PM为平面PAB∩平面PCD=m,m // CD.(2)在Rt△BAD和Rt△ADC中,由勾股定理可得BD=√42+(2√2)2=2√6,AC=√22+(2√2)2=2√3.∵AB // DC,∴ODOB=OCOA=24=12,∴OD=13BD=2√63,OC=13AC=2√33.∴OD2+OC2=(2√63)2+(2√33)2=4=CD2,∴OC⊥OD,即BD⊥AC;∵PA⊥底面ABCD,∴PA⊥BD.∵PA∩AC=A,∴BD⊥平面PAC.(Ⅲ)建立如图所示的空间直角坐标系,则A(0, 0, 0),B(4, 0, 0),D(0, 2√2, 0),C(2, 2√2, 0),P(0, 0, 4).∴PB→=(4,0,−4),设PQ→=λPB→,则Q(4λ, 0, 4−4λ),∴QC→=(2−4λ,2√2,4λ−4).BD→=(−4,2√2,0),由(2)可知BD→为平面PAC的法向量.∴cos<BD→,QC→>=BD→⋅QC→|BD→||QC→|=2√6√(2−4λ)2+(2√2)2+(4λ−4)2,∵直线QC与平面PAC所成角的正弦值为√33,∴√33=2√6√(2−4λ)2+8+(4λ−4)2,化为12λ=7,解得λ=712.∴PQPB=712.【考点】直线与平面垂直 直线与平面所成的角【解析】(Ⅰ)利用平行四边形的性质和平行线的传递性即可找出两个平面的交线并且证明结论; (Ⅱ)利用已知条件先证明BD ⊥AC ,再利用线面垂直的性质定理和判定定理即可证明; (Ⅲ)通过结论空间直角坐标系,利用法向量与斜线所成的角即可找出Q 点的位置. 【解答】(1)如图所示,过点B 作BM // PA ,并且取BM =PA ,连接PM ,CM . ∴ 四边形PABM 为平行四边形,∴ PM // AB ,∵ AB // CD ,∴ PM // CD ,即PM 为平面PAB ∩平面PCD =m ,m // CD . (2)在Rt △BAD 和Rt △ADC 中,由勾股定理可得 BD =√42+(2√2)2=2√6,AC =√22+(2√2)2=2√3. ∵ AB // DC ,∴ OD OB=OC OA=24=12,∴ OD =13BD =2√63,OC =13AC =2√33. ∴ OD 2+OC 2=(2√63)2+(2√33)2=4=CD 2,∴ OC ⊥OD ,即BD ⊥AC ;∵ PA ⊥底面ABCD ,∴ PA ⊥BD . ∵ PA ∩AC =A ,∴ BD ⊥平面PAC .(Ⅲ)建立如图所示的空间直角坐标系,则A(0, 0, 0), B(4, 0, 0),D(0, 2√2, 0),C(2, 2√2, 0),P(0, 0, 4). ∴ PB →=(4,0,−4),设PQ →=λPB →,则Q(4λ, 0, 4−4λ),∴ QC →=(2−4λ,2√2,4λ−4). BD →=(−4,2√2,0),由(2)可知BD →为平面PAC 的法向量.∴ cos <BD →,QC →>=BD →⋅QC →|BD →||QC →|=2√6√(2−4λ)2+(2√2)2+(4λ−4)2,∵ 直线QC 与平面PAC 所成角的正弦值为√33, ∴√33=2√6√(2−4λ)2+8+(4λ−4)2,化为12λ=7,解得λ=712. ∴ PQPB =712.【答案】 解:(1)由直方图可得:20×x +0.025×20+0.0065×20+0.003×2×20=1. 所以 x =0.0125.(2)新生上学所需时间不少于1小时的频率为:0.003×2×20=0.12, 因为600×0.12=72,所以600名新生中有72名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P(X =0)=(34)4=81256,P(X =1)=C 41(14)(34)3=2764,P(X =2)=C 42(14)2(34)2=27128, P(X =3)=C 43(14)3(34)=364,P(X =4)=(14)4=1256. 所以X 的分布列为:EX =0×81256+1×2764+2×27128+3×364+4×1256=1.(或EX =4×14=1) 所以X 的数学期望为1. 【考点】离散型随机变量及其分布列 离散型随机变量的期望与方差【解析】(1)由题意,可由直方图中各个小矩形的面积和为1求出x 值.(2)再求出小矩形的面积即上学所需时间不少于1小时组人数在样本中的频率,再乘以样本容量即可得到此组的人数即可.(3)求出随机变量X 可取得值,利用古典概型概率公式求出随机变量取各值时的概率,列出分布列,利用随机变量的期望公式求出期望.【解答】 解:(1)由直方图可得:20×x +0.025×20+0.0065×20+0.003×2×20=1. 所以 x =0.0125.(2)新生上学所需时间不少于1小时的频率为:0.003×2×20=0.12, 因为600×0.12=72,所以600名新生中有72名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P(X =0)=(34)4=81256,P(X =1)=C 41(14)(34)3=2764,P(X =2)=C 42(14)2(34)2=27128, P(X =3)=C 43(14)3(34)=364,P(X =4)=(14)4=1256.所以X 的分布列为:EX =0×81256+1×2764+2×27128+3×364+4×1256=1.(或EX =4×14=1)所以X 的数学期望为1. 【答案】 解:(1)f(x)的定义域为R ,f′(x)=−ke −kx (x 2+x −1k )+e −kx (2x +1)=e −kx [−kx 2+(2−k)x +2],即 f ′(x)=−e −kx (kx −2)(x +1)(k <0).令f ′(x)=0,解得:x =−1或x =2k .①当k =−2时,f ′(x)=2e 2x (x +1)2≥0, 故f(x)的单调递增区间是(−∞, +∞);②当−2<k <0时,f(x),f ′(x)随x 的变化情况如下:所以,函数f(x)的单调递增区间是(−∞,2k )和(−1, +∞),单调递减区间是(2k ,−1). ③当k <−2时,f(x),f ′(x)随x 的变化情况如下:所以,函数f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k ).综上,当k =−2时,f(x)的单调递增区间是(−∞, +∞);当−2<k <0时,f(x)的单调递增区间是(−∞,2k )和(−1, +∞),单调递减区间是(2k ,−1);当k <−2时,f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k ). (2) ①当k =−2时,f(x)无极大值.②当−2<k <0时,f(x)的极大值为f(2k )=e −2(4k 2+1k ), 令e −2(4k 2+1k )=3e −2,即4k 2+1k =3,解得 k =−1或k =43(舍). ③当k <−2时,f(x)的极大值为f(−1)=−e kk . 因为 e k <e −2,0<−1k <12,所以 −e k k<12e −2.因为 12e −2<3e −2,所以 f(x)的极大值不可能等于3e −2,综上所述,当k=−1时,f(x)的极大值等于3e−2.【考点】利用导数研究函数的单调性函数在某点取得极值的条件【解析】(1)求出f′(x))=−e−kx(kx−2)(x+1)(k<0),令f′(x)=0,解得:x=−1或x=2k .按两根−1,2k的大小关系分三种情况讨论即可;(2)由(1)分情况求出函数f(x)的极大值,令其为3e−2,然后解k即可,注意k的取值范围;【解答】解:(1)f(x)的定义域为R,f′(x)=−ke−kx(x2+x−1k)+e−kx(2x+1)=e−kx[−kx2+(2−k)x+2],即f′(x)=−e−kx(kx−2)(x+ 1)(k<0).令f′(x)=0,解得:x=−1或x=2k.①当k=−2时,f′(x)=2e2x(x+1)2≥0,故f(x)的单调递增区间是(−∞, +∞);②当−2<k<0时,f(x),f′(x)随x的变化情况如下:所以,函数f(x)的单调递增区间是(−∞,2k )和(−1, +∞),单调递减区间是(2k,−1).③当k<−2时,f(x),f′(x)随x的变化情况如下:所以,函数f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k).综上,当k=−2时,f(x)的单调递增区间是(−∞, +∞);当−2<k<0时,f(x)的单调递增区间是(−∞,2k)和(−1, +∞),单调递减区间是(2k,−1);当k<−2时,f(x)的单调递增区间是(−∞, −1)和(2k ,+∞),单调递减区间是(−1,2k).(2)①当k=−2时,f(x)无极大值.②当−2<k<0时,f(x)的极大值为f(2k )=e−2(4k2+1k),令e−2(4k2+1k)=3e−2,即4k2+1k=3,解得k=−1或k=43(舍).③当k<−2时,f(x)的极大值为f(−1)=−e kk.因为e k<e−2,0<−1k<12,所以−ekk<12e−2.因为12e−2<3e−2,所以f(x)的极大值不可能等于3e−2,综上所述,当k=−1时,f(x)的极大值等于3e−2.【答案】(1)设椭圆G的标准方程为x2a2+y2b2=1(a>b>0).因为F1(−1, 0),∠PF1O=45∘,所以b=c=1.所以,a2=b2+c2=2.所以,椭圆G的标准方程为x22+y2=1.(2)设A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4).(ⅰ)证明:由{y=kx+m1x22+y2=1.消去y得:(1+2k2)x2+4km1x+2m12−2=0.则△=8(2k2−m12+1)>0,{x1+x2=−4km11+2k2x1x2=2m12−21+2k2.⋯所以|AB|=√(x1−x2)2+(y1−y2)2=√1+k2√(x1+x2)2−4x1x2=√1+k2√(−4km11+2k2)2−4⋅2m12−21+2k2=2√2√1+k2√2k2−m12+11+2k2.同理|CD|=2√2√1+k2√2k2−m22+11+2k2.因为|AB|=|CD|,所以2√2√12√2k2−m12+11+2k2=2√2√1+k2√2k2−m22+11+2k2.因为m1≠m2,所以m1+m2=0.(ⅱ)由题意得四边形ABCD是平行四边形,设两平行线AB,CD间的距离为d,则d=12√1+k2.因为m1+m2=0,所以d=1√1+k2.