高考数学线性规划题型总结

合集下载

线性规划知识总结

线性规划知识总结

线性规划知识总结1. 二元一次不等式(组)表示的平面区域(1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。

(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。

对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。

对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。

注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。

2. 线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。

解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可行域。

(2)对目标函数z =ax +by ,若b >0,则bz取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。

(3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。

(4)注意实际问题中的特殊要求。

说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。

知识点一:二元一次不等式(组)表示的平面区域 例1:基础题1. 不等式组201202y x x y -->⎧⎪⎨-+≤⎪⎩表示的平面区域是( )A B C D2. 如图,不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域面积是________________。

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总高中数学线性规划知识点汇总一、知识梳理1.目标函数:包含两个变量x和y的函数P=2x+y被称为目标函数。

2.可行域:由约束条件表示的平面区域被称为可行域。

3.整点:坐标为整数的点称为整点。

4.线性规划问题:在线性约束条件下,求解线性目标函数的最大值或最小值的问题被称为线性规划问题。

对于只包含两个变量的简单线性规划问题,可以使用图解法来解决。

5.整数线性规划:要求变量取整数值的线性规划问题被称为整数线性规划。

线性规划是一门研究如何使用最少的资源去最优地完成科学研究、工业设计、经济管理等实际问题的专门学科。

主要应用于以下两类问题:一是在资源有限的情况下,如何最大化任务的完成量;二是如何合理地安排和规划任务,以最小化资源的使用。

1.对于不含边界的区域,需要将边界画成虚线。

2.确定二元一次不等式所表示的平面区域的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3.平移直线y=-kx+P时,直线必须经过可行域。

4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域。

此时,变动直线的最佳位置一般通过这个凸多边形的顶点来确定。

5.简单线性规划问题就是求解在线性约束条件下线性目标函数的最优解。

无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1)寻找线性约束条件和线性目标函数;2)由二元一次不等式表示的平面区域做出可行域;3)在可行域内求解目标函数的最优解。

积累知识:1.如果点P(x0,y0)在直线Ax+By+C=0上,则点P的坐标满足方程Ax0+y0+C=0.2.如果点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0.3.如果点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),则当B>0时,Ax0+y0+C0.注意:在直线Ax+By+C=0同一侧的所有点,将它们的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

高中数学必修5:简单的线性规划问题  知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。

线性规划常见题型及解法例析

线性规划常见题型及解法例析

品有直接限 制 因 素 的 是 资 金 和 劳 动 力,通 过 调 查,得
到这两种产品的有关数据如表 2.
资金
成本
劳动力(工资)
单位利润
单位产品所需资金/百元
月资金供应
电子琴(架) 洗衣机(台)
量/百元
30
20



10
300
110
试问:怎 样 确 定 这 两 种 产 品 的 月 供 应 量,才 能 使
故选:
B.
思路与方法:本 题 运 用 数 形 结 合 思 想,采 用 了 图
组作 出 可 行 域,如 图 3 所 示 .

图 3 可 知,△ABC 的 面 积 即 为
所求 .
易得
S梯 形OMBC =

×(
2+3)×2=5,

图3

S梯 形OMAC = × (
1+3)×2=4.

所以 S△ABC =S梯 形OMBC -S梯 形OMAC =5-4=1.
思路与方法:本 题 中 的 可 行 域 是 三 角 形,而 这 个
不规则的三角形面积很 难 直 接 求 解,于 是 将 它 看 作 梯
解法求最值,先 在 平 面 直 角 坐 标 系 中 画 出 可 行 域,然
形 OMBC 的一部 分,利 用 梯 形 OMBC 与 梯 形 OMAC
后平行移动直线 z=3x+4y 即可求出最大值 .
ï
,
且当
b≥0
b为
íy≥0, 时,恒有ax+by≤1,求以a,
ï
îx+y≤1
坐标的点 P (
a,
b)所构成的平面区域的面积 .
解析:设 z=ax +by,根 据 题 意 可 知,想 要 ax +

高考数学线性规划题型总结

高考数学线性规划题型总结

高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。

数形结合是数学思想的重要手段之一。

习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。

习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。

而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。

本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。

一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。

线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。

在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。

通常情况下,我们可以将线性规划问题表示为标准型或非标准型。

标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。

二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。

其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。

2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。

3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。

4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。

5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。

需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。

【备战】高考数学 高频考点归类分析 应用线性规划求最值(真题为例)

【备战】高考数学 高频考点归类分析 应用线性规划求最值(真题为例)