所以S=|AB|⋅d=2√2√1+k2√2k2−m12+11+2k21√1+k2=4√2√(2k2−m12+1)m121+2k2≤4√22121221+2k2=2√2.(或S=4√2√(2k2+1)m12−m14(1+2k2)2=4√2√−(m121+2k2−12)2+14≤2√2)所以当2k2+1=2m12时,四边形ABCD的面积S取得最大值为2√2.【考点】直线与椭圆结合的最值问题椭圆的标准方程【解析】(Ⅰ)根据F 1(−1, 0),∠PF 1O =45∘,可得b =c =1,从而a 2=b 2+c 2=2,故可得椭圆G 的标准方程; (Ⅱ)设A(x 1, y 1),B(x 2, y 2),C(x 3, y 3),D(x 4, y 4).(ⅰ)直线l 1:y =kx +m 1与椭圆G 联立,利用韦达定理,可求AB ,CD 的长,利用|AB|=|CD|,可得结论; (ⅱ)求出两平行线AB ,CD 间的距离为d ,则 d =12√1+k 2,表示出四边形ABCD 的面积S ,利用基本不等式,即可求得四边形ABCD 的面积S 取得最大值. 【解答】(1)设椭圆G 的标准方程为x 2a2+y 2b 2=1(a >b >0).因为F 1(−1, 0),∠PF 1O =45∘,所以b =c =1. 所以,a 2=b 2+c 2=2. 所以,椭圆G 的标准方程为x 22+y 2=1.(2)设A(x 1, y 1),B(x 2, y 2),C(x 3, y 3),D(x 4, y 4). (ⅰ)证明:由{y =kx +m 1x 22+y 2=1.消去y 得:(1+2k 2)x 2+4km 1x +2m 12−2=0.则△=8(2k 2−m 12+1)>0,{x 1+x 2=−4km11+2k 2x 1x 2=2m 12−21+2k 2. ⋯ 所以 |AB|=√(x 1−x 2)2+(y 1−y 2)2=√1+k 2√(x 1+x 2)2−4x 1x 2=√1+k 2√(−4km 11+2k 2)2−4⋅2m 12−21+2k 2=2√2√1+k 2√2k 2−m 12+11+2k 2.同理 |CD|=2√2√12√2k 2−m 22+11+2k 2.因为|AB|=|CD|, 所以 2√2√1+k 2√2k 2−m 12+11+2k 2=2√2√1+k 2√2k 2−m 22+11+2k 2.因为 m 1≠m 2,所以m 1+m 2=0.(ⅱ)由题意得四边形ABCD 是平行四边形,设两平行线AB ,CD 间的距离为d ,则 d =122.因为 m 1+m 2=0,所以 d =1√1+k 2.所以 S =|AB|⋅d =2√2√1+k 2√2k 2−m 12+11+2k 212=4√2√(2k 2−m 12+1)m 121+2k 2≤4√22121221+2k 2=2√2.(或S =4√2√(2k 2+1)m 12−m 14(1+2k 2)2=4√2√−(m 121+2k 2−12)2+14≤2√2)所以 当2k 2+1=2m 12时,四边形ABCD 的面积S 取得最大值为2√2.【答案】(1)结合所给定义知,f A (1)=1,f B (1)=−1,A △B ={1, 6, 10, 16}. (2)根据题意可知:对于集合C ,X ,①若a ∈C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)−1; ②若a ∉C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)+1.所以 要使Card(X △A)+Card(X △B)的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响Card(X △A)+Card(X △B)的值,但集合X 不能含有A ∪B 之外的元素. 所以 当X 为集合{1, 6, 10, 16}的子集与集合{2, 4, 8}的并集时,Card(X △A)+Card(X △B)取到最小值4. 所以Card(X △A)+Card(X △B)的最小值 (Ⅲ)因为 A △B ={x|f A (x)⋅f B (x)=−1}, 所以 A △B =B △A .由定义可知:f A△B (x)=f A (x)⋅f B (x).所以 对任意元素x ,f (A△B )△C (x)=f A△B (x)⋅f C (x)=f A (x)⋅f B (x)⋅f C (x), f A△(B△C )(x)=f A (x)⋅f B△C (x)=f A (x)⋅f B (x)⋅f C (x). 所以 f (A△B )△C (x)=f A△(B△C )(x).所以 (A △B)△C =A △(B △C).由 (P △A)△(Q △B)=A △B 知:(P △Q)△(A △B)=A △B . 所以 (P △Q)△(A △B)△(A △B)=(A △B)△(A △B). 所以 P △Q △⌀=⌀.所以 P △Q =⌀,即P =Q . 因为 P ,Q ⊆A ∪B ,所以 满足题意的集合对(P, Q)的个数为27=128. 【考点】集合的包含关系判断及应用 集合中元素个数的最值【解析】(Ⅰ)根据定义直接得答案;(Ⅱ)对于已知集合E 、F ,①若a ∈E 且a ∉F ,则Card(E △(F ∪{a})=Card(E △F)−1;②若a ∉E 且a ∉F ,则Card(E △(F ∪{a})=Card(E △F)+1,据此结论找出满足条件的集合,从而求出Card(X △A)+Card(X △B)的最小值.(Ⅲ)由P ,Q ⊆A ∪B ,且(P △A)△(Q △B)=A △B 求出集合P ,Q 所满足的条件,进而确定集合对(P, Q)的个数. 【解答】(1)结合所给定义知,f A (1)=1,f B (1)=−1,A △B ={1, 6, 10, 16}. (2)根据题意可知:对于集合C ,X ,①若a ∈C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)−1; ②若a ∉C 且a ∉X ,则Card(C △(X ∪{a})=Card(C △X)+1.所以 要使Card(X △A)+Card(X △B)的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响Card(X △A)+Card(X △B)的值,但集合X 不能含有A ∪B 之外的元素. 所以 当X 为集合{1, 6, 10, 16}的子集与集合{2, 4, 8}的并集时,Card(X △A)+Card(X △B)取到最小值4. 所以Card(X △A)+Card(X △B)的最小值 (Ⅲ)因为 A △B ={x|f A (x)⋅f B (x)=−1}, 所以 A △B =B △A .由定义可知:f A△B (x)=f A (x)⋅f B (x).所以 对任意元素x ,f (A△B )△C (x)=f A△B (x)⋅f C (x)=f A (x)⋅f B (x)⋅f C (x), f A△(B△C )(x)=f A (x)⋅f B△C (x)=f A (x)⋅f B (x)⋅f C (x).所以f(A△B)△C (x)=fA△(B△C)(x).所以(A△B)△C=A△(B△C).由(P△A)△(Q△B)=A△B知:(P△Q)△(A△B)=A△B.所以(P△Q)△(A△B)△(A△B)=(A△B)△(A△B).所以P△Q△⌀=⌀.所以P△Q=⌀,即P=Q.因为P,Q⊆A∪B,所以满足题意的集合对(P, Q)的个数为27=128.。
2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京各区一模数学理试题分类解析(14)--统计、概率、随机变量及其分布 第一部分 统计、概率 1.9.(2012年西城一模理9)某年级120名学生在一次百米测试中, 成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.答案:54.11.(2012年东城一模理11)在如图所示的茎叶图中,乙组数据的 中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个 最小数后,两组数据的平均数中较大的一组是 组. 答案:84; 乙。
11.(2012年门头沟一模理11)某单位招聘员工,从400名报名者中选出200名参加笔试, 再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 答案:80。
13.(2012年石景山一模理13)如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 .答案:34π。
10.(2012年密云一模理10)样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算x 的值为 ,样本数据落在[)6,14内的频数为 .答案:0.09,680。
10第二部分 随机变量及其分布17.(2012年海淀一模理17)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,4381(0)4256P X ⎛⎫===⎪⎝⎭,3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭,22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,411(4)4256P X ⎛⎫===⎪⎝⎭.所以的分布列为:812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=) 所以X 的数学期望为1.16.(2012年西城一模理16)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率;Ⅲ求比赛局数的分布列.解:(Ⅰ)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21.记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==.(Ⅱ)记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==,乙以4比3获胜的概率为3363261115C ()()22232P -==,所以125()16P B P P =+=.(Ⅲ)设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===,334341111(5)2C ()()2224P X -===,335251115(6)2C ()()22216P X -==⋅=,336361115(7)2C ()()22216P X -==⋅=.比赛局数的分布列为:X 45 6 7 P1814 516 51616.(2012年东城一模理16)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. 由此得的分布列为:(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥,又n *∈N 且4n ≤,得3n =,或4n =. 所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625)答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.17. (2012年丰台一模理17)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.(Ⅰ)请根据图中所给数据,求出a 的值;(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.解:(Ⅰ)根据频率分布直方图中的数据,可得1(0.0050.00750.02250.035)100.10.070.0310a -+++⨯==-=, 所以 0.03a =. ……2分(Ⅱ)学生成绩在[50,60)内的共有40×0.05=2人,在[60,70)内的共有40×0.225=9人,成绩在[50,70)内的学生共有11人. …4分设“从成绩在[50,70)的学生中随机选3名,且他们的成绩都在[60,70)内”为事件A , 则3931128()55C P A C ==. ……7分所以选取的3名学生成绩都在[60,70)内的概率为2855.(Ⅲ)依题意,X 的可能取值是1,2,3. …8分21293113(1)55C C P X C ===;122931124(2)55C C P X C ===;28(3)()55P X P A ===. …10分所以X324282712355555511E ξ=⨯+⨯+⨯=. …13分16.(2012年朝阳一模理16)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300*********x++=,解得:x=30,即其中成绩为优秀的学生人数为30名. …7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===,所以X 的分布列为352930125213522EX =⨯+⨯+⨯=,所以X 的数学期望为32. 13分16.(2012年东城11校联考理16)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X的分布 列及数学期望EX .解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+======则随机变量X 的分布列:012.156********X EX =⨯+⨯+⨯=所以的数学期望……13分16.(2012年石景山一模理16)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.解:(Ⅰ)ξ的可能取值为:0,1,2,3. …1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξξ的分布列如下表:……4分127139229412780=⨯+⨯+⨯+⨯=ξE . 5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . ……8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. ……10分=+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …13分16.(2012年房山一模16)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:高一年级 高二年级 高三年级 10人6人4人(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ……4分(II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 …6分()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()8132323113114=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()811323140444=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. 11分随机变量ξ的分布列为:ξ 0 1 2 3 4P81168132 278 818 811 …12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE …13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …5分则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……7分 随机变量ξ的分布列为:ξ 0 1 2 3 4P8116 8132 278 818 811 所以34314=⨯==np E ξ ……13分17.(2012年密云一模理17)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望. 解:设事件(1,2,3,4)iA i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====(Ⅰ)设事件B 表示“该选手进入第三轮才被淘汰”, 则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.…3分(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”, 则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=;…7分(Ⅲ)X 的可能取值为1,2,3,411(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,所以,的分布列为1111()123436662E X =⨯+⨯+⨯+⨯=17.(2012年门头沟一模理17)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数.(Ⅰ)求1号球恰好落入1号盒子的概率;(Ⅱ)求ξ的分布列和数学期望ξE .解:(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14……5分(Ⅱ)ξ的所有可能取值为0,1,2,4 ……6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯===22441(2)4C P A ξ===4411(4)24P A ξ===(每个1分)……10分所以ξ的分布列为……11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= ……13分。
北京市各区2012年高考数学一模试题分类解析(6) 数列 理

六、数列2.(2012年海淀一模理2)在等比数列{}n a 中,14358a a a a ==,,则7a =( B )A .116B .18 C .14 D .127.(2012年西城一模理7)设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( A )A .(0,1]B .(0,2)C .[1,2) D.6.(2012年东城一模理6)已知x ,y ,z ∈R ,若1-,x ,y ,z ,3-成等比数列,则xyz 的值为( C )A .3-B .3±C.-.±10.(2012年丰台一模理10)已知等比数列}{n a 的首项为1,若14a ,22a ,3a 成等差数 列,则数列1{}na 的前5项和为______. 答案:3116. 2.(2012年门头沟一模理2)在等差数列{}n a 中,13a =,32a =,则此数列的前10项之和10S 等于( B ) A.55.5B.7.5C.75D.15-3.(2012年朝阳一模理3)已知数列{}n a 的前n 项和为n S ,且21()n n S a n N *=-∈,则5a =( B )A. 16-B. 16C. 31D. 3210.(2012年石景山一模理10)等差数列{}n a 前9项的和等于前4项的和.若40k a a +=,则k =________. 答案:10。
2.(2012年密云一模理2)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( D )A .11B .5C .8-D .11-20.(2012年丰台一模理20)已知函数2()f x x x =+,'()f x 为函数()f x 的导函数.(Ⅰ)若数列{}n a 满足1'()n n a f a +=,且11a =,求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足1b b =,1()n n b f b +=.(ⅰ)是否存在实数b ,使得数列{}n b 是等差数列?若存在,求出b 的值;若不存在,请说明理由;(ⅱ)若b>0,求证:111ni i i b b b =+<∑. 解:(Ⅰ)因为 2()f x x x =+, 所以 '()21f x x =+.所以 121n n a a +=+, 所以 112(1)n n a a ++=+,且11112a +=+=, 所以数列{1}n a +是首项为2,公比为2的等比数列. 所以 11222n n n a -+=⋅=, 即21n n a =-. ……4分(Ⅱ)(ⅰ)假设存在实数b ,使数列{}n b 为等差数列,则必有2132b b b =+,且1b b =,221()b f b b b ==+,22232()()()b f b b b b b ==+++. 所以 22222()()()b b b b b b b +=++++, 解得 0b =或2b =-.当0b =时,10b =,1()0n n b f b +==,所以数列{}n b 为等差数列; 当2b =-时,12b =-,22b =,36b =,442b =,显然不是等差数列. 