应用线性规划求最值典型例题:例1. (2012年天津市理5分)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 ▲ .【答案】(0,1)(1,4)。

【考点】函数的图像及其性质,利用函数图像确定两函数的交点。

【分析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y , 综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,。

作出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数k 的取值范围是(0,1)(1,4)。

例2. (2012年陕西省理5分)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 ▲ . 【答案】2。

【考点】利用导数研究曲线上某点切线方程,简单线性规划。

【解析】先求出曲线在点(1,0)处的切线,然后画出区域D ,利用线性规划的方法求出目标函数z 的最大值即可:∵1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,∴曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-。

∴由x 轴和曲线()y f x =及1y x =-围成的封闭区域为三角形。

2z x y =-在点(0,1)-处取得最大值2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考线性规划归类解析
线性规划问题是解析几何的重点,每年高考必有一道小题。

一、已知线性约束条件,探求线性目标关系最值问题
例1、设变量x 、y 满足约束条件⎪⎩
⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1
的交点A(3,4)处,目标函数z 最大值为18
点评:本题主要考查线性规划问题,由线性约束条件画出可
行域,然后求出目标函数的最大值.,是一道较为简单的送分
题。

数形结合是数学思想的重要手段之一。

二、已知线性约束条件,探求非线性目标关系最值问题
例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩
则22x y +的最小值是 .
解析:如图2,只要画出满足约束条件的可行域,而22x y +表示
可行域内一点到原点的距离的平方。

由图易知A (1,2)是满足条
件的最优解。

22x y +的最小值是为5。

点评:本题属非线性规划最优解问题。

求解关键是在挖掘目标关
系几何意义的前提下,作出可行域,寻求最优解。

三、约束条件设计参数形式,考查目标函数最值范围问题。

例3、在约束条件0
024x y y x s
y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()
A.[6,15]
B. [7,15]
C. [6,8]
D. [7,8]
解析:画出可行域如图3所示,当34s ≤<时, 目标函数
32z x y =+在(4,24)B s s --处取得最大值, 即
max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数
32z x y =+在点(0,4)E 处取得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。

四、已知平面区域,逆向考查约束条件。

例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形
区域,表示该区域的不等式组是()
(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩
(C)
0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩ 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围
图2
图1
C
成一个三角形区域(如图4所示)时有00
03x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。

点评:本题考查双曲线的渐近线方程以及线性规划问题。

验证法或排除法是最效的方法。

五、已知最优解成立条件,探求目标函数参数范围问题。

例5已知变量x ,y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。

若目标函数
z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。

解析:如图5作出可行域,由z ax y y ax z =+⇒=-+其表示为
斜率为a -,纵截距为z的平行直线系, 要使目标函数z ax y
=+(其中0a >)仅在点(3,1)处取得最大值。

则直线y ax z =-+过
A点且在直线4,3x y x +==(不含界线)之间。

即1 1.
a a -<-⇒>则a 的取值范围为(1,)+∞。

点评:本题通过作出可行域,在挖掘a z -与的几何意义的条件下,借助用数形结合利用各直线间的斜率变化关系,建立满足题设条件的a 的不等式组即可求解。

求解本题需要较强的基本功,同时对几何动态问题的能力要求较高。

六、设计线性规划,探求平面区域的面积问题
例6在平面直角坐标系中,不等式组20
200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩
表示的平面
区域的面积是()(A)42 (B)4 (C) 22 (D)2
解析:如图6,作出可行域,易知不等式组20
200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩
表示
的平面区域是一个三角形。

容易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为:11||||42 4.22
S BC AO =⋅=⨯⨯=从而选B。

点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。

七、研究线性规划中的整点最优解问题
例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩
⎪⎨⎧≤≥+-≥-.112,
932,22115x y x y x 则1010z x y =+的最大值是(A)80 (B) 85 (C) 90 (D)95
解析:如图7,作出可行域,由101010z z x y y x =+⇒=-+
,它表示为斜率为1-,纵截距为
10z 的平行直线系,要使1010z x y =+最得最大值。

当直线1010z x y =+通过119(,)22
A z 取得最大值。

因为,x y N ∈,故A点不是最优整数解。

于是考虑可行域内A点附近整点B(5,4),C(4,4),经检验直线经过B点时,max 90.Z =
点评:在解决简单线性规划中的最优整数解时,可在去掉限制条件求得的最优解的基础上,调整优解法,通过分类讨论获得最优整数解。

相关文档
最新文档