所以,当0b =时,数列{}n b 为等差数列. ……9分 (ⅱ)10b b =>,1()n n b f b +=,则21()n n n n b f b b b +==+; 所以 21n n n b b b +=-;所以 211111111n n n n n n n n n n n n n n n b b b b b b b b b b b b b b b ++++++⋅-====-⋅⋅⋅. 因为 210n n n b b b +=->,所以 1110n n n b b b b b +->>>>=> ;所以11122311*********()()()ni i i n n n b b b b b b b b b b b =+++=-+-++-=-<∑ .20.(2012年东城11校联考理20)直线2121:)21,0(1:21+=±≠≠-+=x y l k k k kx y l 与相交于点P .直线1l 与x 轴交于点1P ,过点1P 作x 轴的垂线交直线2l 于点1Q ,过点1Q 作y 轴的垂线交直线1l 于点2P ,过点2P 作x 轴的垂线交直线2l 于点2Q ,…,这样一直作下去,可得到一系列1122,,,P Q P Q ,…,点n P (1,2,)n = 的横坐标构成数列{}.n x (1)当2=k 时,求点123,,P P P 的坐标并猜出点n P 的坐标;(2)证明数列{}1-n x 是等比数列,并求出数列{}n x 的通项公式;(3)比较5||4||22122+PP k PP n 与的大小.解:(1)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1615,3231,43,87,0,21321P P P ,可猜得⎪⎪⎭⎫ ⎝⎛------22221212212,212n n n n n P .……4分(2)设点n P 的坐标是),(n n y x ,由已知条件得点1,n n Q P +的坐标分别是:).2121,(),2121,(1+++n n n n x x x x 由1n P +在直线1l 上,得 .121211k kx x n n -+=++所以 ),1()1(211-=-+n n x k x 即 111(1),2n n x x n k*+-=-∈N 所以数列 }1{-n x 是首项为,11-x 公比为k21的等比数列.由题设知 ,011,1111≠-=--=kx k x从而 11111(),12(),.22n n n n x x n k k k -*-=-⨯=-⨯∈N 即 ……9分(3)由⎪⎩⎪⎨⎧+=-+=,2121,1x y k kx y 得点P 的坐标为(1,1).所以 ,)21(2)21(8)11(2)1(2||2222222-+⨯=--++-=n n n n n kk k kx x PP .945])10()111[(45||42222212+=+-+--=+k kk PP k (i )当2121,21||>-<>k k k 或即时,5||4212+PP k 1910>+=,而此时 .5||4||2.10218||2,1|21|021222+<=+⨯<<<PP k PP PP kn n 故所以 (ii )当)21,0()0,21(,21||0 -∈<<k k 即时,5||4212+PP k 1910<+=. 而此时 .5||4||2.10218||2,1|21|21222+>=+⨯>>PP k PP PP k n n 故所以14分20.(2012年房山一模20)在直角坐标平面上有一点列),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x .(I )求点n P 的坐标;(II )设抛物线列 ,,,,,321n c c c c ,中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的顶点为n P ,且过点)1,0(2+n D n ,记与抛物线n c 相切于n D 的直线的斜率为n k ,求:nn k k k k k k 13221111-+++ ;(III )设{}{}**N N ∈==∈==n y y y T n x x x S n n ,4|,,2|,等差数列{}n a 的任一项n a S T ∈ ,其中1a 是S T 中的最大数,12526510-<<-a ,求{}n a 的通项公式.解:(I )23)1()1(25--=-⨯-+-=n n x n ………2分 1353533,(,3)4424n n n y x n P n n ∴=⋅+=--∴---- ………3分(II )n c 的对称轴垂直于x 轴,且顶点为n P .∴设n c 的方程为:,4512)232(2+-++=n n x a y ……5分把)1,0(2+n D n 代入上式,得1=a ,n c ∴的方程为:1)32(22++++=n x n x y . ……7分 322++='n x y当0=x 时,32+=n k n)321121(21)32)(12(111+-+=++=∴-n n n n k k n n n n k k k k k k 13221111-+++∴ )]321121()9171()7151[(21+-+++-+-=n n =641101)32151(21+-=+-n n ……9分(III )}1,),32(|{≥∈+-==n N n n x x S ,}1,),512(|{≥∈+-==n N n n y y T }1,,3)16(2|{≥∈-+-==n N n n y y ,S T T ∴= T 中最大数171-=a . ……10分 设}{n a 公差为d ,则)125,265(91710--∈+-=d a ,由此得 ).(247,24),(12,129248**N n n a d N m m d T a d n n ∈-=∴-=∴∈-=∴∈-<<- 又20.(2012年门头沟一模理20)数列{}n a 满足21121,(1,2,)31n n n n a a a n a a +===-+ .(Ⅰ)求2a ,3a ;(Ⅱ) 求证:n a a a +++ 2111121n n a a ++=--;(Ⅲ)求证: n n n a a a 2212312131211-<+++<-- . 解:(Ⅰ)217a =,3143a =………2分 证明:(Ⅱ)由1221+-=+n n n n a a a a 知 111121+-=+n n n a a a ,)11(1111-=-+nn n a a a . (1) 所以 211,111n n n n n n na a aa a a a ++==----即 1111n n n n n a aa a a ++=---. ……5分 从而 n a a a +++ 211133222211111111++---++---+---=n n n n a a a a a a a aa a a a 11111112111++++--=---=n n n n a a a a a a . …7分 (Ⅲ) 证明n n n a a a 2212312131211-<+++<-- 等价于 证明n n n n a a 2112312112131211-<--<-++-, 即 n n n n a a 21123131<-<++- . (2) …8分 当1n =时 ,2216a a -=,11122363<<- , 即1n =时,(2)成立.设)1(≥=k k n 时,(2)成立,即 kk k k a a 21123131<-<++-.当1+=k n 时,由(1)知k k k k k k k k a a a a a a a 2211111223)1()1(11>->-=-+++++++; ……11分 又由(1)及311=a 知 )1(1≥-n a a nn 均为整数, 从而由k k k a a 21131<-++ 有 131211-≤-++k k k a a 即k k a 2131≤+ ,所以122211122333111+<⋅<-⋅=-+++++k k k k k k k k a a a a a ,即(2)对1+=k n 也成立. 所以(2)对1≥n 的正整数都成立, 即n n n a a a 2212312131211-<+++<-- 对1≥n 的正整数都成立.…13分。
2012北京高考模拟数学试题汇总-解析几何(理)

x y 1 0, 2 2 则 x y 的最小值是 x 0,
二、极坐标、参数方程
【 2012 西城一模理】 12. _____. 2 【2012 东城一模理】 (10)在极坐标系中,圆 2 的圆心到直线 cos sin 2 的 距离为 . 2
让你成为下一个状元! 010-67535551
C. (0, 2)
)
A. (0, 2)
B. (2, 0)
D. (2, 0)
x 1 t, 【2012 丰台一模理】11.在平面直角坐标系 xOy 中,直线 l 的参数方程是 2 (t 为 y 1 t 2
3
参数) 。以 O 为极点, x 轴正方向为极轴的极坐标系中,圆 C 的极坐标方程是
1 的圆在△ ABC 内, 沿着△ ABC 的边滚动一周回到原位. 在滚动过程中, 圆M 至 4 少与△ ABC 的一边相切,则点 M 到△ ABC 顶点的最短距离是 ,点 M 的运
半径为 动轨迹的周长是 .
2 9 4 ,
让你成为下一个状元! 010-67535551
峰炜佳奇·状元教育
在极坐标系中,极点到直线 l : sin( )
π 4
2 的距离是
峰炜佳奇·状元教育
【2012 海淀一模理】 (3)在极坐标系中,过点 (2, (A) sin
3 ) 且平行于极轴的直线的极坐标方程是 2
(C) sin
2 (B) cos
【2012 朝阳二模理】12.如图, AB 是圆 O 的直径,CD AB 于 D ,且 AD 2BD , E 为 AD 的中点,连接 CE 并延长交圆 O 于 F . 若 CD EF _________. 则 AB _______, 2, C
2012年北京市西城区高考数学一模试卷(文科)(附答案解析)

2012年北京市西城区高考数学一模试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合A ={x|x >1},B ={x|x 2<4},那么A ∩B =( ) A.(−2, 2) B.(−1, 2)C.(1, 2)D.(1, 4)2. 执行如图所示的程序框图,若输入x =3,则输出y 的值为( )A.5B.7C.15D.313. 若a =log 23,b =log 32,c =log 413,则下列结论正确的是( ) A.a <c <b B.c <a <bC.b <c <aD.c <b <a4. 如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则复数z1z 2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5. 已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )A.4√3cm 2B.2√3cm 2C.8cm 2D.4cm 26. 若实数x ,y 满足条件{x +y ≥0x −y +1≥00≤x ≤1则|x −3y|的最大值为( )A.6B.5C.4D.37. 设等比数列{a n }的前n 项和是S n ,则“a 1>0”是“S 3>S 2”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件8. 已知集合A ={x|x =a 0+a 1×2+a 2×22+a 3×23},其中a k ∈{0, 1}(k =0, 1, 2, 3),且a 3≠0.则A 中所有元素之和是( )A.120B.112C.92D.84二、填空题共6小题,每小题5分,共30分.已知向量a →=(1, 2),b →=(λ, −2).若<a →−b →,a →>=90∘,则实数λ=________.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.函数y =sin 2x +3cos 2x 的最小正周期为________.圆x 2+y 2−4x +3=0的圆心到直线x −√3y =0的距离是________.已知函数f(x)={x 12,0≤x ≤9x 2+x ,−2≤x <0.则f(x)的零点是________;f(x)的值域是________.如图,已知抛物线y2=x及两点A1(0, y1)和A2(0, y2),其中y1>y2>0.过A1,A2分别作y轴的垂线,交抛物线于B1,B2两点,直线B1B2与y轴交于点A3(0, y3),此时就称A1,A2确定了A3.依此类推,可由A2,A3确定A4,….记A n(0, y n),n=1,2,3,….给出下列三个结论:①数列{y n}是递减数列;②对∀n∈N∗,y n>0;③若y1=4,y2=3,则y5=23.其中,所有正确结论的序号是________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC中,已知2sin B cos A=sin(A+C).(1)求角A;(2)若BC=2,△ABC的面积是√3,求AB.某校高一年级开设研究性学习课程,(1)班和(2)班报名参加的人数分别是18和27.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从(2)班抽取了3名同学.(1)求研究性学习小组的人数;(2)规划在研究性学习的中、后期各安排1次交流活动,每次随机抽取小组中1名同学发言.求2次发言的学生恰好来自不同班级的概率.如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF // AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.(Ⅰ)求证:NC // 平面MFD;(Ⅱ)若EC=3,求证:ND⊥FC;(Ⅲ)求四面体NFEC体积的最大值.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√63,一个焦点为F(2√2,0).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=kx−52交椭圆C于A,B两点,若点A,B都在以点M(0, 3)为圆心的圆上,求k的值.如图,抛物线y=−x2+9与x轴交于两点A,B,点C,D在抛物线上(点C在第一象限),CD // AB.记|CD|=2x,梯形ABCD面积为S.(1)求面积S以x为自变量的函数式;(2)若|CD||AB|≤k,其中k为常数,且0<k<1,求S的最大值.对于数列A:a1,a2,a3(a i∈N, i=1, 2, 3),定义“T变换”:T将数列A变换成数列B:b1,b2,b3,其中b i= |a i−a i+1|(i=1, 2),且b3=|a3−a1|.这种“T变换”记作B=T(A).继续对数列B进行“T变换”,得到数列C:c1,c2,c3,依此类推,当得到的数列各项均为0时变换结束.(1)试问A:2,6,4经过不断的“T变换”能否结束?若能,请依次写出经过“T变换”得到的各数列;若不能,说明理由;(2)设A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各项之和为2012.(I)求a,b;(II)若数列B再经过k次“T变换”得到的数列各项之和最小,求k的最小值,并说明理由.参考答案与试题解析2012年北京市西城区高考数学一模试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】交集及其运算【解析】集合A与集合B的公共元素构成集合A∩B,由此利用集合A={x|x>1},B={x|x2<4}={x|−2<x<2},能求出集合A∩B.【解答】解:∵集合A={x|x>1},B={x|x2<4}={x|−2<x<2},∴A∩B={x|1<x<2}.故选C.2.【答案】D【考点】循环结构的应用【解析】根据所给数值先执行一次运算,然后判定是否满足判断框中的条件,不满足执行循环语句,满足条件就退出循环,从而到结论.【解答】解:∵输入的x值为3,y=2×3+1=7;判断框内|x−y|=|3−7|=4<8,执行x=7,y=2×7+1=15;判断框内|x−y|=|7−15|=8≤8,执行x=15,y=2×15+1=31;判断框内|x−y|=|15−31|=16>8,输出y的值为31,算法结束.故选D.3.【答案】D【考点】对数值大小的比较【解析】利用对数的单调性将a、b、c与0和1进行比较,从而可得a、b、c的大小关系.【解答】解:∵a=log23>log22=1,0=log31<b=log32<log33=1,c=log413<log41=0,∴c<b<a 故选D.4. 【答案】B【考点】复数的代数表示法及其几何意义复数的运算【解析】通过向量的表示求出向量对应的复数,利用复数的除法运算,求出复数对应的点的象限即可.【解答】由题意可知z1=−2−i,z2=i.∴z1z2=−2−ii=(−2−i)ii⋅i=−1+2i,复数z1z2对应的点位于第二象限.5.【答案】A【考点】简单空间图形的三视图【解析】正六棱柱的底面边长和侧棱长均为2cm,故左视图是长方形,长为2√3,宽为2,由此能求出左视图的面积.【解答】解:∵正六棱柱的底面边长和侧棱长均为2cm,∴左视图是长方形,长为√4+4−2×4×cos120∘=2√3,宽为2,∴左视图的面积是2√3×2=4√3(cm2),故选A.6.【答案】B【考点】求线性目标函数的最值【解析】先确定平面区域,再求√10的最大值,进而可求|x−3y|的最大值.【解答】解:不等式表示的平面区域,如图所示先求|x−3y|√10的最大值,即求区域内的点到直线的距离的最大值.由{x =1x −y +1=0,可得x =1,y =2 由图可知,(1, 2)到直线x −3y =0的距离最大为√10=√10∴ |x −3y|的最大值为5 故选B . 7. 【答案】 C【考点】充分条件、必要条件、充要条件 【解析】分公比q =1和q ≠1两种情况,分别由a 1>0推出S 3>S 2成立,再由S 3>S 2也分q =1和q ≠1两种情况推出a 1>0,从而得出结论. 【解答】当公比q =1时,由a 1>0可得 s 3=3a 1>2a 1=s 2,即S 3>S 2成立. 当q ≠1时,由于 1−q 31−q =q 2+q +1>1+q =1−q 21−q,再由a 1>0可得 a 1(1−q 3)1−q>a 1(1−q 2)1−q,即 S 3>S 2成立.故“a 1>0”是“S 3>S 2”的充分条件.当公比q =1时,由S 3>S 2成立,可得 a 1>0. 当q ≠1时,由 S 3>S 2成立可得a 1(1−q 3)1−q>a 1(1−q 2)1−q,再由1−q 31−q >1−q 21−q,可得 a 1>0. 故“a 1>0”是“S 3>S 2”的必要条件.综上可得,“a 1>0”是“S 3>S 2”的充要条件, 8.【答案】 C【考点】 数列的求和 【解析】由题意可知a 0,a 1,a 2,各有2种取法(均可取0,1),a 3有1种取法,利用数列求和即可求得A 中所有元素之和.【解答】由题意可知,a 0,a 1,a 2各有2种取法(均可取0,1),a 3有1种取法, 由分步计数原理可得共有2×2×2×1=8种方法,∴ 当a 0取0,1时,a 1,a 2各有2种取法,a 3有1种取法,共有2×2×1=4种方法, 即集合A 中含有a 0项的所有数的和为(0+1)×4=4;同理可得集合A 中含有a 1项的所有数的和为(2×0+2×1)×4=8; 集合A 中含有a 2项的所有数的和为(22×0+22×1)×4=16; 集合A 中含有a 3项的所有数的和为(23×1+23×0)×8=64; 由分类计数原理得集合A 中所有元素之和: S =4+8+16+64=92二、填空题共6小题,每小题5分,共30分. 【答案】 9【考点】平面向量数量积 【解析】根据向量a →、b →的坐标,得到向量a →−b →的坐标,再根据a →−b →与a →的夹角为90∘,得到它们的数量积为0,列式并解之可得实数λ的值. 【解答】解:∵ a →=(1, 2),b →=(λ, −2). ∴ a →−b →=(1−λ, 4) 又∵ <a −b ,a >=90∘,∴ (a →−b →)a →=0,即1×(1−λ)+2×4=0,解之得λ=9 故答案为:9 【答案】 54【考点】分布和频率分布表 频率分布直方图【解析】根据从左到右的5个小矩形的面积之比为1:3:7:6:3及它们的面积之和为1,做出成绩在[16, 18]的频率,从而得出成绩在[16, 18]的学生人数. 【解答】因从左到右的5个小矩形的面积之比为1:3:7:6:3,且它们的面积之和为1, ∴ 最后两个小矩形的面积和为6+320×1=920,即成绩在[16, 18]的频率为920, 由频率分布直方图知,成绩在[16, 18]的人数为120×920=54(人) 【答案】 π【考点】三角函数中的恒等变换应用 三角函数的周期性及其求法【解析】利用二倍角的余弦公式将函数表达式进行降次处理,得y =2+cos 2x .再由三角函数周期性的结论,可得函数的最小正周期. 【解答】解:∵ sin 2x =12(1−cos 2x),cos 2x =12(1+cos 2x)∴ 函数y =sin 2x +3cos 2x =12(1−cos 2x)+32(1+cos 2x)=2+cos 2x . 由此可得函数的最小正周期T =2π2=π故答案为:π 【答案】 1【考点】直线与圆的位置关系 点到直线的距离公式【解析】先确定圆心坐标,再利用点到直线的距离公式,即可求解. 【解答】解:圆x 2+y 2−4x +3=0的圆心坐标为(2, 0),则由点到直线的距离公式可得d =√1+3=1∴ 圆x 2+y 2−4x +3=0的圆心到直线x −√3y =0的距离1. 故答案为:1 【答案】−1和0,[−14,3]【考点】 函数的零点函数的值域及其求法 【解析】令f(x)=0,结合x 的范围,求出x 的值,即为所求的f(x)的零点.由函数的解析式可得当x =−12时,函数有最小值为−14,当x =9时,函数有最大值为3,从而求得f(x)的值域. 【解答】解:∵ 函数f(x)={x 12,0≤x ≤9x 2+x ,−2≤x <0.,由{0≤x ≤9x 12=0 解得x =0.由{−2≤x <0x 2+x =0 解得x =−1.综上可得f(x)的零点为−1和0.由函数f(x)的解析式可得,当x =−12时,函数有最小值为−14,当x =9时,函数有最大值为3,故答案为−1和0,[−14,3].【答案】 ①②③ 【考点】数列与解析几何的综合 【解析】先确定直线B n−1B n−2的方程,求得y n =y n−2y n−1y n−2+y n−1,由此即可得到结论.【解答】解:由题意,B n−1(y n−12,y n−1),B n−2(y n−22,y n−2),则直线B n−1B n−2的方程为y −y n−1=1yn−2+y n−1(x −y n−12)令x =0,则y −y n−1=1y n−2+y n−1×(−y n−12),∴ y =y n−2y n−1y n−2+y n−1∴ y n =y n−2yn−1y n−2+yn−1∴1y n=1y n−1+1y n−2∵ y 1>y 2>0,∴ y n >0,故②正确;1y n−1y n−1=1y n−2>0,∴ y n <y n−1,故①正确;若y 1=4,y 2=3,则y 3=127,y 4=1211,y 5=23,故③正确. 故答案为:①②③.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 【答案】解:(1)∵ A +B +C =π,∴ sin (A +C)=sin (π−B)=sin B , ∴ 2sin B cos A =sin B .∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12. ∵ A ∈(0, π),∴ A =π3.(2)S △ABC =12AB ⋅AC ⋅sin π3=√3,即AB ⋅AC =4①.由余弦定理得:BC 2=AB 2+AC 2−2AB ⋅AC ⋅cos A =AB 2+AC 2−AB ⋅AC ,∴ AB 2+AC 2=BC 2+AB ⋅AC =4+4=8,∴ (AB +AC)2=AB 2+AC 2+2AB ⋅AC =8+8=16, 即AB +AC =4②,联立①②解得:AB =AC =2, 则AB =2.【考点】诱导公式余弦定理正弦定理三角函数值的符号【解析】(1)由三角形的内角和定理及诱导公式得到sin(A+C)=sin B,代入已知的等式,根据sin B不为0,可得出cos A的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(2)由A的度数求出cos A的值,再由三角形的面积公式表示出三角形ABC的面积,将已知的面积及sin A的值代入求出AB⋅AC的值,记作①,利用余弦定理得到BC2=AB2+AC2−2AB⋅AC⋅cos A,求出将cos A,BC 及AB⋅AC的值代入,整理后求出AB2+AC2的值,再根据AB⋅AC的值,利用完全平方公式变形,开方求出AB+AC的值,记作②,联立①②即可求出AB的长.【解答】解:(1)∵A+B+C=π,∴sin(A+C)=sin(π−B)=sin B,∴2sin B cos A=sin B.∵B∈(0, π),∴sin B>0,∴cos A=12.∵A∈(0, π),∴A=π3.(2)S△ABC=12AB⋅AC⋅sinπ3=√3,即AB⋅AC=4①.由余弦定理得:BC2=AB2+AC2−2AB⋅AC⋅cos A=AB2+AC2−AB⋅AC,∴AB2+AC2=BC2+AB⋅AC=4+4=8,∴(AB+AC)2=AB2+AC2+2AB⋅AC=8+8=16,即AB+AC=4②,联立①②解得:AB=AC=2,则AB=2.【答案】(1)解:设从①班抽取的人数为m,根据分层抽样的定义和方法,得m18=327,所以m=2,研究性学习小组的人数为m+3=5.…(2)设研究性学习小组中①班的2人为a1,a2,②班的3人为b1,b2,b3.2次交流活动中,每次随机抽取1名同学发言的基本事件为:(a1, a1),(a1, a2),(a1, b1),(a1, b2),(a1, b3),(a2, a1),(a2, a2),(a2, b1),(a2, b2),(a2, b3),(b1, a1),(b1, a2),(b1, b1),(b1, b2),(b1, b3),(b2, a1),(b2, a2),(b2, b1),(b2, b2),(b2, b3),(b3, a1),(b3, a2),(b3, b1),(b3, b2),(b3, b3),共25种.…2次发言的学生恰好来自不同班级的基本事件为:(a1, b1),(a1, b2),(a1, b3),(a2, b1),(a2, b2),(a2, b3),(b1, a1),(b1, a2),(b2, a1),(b2, a2),(b3, a1),(b3, a2),共12种.…所以2次发言的学生恰好来自不同班级的概率为P=1225.…【考点】古典概型及其概率计算公式分层抽样方法【解析】(1)设从①班抽取的人数为m,根据分层抽样的定义和方法,可得m18=327,所以m=2,由此求得研究性学习小组的人数.(2)设研究性学习小组中①班的2人为a1,a2,②班的3人为b1,b2,b3.2次交流活动中,每次随机抽取1名同学发言的基本事件一一列举共25个,满足条件的有12个,由此求得2次发言的学生恰好来自不同班级的概率.【解答】(1)解:设从①班抽取的人数为m,根据分层抽样的定义和方法,得m18=327,所以m=2,研究性学习小组的人数为m+3=5.…(2)设研究性学习小组中①班的2人为a1,a2,②班的3人为b1,b2,b3.2次交流活动中,每次随机抽取1名同学发言的基本事件为:(a1, a1),(a1, a2),(a1, b1),(a1, b2),(a1, b3),(a2, a1),(a2, a2),(a2, b1),(a2, b2),(a2, b3),(b1, a1),(b1, a2),(b1, b1),(b1, b2),(b1, b3),(b2, a1),(b2, a2),(b2, b1),(b2, b2),(b2, b3),(b3, a1),(b3, a2),(b3, b1),(b3, b2),(b3, b3),共25种.…2次发言的学生恰好来自不同班级的基本事件为:(a1, b1),(a1, b2),(a1, b3),(a2, b1),(a2, b2),(a2, b3),(b1, a1),(b1, a2),(b2, a1),(b2, a2),(b3, a1),(b3, a2),共12种.…所以2次发言的学生恰好来自不同班级的概率为P=1225.…【答案】(1)证明:因为四边形MNEF,EFDC都是矩形,所以MN // EF // CD,MN=EF=CD.所以四边形MNCD是平行四边形,所以NC // MD,因为NC⊄平面MFD,所以NC // 平面MFD.(2)证明:连接ED,设ED∩FC=O.因为平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF,因为FC⊂平面ECDF,所以FC⊥NE.又EC=CD,所以四边形ECDF为正方形,所以FC⊥ED.所以FC⊥平面NED,因为ND⊂平面NED,所以ND⊥FC.(Ⅲ)设NE=x,则EC=4−x,其中0<x<(4)由(Ⅰ)得NE⊥平面FEC,所以四面体NFEC的体积为V NFEC=13S△EFC⋅NE=12x(4−x).所以V NFEC≤12[x+(4−x)2]2=2.当且仅当x=4−x,即x=2时,四面体NFEC的体积最大.【考点】直线与平面垂直棱柱、棱锥、棱台的侧面积和表面积直线与平面平行【解析】(Ⅰ)先证明四边形MNCD是平行四边形,利用线面平行的判定,可证NC // 平面MFD;(Ⅱ)连接ED,设ED∩FC=O.根据平面MNEF⊥平面ECDF,且NE⊥EF,可证NE⊥平面ECDF,从而可得FC⊥NE,进一步可证FC⊥平面NED,利用线面垂直的判定,可得ND⊥FC;(Ⅲ)先表示出四面体NFEC的体积,再利用基本不等式,即可求得四面体NFEC的体积最大值.【解答】(1)证明:因为四边形MNEF,EFDC都是矩形,所以MN // EF // CD,MN=EF=CD.所以四边形MNCD是平行四边形,所以NC // MD,因为NC⊄平面MFD,所以NC // 平面MFD.(2)证明:连接ED,设ED∩FC=O.因为平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF,因为FC⊂平面ECDF,所以FC⊥NE.又EC=CD,所以四边形ECDF为正方形,所以FC⊥ED.所以FC⊥平面NED,因为ND⊂平面NED,所以ND⊥FC.(Ⅲ)设NE=x,则EC=4−x,其中0<x<(4)由(Ⅰ)得NE⊥平面FEC,所以四面体NFEC的体积为V NFEC=13S△EFC⋅NE=12x(4−x).所以V NFEC≤12[x+(4−x)2]2=2.当且仅当x=4−x,即x=2时,四面体NFEC的体积最大.【答案】(1)设椭圆的半焦距为c,则c=2√2.由e=ca=√63,得a=2√3,从而b2=a2−c2=4.所以,椭圆C的方程为x212+y24=1.(2)设A(x1, y1),B(x2, y2).将直线l的方程代入椭圆C的方程,消去y得:4(1+3k2)x2−60kx+27=0.由△=3600k2−16(1+3k2)×27>0,得k2>316,且x1+x2=15k1+3k2.设线段AB的中点为D,则x D=15k2+6k2,y D=kx D−52=−52+6k2.由点A,B都在以点(0, 3)为圆心的圆上,得k MD⋅k=−1,即3+52+6k2−15k2+6k2⋅k=−1,解得k2=29,符合题意.所以k=±√23.【考点】直线与椭圆结合的最值问题椭圆的标准方程【解析】(Ⅰ)利用离心率为√63,一个焦点为F(2√2,0),可求a,c的值,从而可求椭圆C的方程;(Ⅱ)设将直线l的方程代入椭圆C的方程,确定线段AB的中点为D,利用点A,B都在以点(0, 3)为圆心的圆上,得k MD⋅k=−1,由此可求k的值.【解答】(1)设椭圆的半焦距为c,则c=2√2.由e=ca=√63,得a=2√3,从而b2=a2−c2=4.所以,椭圆C的方程为x212+y24=1.(2)设A(x1, y1),B(x2, y2).将直线l的方程代入椭圆C的方程,消去y得:4(1+3k2)x2−60kx+27=0.由△=3600k2−16(1+3k2)×27>0,得k2>316,且x1+x2=15k1+3k2.设线段AB的中点为D,则x D=15k2+6k2,y D=kx D−52=−52+6k2.由点A,B都在以点(0, 3)为圆心的圆上,得k MD⋅k=−1,即3+52+6k 2−15k 2+6k 2⋅k =−1,解得 k 2=29,符合题意.所以 k =±√23.【答案】 解:(1)依题意,点C 的横坐标为x ,点C 的纵坐标为y C =−x 2+9.…点B 的横坐标x B 满足方程−x B 2+9=0,解得x B =3,舍去x B =−3. … 所以S =12(|CD|+|AB|)⋅y C =12(2x +2×3)(−x 2+9)=(x +3)(−x 2+9).… 由点C 在第一象限,得0<x <3.所以S 关于x 的函数式为 S =(x +3)(−x 2+9),0<x <3.…(2)由 {0<x <3x 3≤k 及0<k <1,得0<x ≤3k . …记f(x)=(x +3)(−x 2+9),0<x ≤3k ,则f ′(x)=−3x 2−6x +9=−3(x −1)(x +3). … 令f ′(x)=0,得x =1. …①若1<3k ,即13<k <1时,f ′(x)与f(x)的变化情况如下:f(1)=32.… ②若1≥3k ,即0<k ≤13时,f ′(x)>0恒成立, 所以,f(x)的最大值为f(3k)=27(1+k)(1−k 2). …综上,13≤k <1时,S 的最大值为32;0<k <13时,S 的最大值为27(1+k)(1−k 2).【考点】导数在最大值、最小值问题中的应用 【解析】(1)依题意,确定点C 的纵坐标、点B 的横坐标,从而利用梯形的面积公式,即可求得S 关于x 的函数式; (2)先确定函数关系式,再求导数,利用分类讨论的数学思想,确定函数的单调性,从而可求S 的最大值. 【解答】 解:(1)依题意,点C 的横坐标为x ,点C 的纵坐标为y C =−x 2+9.…点B 的横坐标x B 满足方程−x B 2+9=0,解得x B =3,舍去x B =−3. … 所以S =12(|CD|+|AB|)⋅y C =12(2x +2×3)(−x 2+9)=(x +3)(−x 2+9).… 由点C 在第一象限,得0<x <3.所以S 关于x 的函数式为 S =(x +3)(−x 2+9),0<x <3.…(2)由 {0<x <3x 3≤k 及0<k <1,得0<x ≤3k . …记f(x)=(x +3)(−x 2+9),0<x ≤3k ,则f ′(x)=−3x 2−6x +9=−3(x −1)(x +3). …令f ′(x)=0,得x =1. …①若1<3k ,即13<k <1时,f ′(x)与f(x)的变化情况如下:f(1)=32.… ②若1≥3k ,即0<k ≤13时,f ′(x)>0恒成立, 所以,f(x)的最大值为f(3k)=27(1+k)(1−k 2). …综上,13≤k <1时,S 的最大值为32;0<k <13时,S 的最大值为27(1+k)(1−k 2).【答案】(1)解:数列A:2,6,4不能结束,各数列依次为4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;…. 以下重复出现,所以不会出现所有项均为0的情形. …(2)解:(I)因为B 的各项之和为2012,且a ≥b ,所以a 为B 的最大项, 所以|a 1−a 3|最大,即a 1≥a 2≥a 3,或a 3≥a 2≥a 1.… 当a 1≥a 2≥a 3时,可得{b =a 1−a 22=a 2−a 3a =a 1−a 3.由a +b +2=2012,得2(a 1−a 3)=2012,即a =1006,故b =1004.… 当a 3≥a 2≥a 1时,同理可得 a =1006,b =1004.…(II)方法一:由B:b ,2,b +2,则B 经过6次“T 变换”得到的数列分别为:b −2,b ,2;2,b −2,b −4;b −4,2,b −6;b −6,b −8,2;2,b −10,b −8;b −12,2,b −10.由此可见,经过6次“T 变换”后得到的数列也是形如“b ,2,b +2”的数列,与数列B “结构”完全相同,但最大项减少12.因为1006=12×83+10,所以,数列B 经过6×83=498次“T 变换”后得到的数列为8,2,10.接下来经过“T 变换”后得到的数列分别为:6,8,2;2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2,…从以上分析可知,以后重复出现,所以数列各项和不会更小.所以经过498+4=502次“T 变换”得到的数列各项和最小,k 的最小值为502.…方法二:若一个数列有三项,且最小项为2,较大两项相差2,则称此数列与数列B “结构相同”.若数列B 的三项为x +2,x ,2(x ≥2),则无论其顺序如何,经过“T 变换”得到的数列的三项为x ,x −2,2(不考虑顺序).所以与B 结构相同的数列经过“T 变换”得到的数列也与B 结构相同,除2外其余各项减少2,各项和减少4. 因此,数列B:1004,2,1006经过502次“T 变换”一定得到各项为2,0,2(不考虑顺序)的数列.通过列举,不难发现各项为0,2,2的数列,无论顺序如何,经过“T 变换”得到的数列会重复出现,各项和不再减少.所以,至少通过502次“T 变换”,得到的数列各项和最小,故k 的最小值为502.… 【考点】递归数列及其性质 数列的函数特性数列的求和【解析】(1)首先要弄清“T变换”的特点,其次要尝试着去算几次变换的结果,看一下有什么规律,显然只有当变换到数列的三项都相等时,再经过一次“T变换”才能得到数列的各项均为零,否则“T变换”不可能结束.(2)中(I)的解答要通过已知条件得出a是B数列的最大项,从而去掉绝对值符号得到数列A是单调数列,得到答案.(II)的解答要抓住B经过6次“T变换”后得到的数列也是形如“b,2,b+2”的数列,与数列B“结构”完全相同,且最大项减少12,从而数列和减少24,经过6×83+4=502次变换后使得各项的和最小,于是k的最小值为502.【解答】(1)解:数列A:2,6,4不能结束,各数列依次为4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….以下重复出现,所以不会出现所有项均为0的情形.…(2)解:(I)因为B的各项之和为2012,且a≥b,所以a为B的最大项,所以|a1−a3|最大,即a1≥a2≥a3,或a3≥a2≥a1.…当a1≥a2≥a3时,可得{b=a1−a2 2=a2−a3 a=a1−a3.由a+b+2=2012,得2(a1−a3)=2012,即a=1006,故b=1004.…当a3≥a2≥a1时,同理可得a=1006,b=1004.…(II)方法一:由B:b,2,b+2,则B经过6次“T变换”得到的数列分别为:b−2,b,2;2,b−2,b−4;b−4,2,b−6;b−6,b−8,2;2,b−10,b−8;b−12,2,b−10.由此可见,经过6次“T变换”后得到的数列也是形如“b,2,b+2”的数列,与数列B“结构”完全相同,但最大项减少12.因为1006=12×83+10,所以,数列B经过6×83=498次“T变换”后得到的数列为8,2,10.接下来经过“T变换”后得到的数列分别为:6,8,2;2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2,…从以上分析可知,以后重复出现,所以数列各项和不会更小.所以经过498+4=502次“T变换”得到的数列各项和最小,k的最小值为502.…方法二:若一个数列有三项,且最小项为2,较大两项相差2,则称此数列与数列B“结构相同”.若数列B的三项为x+2,x,2(x≥2),则无论其顺序如何,经过“T变换”得到的数列的三项为x,x−2,2(不考虑顺序).所以与B结构相同的数列经过“T变换”得到的数列也与B结构相同,除2外其余各项减少2,各项和减少4.因此,数列B:1004,2,1006经过502次“T变换”一定得到各项为2,0,2(不考虑顺序)的数列.通过列举,不难发现各项为0,2,2的数列,无论顺序如何,经过“T变换”得到的数列会重复出现,各项和不再减少.所以,至少通过502次“T变换”,得到的数列各项和最小,故k的最小值为502.…。
2012-数学一模-试题分类整合-解析几何

2012 数学一模 试题分类整合-------解析几何(19)(本小题满分13分)-------- 2012 海淀 一模已知椭圆:C 2222 1 (0)x y a b a b+=>>的右顶点(2,0)A ,离心率为2,O 为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知P (异于点A )为椭圆C 上一个动点,过O 作线段AP 的垂线l 交椭圆C 于点,E D ,求DE AP的取值围.解:(Ⅰ) 椭圆C 的方程为2214x y +=. (Ⅱ)当直线AP 的斜率为0时,||4AP =,DE 为椭圆C 的短轴,则||2DE =.所以||1||2DE AP =. 当直线AP 的斜率不为0时,设直线AP 的方程为(2)y k x =-,00(,)P x y , 则直线DE 的方程为1y x k=-. 由 22(2),14yk x x y =-⎧⎪⎨+=⎪⎩得224[(2)]40x k x +--=. 即2222(14)161640k x k x k +-+-=. 所以202162.41k x k +=+20282.41k x k =+-所以 ||AP ==即 2||41AP k =+.类似可求||DE =所以22||||41DE AP k ==+设24,t k =+则224k t =-,2t >.22||4(4)1415(2).||DE t t t AP t t-+-==>令2415()(2)t g t t t -=>,则22415'()0t g t t+=>. 所以 ()g t 是一个增函数. 所以2||41544151||22DE t AP t -⨯-=>=. 综上,||||DE AP 的取值围是18.(本小题满分14分)----- 2012 西城 一模已知椭圆:C 22221(0)x y a b a b+=>>的离心率为3F .(Ⅰ)求椭圆C 的方程; (Ⅱ)设直线5:2l y kx =-交椭圆C 于A ,B 两点,若点A ,B 都在以点(0,3)M 为圆心的圆上,求k 的值.(Ⅰ)解:依题意,点C 的横坐标为x ,点C 的纵坐标为29C y x =-+.点B 的横坐标B x 满足方程290B x -+=,解得3B x =,舍去3B x =-.所以2211(||||)(223)(9)(3)(9)22C S CD AB y x x x x =+⋅=+⨯-+=+-+. 由点C 在第一象限,得03x <<.所以S 关于x 的函数式为 2(3)(9)S x x =+-+,03x <<.(Ⅱ)解:由 03,,3x x k <<⎧⎪⎨≤⎪⎩ 及01k <<,得03x k <≤.记2()(3)(9),03f x x x x k =+-+<≤, 则2()3693(1)(3)f x x x x x '=--+=--+.令()0f x '=,得1x =. ① 若13k <,即113k <<时,()f x '与()f x 的变化情况如下:x(0,1)1(1,3)k ()f x '+-()f x ↗ 极大值 ↘所以,当1x =时,()f x 取得最大值,且最大值为(1)32f =. ② 若13k ≥,即103k <≤时,()0f x '>恒成立, 所以,()f x 的最大值为2(3)27(1)(1)f k k k =+-. 综上,113k ≤<时,S 的最大值为32;103k <<时,S 的最大值为227(1)(1)k k +-19、(本小题共13分)------ 2012 东城 一模已知椭圆2222:1(0)x y C a b a b+=>>过点()0,1,且离心率为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)12,A A 为椭圆的左、右顶点,直线:l x =x 轴交于点D ,点P 是椭圆C 上异于12,A A 的动点,直线12,A P A P 分别交直线l 于,E F 两点.证明:DE DF ⋅恒为定值.(Ⅰ)解:由题意可知,,, 解得. 所以椭圆的方程为. (Ⅱ)证明:由(Ⅰ)可知,1(2,0)A -,2(2,0)A .设00(,)P x y ,依题意022x -<<, 于是直线1A P 的方程为00(2)2y y x x =++,令x =,则002)2y y x =+.即002)2y DE x =+. 又直线2A P 的方程为00(2)2y y x x =--,令x =02)2y y x =-,即002)2y DF x =-.所以2200220000442)2)2244y y y y DE DF x x x x ⋅=⋅==+---, 又00(,)P x y 在上,所以220014x y +=,即,代入上式,C 1b=2c a =2a =2214x y +=2214x y +=220044y x =-得202414x DE DF x -⋅==-,所以为定值.19.(本题满分14分)-------- 2012 一模已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1(F,2F ,点(1,0)M 与椭圆短轴的两个端点的连线相互垂直. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,0)M 的直线l 与椭圆C 相交于A ,B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,求证:12k k +为定值. 解:(Ⅰ)依题意,由已知得c =,222a b -=,由已知易得1b OM ==,解得a =则椭圆的方程为2213x y +=. (II) ①当直线l 的斜率不存在时,由 221, 13x x y =⎧⎪⎨+=⎪⎩ 解得1,3x y ==±. 设(1,3A,(1,3B -, 则122233222k k -++=+= 为定值②当直线l 的斜率存在时,设直线l 的方程为:(1)y k x =-.将(1)y k x =-代入 2213x y +=整理化简,得 2222(31)6330k x k x k +-+-= 依题意,直线l 与椭圆C 必相交于两点,设11(,)A x y ,22(,)B x y ,则 2122631k x x k +=+,21223331k x x k -=+. 又11(1)y k x =-,22(1)y k x =-,所以1212122233y y k k x x --+=+--122112(2)(3)(2)(3)(3)(3)y x y x x x --+--=--12211212[2(1)](3)[2(1)](3)93()k x x k x x x x x x ---+---=-++||||DE DF ⋅11212121212122()[24()6]93()x x k x x x x x x x x -++-++=-++2212222222336122()[246]3131633933131k k x x k k k k k k k --++⨯-⨯+++=--⨯+++ 2212(21)2.6(21)k k +==+ 综上得12k k +为常数2.19.(本小题共14分)------- 2012 丰台 一模已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且经过点(2,0)M -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设斜率为1的直线l 与椭圆C 相交于11(,)A x y ,22(,)B x y 两点,连接MA ,MB 并延长交直线x =4于P ,Q 两点,设y P ,y Q 分别为点P ,Q 的纵坐标,且121111P Qy y y y +=+.求△ABM 的面积.解:(Ⅰ)依题意2a =,2c a =,所以c = 因为222a b c =+,所以b = 椭圆方程为22142x y +=. (Ⅱ)因为直线l 的斜率为1,可设l :y x m =+,则2224x y y x m⎧+=⎨=+⎩, 消y 得 2234240x mx m ++-=, 0∆>,得26m <. 因为11(,)A x y ,22(,)B x y ,所以 1243mx x +=-,212243m x x -=.设直线MA :11(2)2y y x x =++,则1162P y y x =+; 同理2262Q y y x =+. 因为121111P Qy y y y +=+,所以12121222666666x x y y y y +++=+, 即121244066x x y y --+=.所以 1221(4)(4)0x y x y -+-=,所以 1221(4)()(4)()0x x m x x m -++-+=, 1212122()4()80x x m x x x x m ++-+-=,224442()4()80333m m mm m -⋅+----=, 所以8803m--=, 所以1(m =-∈. 所以 1243x x +=,1223x x =-.设△ABM 的面积为S ,直线l 与x 轴交点记为N ,所以1212133||||||222S MN y y x x =⋅⋅-=⋅-== 所以 △ABM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十一、线性规划、直线与圆的方程
第一部分 线性规划
3.(2012年西城一模理3)若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪
-+≥⎨⎪≤≤⎩
则2x y -的最大值为
( A ) A .9 B .3 C .0 D .3-
3.(2012年东城一模理3)若实数x ,y 满足不等式组1,2,0,y x y x y +≤⎧⎪
-≤⎨⎪≥⎩
则y x z 2-=的最小值
为( A ) A .2
7-
B . 2-
C .1
D .
2
5
2.(2012年丰台一模理2)若变量x ,y 满足约束条件0,21,43,y x y x y ≤⎧⎪
-≥⎨⎪-≤⎩
则z=3x+5y 的取值范围
是( D )
A.[3,)+∞
B.[-8,3]
C.(,9]-∞
D.[-8,9]
7.(2012年东城11校联考理7)已知约束条件340,210,380,x y x y x y -+≥⎧⎪
+-≥⎨⎪+-≤⎩
若目标函数
)0(>+=a ay x z 恰好
在点(2,2)处取得最大值,则a 的取值范围为( C ) A. 3
10<
<a B.3
1≥
a C . 3
1>
a D . 2
10<
<a
13.(2012年门头沟一模理13)在平面上有两个区域M 和N ,其中M 满足0
02y x y x y ≥⎧⎪
-≥⎨⎪+≤⎩
,N
由1t x t +≤≤ 确定,当0t =时,M 和N 公共部分的面积是 ;当01t ≤≤时,M 和N 的公共部分面积的最大值为 . 答案:12
;
34。
7.(2012年朝阳一模理7)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一 年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了
70%1%
x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种
产品经营中收取的管理费不少于14万元,则x 的取值范围是( D )
A. 2
B. 6.5
C. 8.8
D. 10
第二部分 直线与圆的方程
14.(2012年西城一模理14)直角坐标系xOy 中,动点A ,B 分别在射线(0)
3
y x x =
≥
和(0)y x =≥上运动,且△O A B 的面积为1.则点A ,B 的横坐标之积为_____;△
OAB 周长的最小值是_____.
2
2(1+.
2.(2012年东城11校联考理2)已知直线l 过定点(-1,1),则“直线l 的斜率为0”是“直 线l 与圆122=+y x 相切”的 ( A )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7.(2012年房山一模理7)直线3y kx =+与圆()()4212
2
=++-y x 相交于N M ,两点,
若MN ≥k 的取值范围是( B ) A.12(,)5
-∞- B.12(,]5
-∞-
C.12(,
)5
-∞ D.12(,
]5-∞。